CanCoast: A National-scale Framework for Characterizing Canada's Marine Coasts

Chelsea D. Smith¹, Gavin K. Manson¹, Thomas L. James², Don S. Lemmen³, Nicole J. Couture¹, Donald L. Forbes¹, Paul Fraser¹, Dave Frobel¹, Kimberly A. Jenner¹, Tracy L. Lynds¹, Barbara Szlavko¹, Robert B. Taylor¹ & Dustin Whalen¹

1 Geological Survey of Canada - Atlantic, Natural Resources Canada, Dartmouth, B2Y 4A2, Canada 2 Geological Survey of Canada - Pacific, Natural Resources Canada, Sidney, V8L 4B2, Canada 3 Climate Change Impacts and Adaptation Division, Natural Resources Canada, Ottawa, K1A 0E8, Canada

Prepared for the 11th International Symposium for GIS and Computer Cartography for Coastal Zone Management

Impacts of Climate Change on Canada's Marine Coasts

- Accelerated sea-level rise
- Reduced sea ice extent/thickness
- Increased wave energy
- Accelerated coastal erosion
- Increased storm surge flooding hazard

- Vulnerability is a function of exposure, sensitivity and adaptive capacity
- Adaptation to climate change is important in reducing vulnerability
 - Strategies are dependant on local and regional physical and social variables
 - Differ based on contributions to vulnerability

Adaptation strategies

- Local and regional physical and social variables
 - Mapped and analyzed
 - Inform policy decisions
 - Aid in adaptation planning
- A need for geospatial database to contain various National coastal features
 - Assist in adaptation planning in coastal zones
 - Contribute to national assessment of coastal vulnerability to climate change
 - CanCoast created for these purposes

Halifax, NS

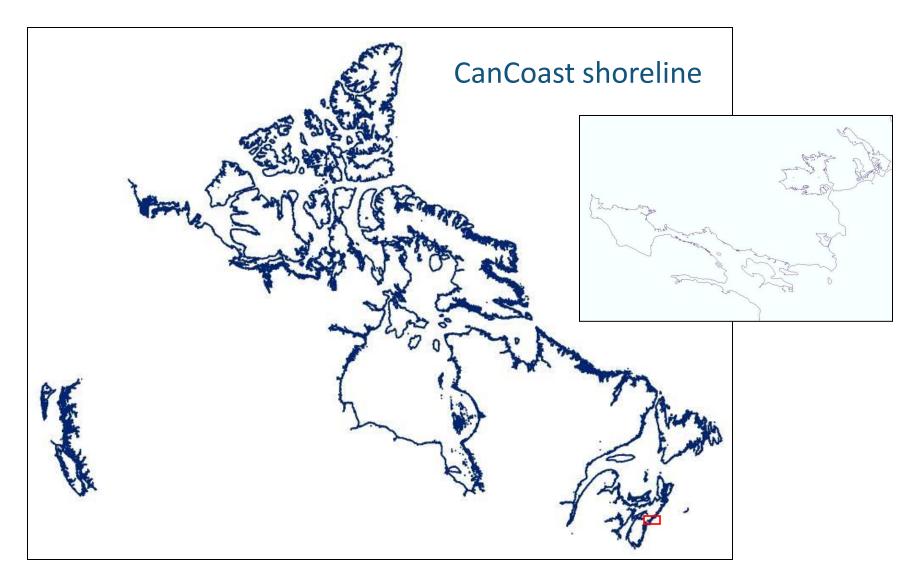
CanCoast

- National scale digital database
- 1:50,000 scale
- Multi-purpose
 - Assisting in climate change adaptation planning
 - Support coastal modeling research
 - Improve knowledge and understanding of shoreline variability and change
 - Identify coastal information and data gaps
 - Contribute to sustainable development of marine coasts
 - Potential for access to stakeholders
- Contains digital coastal data
 - Topographic relief
 - Bedrock geology
 - Surficial materials
 - Landforms

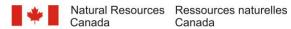
Sea level tendency

Brackley, PEI

- Tidal range
- Wave height
- Erosion


CanCoast shoreline - Source

- Developed in ESRI ArcInfo 9.3
- Source: CanVec version 9.0
 - Natural Resources Canada product
 - Distributed through GeoGratis
 - Originates from multiple sources covering Canada
 - National Topographic Data Base (NTDB)
 - GeoBase
 - Landsat 7/Spot imagery
 - Contains topographical entities organized into distribution themes


Atkinson Point, NWT

- Hydrography theme used
- 1:50,000 scale product
- Original CanVec product imported as polygon feature classes, by province
- NAD83 CSRS geographic coordinate system

CanCoast shoreline - Methods

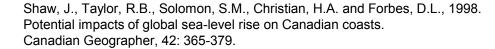
- Non-marine coastal features eliminated
 - Freshwater lakes, ponds, rivers, etc
 - Select by hydrography codes in attribute table corresponding to marine coastal features
- Necessary to eliminate additional nontidal elements
 - CanVec hydrography codes not consistent
 - Erased using National Topographic System (NTS) 1:50,000 sheets
 - Sheets used in Shaw et al. (1998) sensitivity index analysis
- Some non-marine river features remain in database
 - Possible creation of a DEM to clip rivers consistently at a particular elevation

CanCoast shoreline – Methods continued

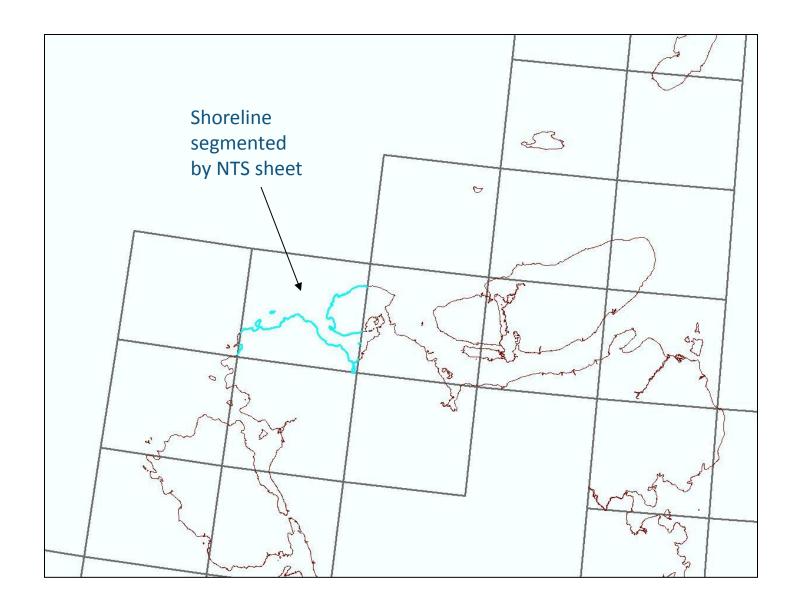
- Polygons converted into polyline feature classes
 - Individual provinces
- Some gaps present in CanVec version 9.0
 - Baffin and Ellesmere Islands
 - Filled in using National Topographic
 Database (NTDB) 1:250,000 shoreline
- Provinces merged into one polyline, forming CanCoast shoreline
- CanCoast shoreline projected to North America Equidistant Conic (NAD83) projection
- CanCoast shoreline clipped by UTM (Universal Transverse Mercator) zones

- Several coastal variables added to CanCoast
 - Appropriate for adaptation planning
 - Nationally consistent
 - Shaw et al. analysis variables were used
 - (sensitivity to sea-level rise):
 - Relief
 - Rock type
 - Surficial material
 - Landform

- Sea level tendency
- Tide range
- Wave height



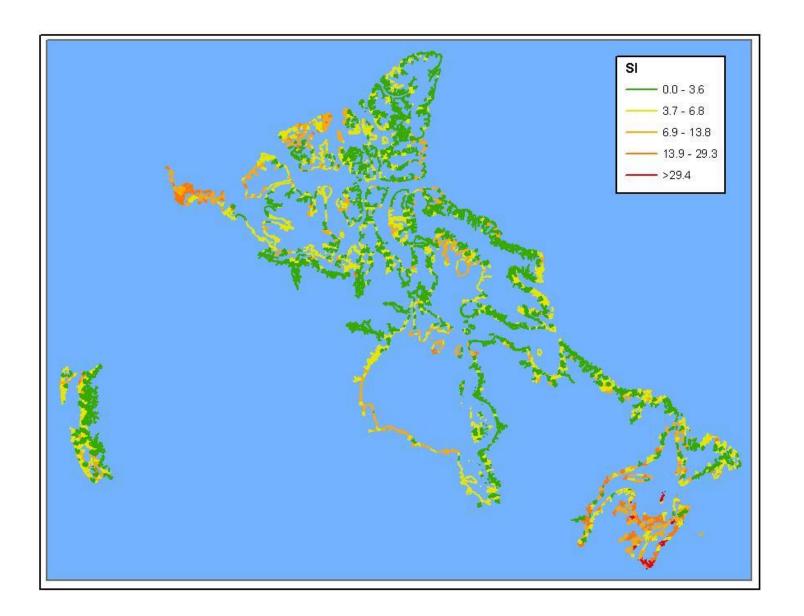
- Shaw et al. variables contain a NTS sheet attribute, sheet numbers matched
- Variables joined to copies of CanCoast shoreline using identity tool
- Each NTS 1:50,000 sheet contains one attribute per variable
 - Polylines segmented by NTS sheet boundaries



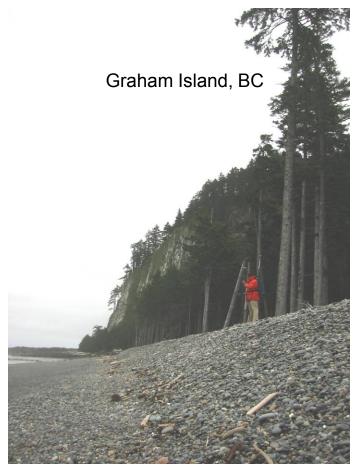
McNab's Island, NS

- Shaw et al. variables each contain a score attribute
 - Based on various classifications
 - 1 = Very low, 5= Very high

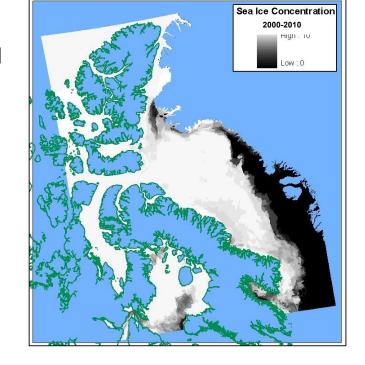
	Ranking of Sensitivity Index				
	Very Low	Low	Moderate	High	Very High
VARIABLE	1	2	3	4	5
1 Relief (m)	>30	21-30	11-20	6-10	0-5
2 Rock type	Plutonic rocks, high-grade metamorphic & volcanic rocks	Metamorphic rocks	Most sedimentary rocks	Poorly consolidated sediments	Unconsolidated sediments, ice
3 Landform	Fiord, high rock, cliffs, fiard	Moderate and low rock cliffs	Beach, unconsolidated sediment over bedrock	Barrier, bluffs, salt marsh, peat, mud, flat, delta, spit, tombolo	Ice-bonded sediment, ice- rich sediment, ice shelf, tidewater glacier
4 Sea-level change (cm/100a)	>-50	-50 to -20	-19 to +20	21 to 40	>40
5 Shoreline displacement (m/a)	>+0.1 accreting	0 stable	-0.1 to -0.5 eroding	-0.6 to -1.0 eroding	>-1.0 eroding
6 Tidal range (m)	<0.50	0.5-1.9	2.0-4.0	4.1-6.0	>6.0
7 One year maximum wave height(m)	0-2.9	3.0-4.9	5.0-5.9	6.0-6.9	>6.9



- Scores used to calculate a Sensitivity Index (SI)
 - Originally done in Shaw et al. analysis
 - Replication of methods to include newly added segments
 - Detail of CanCoast shoreline greater than original analysis
 - Variables and scores interpolated using neighboring values
- $SI = \sqrt{(v1*v2*v3*v4*v5*v6*v7)/7}$
- Results of the newly calculated SI attached to CanCoast shoreline
 - Using the identity tool



- Bedrock geology, Surficial materials added to CanCoast geodatabase
 - 1:5,000,000 scale
 - Wheeler et al. (1996) and Fulton (1995)
 - Natural Resources Canada products
 - Imported as polygons
 - Manually stretched to ensure full coverage on CanCoast shoreline
 - Attributes attached to copies of CanCoast shoreline to create two new polyline feature classes



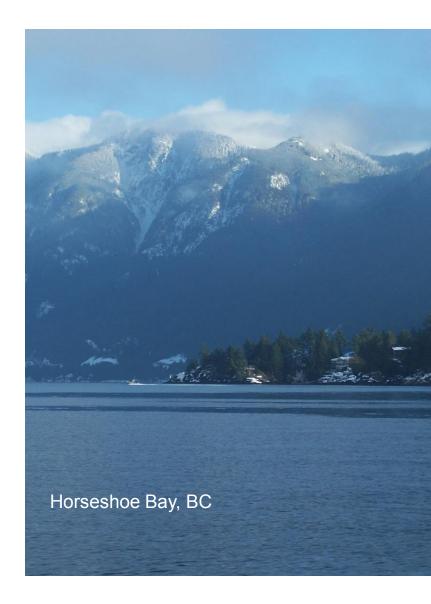
CanCoast - Future Development, 2013

- Scores added to bedrock geology and surficial material feature classes
 - Replace existing Rock type and Landform
 - Recalculation of SI using new scores
 - Moving towards CanCoast variables that do not use NTS sheet segmentation
- Addition of socio-economic variables to database
 - Relevant census data from Statistics Canada
- Coastal Digital Elevation Model (DEM) created
 - Replace existing Relief layer
 - Use in excluding non-tidal rivers
- Sea Ice concentrations
 - Thirty-year median calculations
 - Climate change sensitivity variable

King Point, YT

CanCoast - Future Development

- Ongoing partnership with Climate Change Impacts and Adaptations Division (CCIAD)
 - National assessment of coastal vulnerability
 - Development of adaptation strategies
- Addition of physical and socioeconomic variables to contribute towards assessing vulnerability to climate change
 - Moving from a sensitivity index to sea-level rise to a vulnerability index to climate change



CanCoast - Distribution

- Currently distributed to interested groups
 - Coastal and Ocean Information Network (COIN) Atlantic
 - Emergency Pre-SCAT Assessment for Arctic Coastal Environments (eSPACE), Environment Canada
 - Oceans and Ecosystems Division,
 Fisheries and Oceans Canada
- Currently unpublished
 - Available upon request from GSC-A
 - Future publication to web-based interface through Natural Resources Canada

