What Are The Grand Challenges in Geographic Information Science?

Results from the NSF Workshop on Geospatial & Geotemporal Informatics

Peggy Agouris

Dept. of Geography and Geoinformation Science Center for Earth Observing and Space Research George Mason University

pagouris@gmu.edu

The Workshop

- Held in 2009 at NSF
- 2-day event
- 32 invited participants from academia (US and international), government, industry, K-12
- For more information:

http://stgeoinfo.pbworks.com/

Questions

- 1. What is solved? Include expected and surprise successes.
- 2. What is almost solved? Include on-going hot areas.
- 3. What has failed? Include surprise failures.
- 4. What is missing? Discuss areas not currently on the radar.
- 5. What is next? Include both high risk and needed topics.

Birds-of-a-Feather

- 1. Geovisual Analytics and Multimedia;
- From Long-Term Monitoring to Persistent Surveillance and GeoSensor Networks;
- The Effect of Google Earth and Similar Technologies; and
- 4. Context Areas Beyond the Traditional CS and GIS

Panels

1. Academic Research in View of Latest Industry Developments and Actual Government and Society Needs; and

• 2. Emerging and Anticipated Future Trends and Needs: How Research Can Respond to Society Needs.

Findings

I. New challenges in information extraction and modeling

II. Data collection revisited

■ III. Support for cross-discipline discovery using spatiotemporal information

■ IV. Support for non-expert interaction with spatiotemporal information

New Challenges in Information Extraction And Modeling

Leading Areas

- Spatiotemporal modeling, esp. as it relates to fuzzy & abstract info
- Support for seamless navigation through space and time datasets:
 - Continuous updates of databases
 - Fully 3-D spaces
 - Space/time prediction (e.g. for event monitoring, resource allocation, alert issues)
 - Legacy and historical data integration
 - Now and then in Google Earth: continuously updating its content, accessing legacy and timely data and information, predicting emerging situations
- Event-driven approaches:
 - Event modeling
 - Automated attribute recognition
 - Event similarity assessment
 - Spatiotemporal event mining
 - Reasoning
 - Risk assessment, etc.
 - Integration in a spatiotemporal algebra

Leading Areas (cont.)

- Global monitoring: cross temporal- and spatial-scale analysis
- Mobility, flow, and evolution: from single to composite objects (e.g. cars, pollution front, groups of people, disease risk): modeling, analyzing, and communicating across space, time, and semantic hierarchies
- New representations through the integration of low- and highlevel data (e.g. raw image data and interpreted GIS-data)
 - expert annotation
 - multiple theme-based representations of the same scene as intuitive context descriptions (a critical underpinning to knowledge discovery)
- GeoRealism: At the right space, time, resolution and quality
 - Point clouds vs. 3d models; video vs. events; trajectories vs. patterns
 - Vector with imagery; text (from wire news) with maps; verbal descriptions with 3d models
 - As fast as we need it, and nothing we don't.

Data Collection Revisited

Leading Areas

- Ambient spatial computing: adaptive, multi-modal, sensor-based
- Towards geosensor networks:
 - P2P
 - Sensors running multiple, isolated services
 - In-network, on-the-fly data analysis, interpretation, integration & resource allocation
 - An opportunity to reduce the gap between ST Research and DBMSs
- Humans as sensors, text and speech as data: extending temporal and spatial linguistic analysis
- GeoMedia:
 - Narrative-to-video and video-to-narrative capabilities
 - Text-to-image and image-to-text
- Location-based services revisited: in-situ analytics. Moving visual-analytical power to everyday devices and tasks
- Collaborative use of diverse data sources to track objects and events

Support for Cross-Discipline Discovery Using Spatiotemporal Information

Leading Areaas

- Decentralized geospatial computing
- Knowledge representation: within and cross-domain (e.g. temporal and event-based modeling for hazards, evacuation, and disaster recovery processes)
- Metadata: Visual/Hierarchical/Dynamic/Self-generated/ Integrated/Composite
- Knowledge discovery tools to build empirical models for domain experts
 - Intuitive/visual spatiotemporal queries
 - Link between observation, field experiment, laboratory, and theory
 - Anomaly detection and causality
 - Scenario-based reasoning: support for what-if, counterfactual scenario generation and testing using spatiotemporal information

Space and time scale harmonization: From atmospheric layers to molecular dynamics

Support for Non-Expert Interaction with Spatiotemporal Information

Leading Areas

- Ambient Spatial Intelligence: Personalized, ubiquitous, locationbased services:
 - Scalability
 - Privacy
 - context- and preference-awareness
- Link to social networks: geo-chatting, geo-twitter (location-aware social informatics - geosocial informatics)
- Ad-hoc, purpose-driven social networking: recognizing common spatiotemporal activities and linking users/carriers to exchange information
 - From the classic (transportation services with information shared among neighboring/meeting vehicles) to the more exotic (recognizing patterns of activities and preferences to identify different groups of individuals as they interact with their environment)

Leading Areas (cont.)

- Support for 3-D modeling and interaction of non-professionals with their environment through consumer products (e.g. cameras, cell phones, dashboard-mounted units)
 - Geolocating amateur static and video imagery using scene descriptors
 - Using amateur data to update databases
 - Quality management of volunteered information
 - Delivering specialized information to amateur users to aid their navigation in (and interaction with) urban environments
- Data and information delivery onto new modalities (i-pods, phones, cars etc.)
- Dynamic integration/interaction across scales and domains
- New cross-disciplinary paradigms: Rethinking and expanding the chain from society needs to scientific response
- Privacy (again) and Ethics

Contact Info

Peggy Agouris

pagouris@gmu.edu

http://agouris.org

http://ggs.gmu.edu

http://ceosr.gmu.edu

Thank you!