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PRAISE FOR GIS FOR SCIENCE VOLUMES 1 AND 2 
“This gorgeous book is a joy to read, explore, and also experience online. Perfect to connect the curious minds of all ages with 
exciting scientific concepts and research that is very approachable.”
	

—Shelley Stall, director of data programs, American Geophysical Union

“As humans we are equiped with a natural ability to extract meaning from visual analysis and GIS has been paving a technological 
way in this direction. This book gives a great overview of the power of visualisation paired with spatial analysis to give us new 
insights into complex processes in a spatial context. The examples in the book are carefully chosen to illustrate the principles of this 
approach.”	

—Jens Klump, geoscience analytics team leader, 
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

“GIS for Science takes the reader through stunning examples of scientific discovery and revelation.  From the examination of natural 
features to understanding the human impact on diverse environments—in our past, and for our future—this book is a wonderful 
visual and intellectual primer.  A ‘must-read’ for anyone seeking to understand the power and promise of GIS.”

—Roberta Marinelli, dean, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University

“This book powerfully illustrates the myriad ways in which GIS provides insights into the world around us. With compelling case 
studies and striking images, GIS for Science will be a source of inspiration for readers of all backgrounds.”

—Mike Mascia, senior vice president, Moore Center for Science, Conservation International

“This volume, GIS for Science: Applying Mapping and Spatial Analysis, edited by Dawn Wright and Christian Harder, provides a 
much needed addition to the GIS literature.  It represents a fascinating blending of clearly-explained, critical biophysical and human-
social processes—from mapping human settlements to understanding polar ice loss--with current geospatial and visualization tools.  
The volume, which includes many of the major geospatial research projects of global significance, can be used as an enhancement 
to both basic GI Science or geography courses. Once started, it is hard to put this terrific volume down.”

—Robert McMaster, acting executive vice president and provost, professor of geography, University of Minnesota

“One of the greatest challenges of modern science is to integrate immense quantities of data in order to create rich meaning from 
raw information. The rigor, artistry, and inspired vision make GIS for Science: Applying Mapping and Spatial Analytics a joy to ex-
plore. Page after gorgeous page introduces experts and newcomers alike to delicious new ways of truly seeing the world around 
us.” 

—Liz Neeley, executive director, The Story Collider

“When you combine maps, powerful images, and science, you combine a sense of adventure, a desire to explore, and a pursuit of 
knowledge. Wright and Harder have done just that, forging all these things to help us see, and imagine, our world and universe…
and more.”

—Brooke Smith, director, public engagement, Kavli Foundation

“GIS for Science is precisely what we need right now. As the world changes at an increasingly rapid rate, mapping and spatial 
analytics significantly increase our ability to ask key questions and design new solutions. Dawn Wright and Christian Harder remind 
us of how powerful these tools are and challenge us to do even more.”

—Daniela Raik, senior vice president, Americas Field Division, Conservation International

“GIS for Science illustrates with stunning graphics, colorful imagery, and accessible text how the “Science of Where” can be used 
to visualize and study our planet, to ultimately conserve and protect it. Accompanied by a web-based resource of tools and apps, 
professional and community scientists alike can explore Planet Earth, from the poles to the ocean, in 2D to 3D, and discover rich 
data layers integrated in space and stunningly displayed. The perfect balance of theoretical explanation and practical applications, 
from modeling bird migration to unearthing archeological sites, this book is a must-have resource for understanding our planet and 
its response to a changing climate.”

—Shannon Bennett, chief of science, California Academy of Sciences

“An amazing book with spectacular images of land and sea—maps that communicate how our planet is structured and changes. 
Examples are drawn from volcanoes, glaciers, tsunami, climate, rivers, landscapes and oceans, and the state-of-the-art survey 
methods summarised. Recommended reading for those interested in the environment and its geography.”

—Mark Costello, Institute of Marine Science, University of Auckland

“A beautifully illustrated and informative book that will appeal to the expert and lay person alike. By exploiting modern technologies, 
the reader not only understands the role GIS plays in modern scientific research, but also experiences it through the online story 
maps that give a window on the world for everyone.”

—Helen Glaves, senior data scientist, EGU McHarg Medalist, British Geological Survey

“GIS for Science provides beautifully described and illustrated case studies showing the myriad scientific fields fueled by ‘high-tech’ 
mapping information. This book takes us far from the imaginary maps stating ‘Here be dragons’ to clear-cut, modern geographical 
information systems that can be used to combat climate change and other real-world issues through open science and citizen 
engagement.”

—Laurie Goodman, co-editor-in-chief, GigaScience

“Stunning visuals and accessible graphics make this book a ‘must have’ for GIS users, spatial planners, managers and anyone in-
terested in Earth science. The case studies are real eye-openers, showing the power of new spatial visualisation technologies with 
applications to the real world.”  

—Peter Harris, managing director, GRID-Arendal 

“What an amazing book!  This work explores one of the great frontiers of twenty-first century science — the use of spatial data and 
analytical tools to understand our changing planet.  In this volume, we see the cutting edge of this exciting field, and the scientists 
and engineers creating these emerging tools.  This book will inspire another generation of scientists.” 

—Jon Foley, executive director, Project Drawdown

“Life in the Anthropocene will require everyone to have a greater understanding of their environment and how they can adapt 
to ongoing change. This visually compelling book from Wright, Harder, and colleagues beautifully illustrates how geography and 
spatial analysis will be central and necessary to this new understanding.”

—Mark Parsons, director, Data Science Operations, Tetherless World Constellation, Renssalaer Polytechnic University
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How the book and website work together

INTRODUCTION BY THE EDITORS
This book is about science and the scientists who use GIS technology in their work. 
This contributed volume is for professional scientists, the swelling ranks of citizen 
scientists, and anyone interested in science and geography. Our world, now two 
decades into the twenty-first century, seems to be entering a crucial time in history 
in which humanity still can create a sustainable future and a livable environment for 
all life on the planet. But if we look critically at the facts, no informed observer can 
refute the reality that the current downward trajectory does not bode well. 

As work on the book was well under way, we saw a great shift as the GIS community 
pivoted almost overnight in response to the outbreak of a new coronavirus. The 
stories we present remain just as relevant, but we also wanted to provide some 
context about the initial response of the GIS community to this global crisis. Our 
first objective in assembling volume 2 of this work was to select relevant and 
interesting stories about the state of the planet in 2020. We looked for a cross section 
of sciences and scientists studying a wide range of problems. 

GIS has found its way into virtually all the sciences, but the reader will notice that 
earth and atmospheric sciences are especially well represented. Web GIS patterns 
and a simultaneous explosion of earth-observation sensors fuel this growth. 
Between all the satellites, aircraft, drones, and myriad ground-based and tracking 
sensors, the science community is now awash in data. Well-integrated GIS solutions 
integrate all this big data into a common operating platform—a digital, high-
resolution, multiscale, multispectral model of our world. 

Despite all these advances, science is under attack on many fronts. From fake news 
to political pressure, science is too often used as a political tool at a time when level-
headed, objective scientific thinking is needed. We are convinced that GIS offers a 
unique platform for scientists to elevate their work above the fray. We invite you to 
read these stories in any order; the common thread is that all this work happens 
at the intersection of GIS and science. As you read through these stories, you’ll see 
that GIS is a cross-cutting, enabling technology, whose use is limited only by our 
imaginations. 

In some cases, like the fascinating work of the Virginia Commonwealth University 
using drones and artificial intelligence to count fish, GIS and spatial analysis are 
at the core of the science. These innovations in science could only happen in the 
context of an advanced GIS. In other cases, like the story of the NASA Disasters team 
and their mission to publish the astonishing volume of imagery, GIS embeds itself 
in the science but is still mission-critical in terms of how the team turns data into 
information products for public use. GIS also serves as a vital storytelling platform 
that brings critical research to stakeholders in their communities.

It’s impossible to describe the full breadth and scope of what GIS means for science 
and scientists without showing digital examples. So we have created a companion 
and complement to this book online. You can access it here: 

Science—that wonderful endeavor in which someone investigates a question or a 
problem using reliable, verifiable methods and then broadly shares the result, has 
always been about increasing our understanding of the world. In the beginning, 
we applied geographic information systems (GIS) to science—to biology, ecology, 
economics, or any of the other social sciences. It wasn’t until around 1993, when 
Professor Michael Goodchild coined the term GIScience, that the world began to 
realize that GIS is a science in its own right. Today, we call this The Science of Where®. 
GIS incorporates sciences such as geology, data science, computer science, statistics, 
humanities, medicine, decision-support science, and much more. It integrates all these 
disciplines into a kind of metascience, providing a framework for applying science to 
almost everything, merging the rigor of the scientific method with the technologies of 
GIS. The study of where things happen, it turns out, has great relevance.

In 2020, we confronted a global pandemic, the likes of which we have not seen in our 
lifetimes. (learn about the early and near real-time response of the GIS community 
to this world crisis in these next pages). 

We live in a world that faces more and more challenges. We also continue to see, hear, 
and read  about such issues as growing population (some would say overpopulation), 
climate change, loss of nature, loss of biodiversity, social conflicts, urbanization, 
natural disasters, pollution, and political polarization. We also confront the realities 
of food, water, and energy shortages, and general overconsumption of resources. 
Although the pandemic took center stage and an unprecedented response as it 
spread worldwide starting in early 2020, these other concerns are not trivial for 
the individuals and organizations working in these fields. We must do everything 
we can to better understand these crucial issues and form better collaborations to 
address the challenges. 

Our world at the same time is undergoing a massive digital transformation. Science 
always has been about increasing our understanding of the world. But it is also 
about using that understanding to enable innovation and transformation. It is 
about what we can measure, how we analyze things, what predictions we make, 
how we plan, how we design, how we evaluate, and ultimately, how we weave it all 
together in a kind of fabric across the planet.

What GIS provides is a language to help us understand and manage inside, between, 
and among organizations, to positively affect the future of the planet. It is also 
a framework in which we can compile and organize maps, data, and applications. 
We can visualize and analyze the relationships and patterns among our datasets, 
perform predictive analytics, design and plan with the data, and ultimately transform 
our thinking into action to create a more sustainable future. This technology also 
delivers a new way to empower people to easily use spatial information. As Richard 
Saul Wurman has said, “Understanding precedes action.” Esri is driven by the idea 
that GIS as a technology is the best way to address the immense challenges of today 
and the future.

This book is full of examples that show how GIS advan,ces rigorous scientific 
research. It shows how many science-based organizations use ArcGIS as a 
comprehensive geospatial platform to support spatial analysis and visualization, 
open data distribution, and communication. In some cases, we use this research to 
preserve and restore iconic pieces of nature—revered and sacred places worthy of 
being set aside for future generations. These places belong to nature, and they also 
belong to science. 

As scientists, the discipline of the scientific process is the central organizing 
principle of our work. But science itself is also driven by the organic human instinct 
to dream, to discover, to understand, to create, and to help each other in times of 
great need. The Science of Where is a concept that brings these impulses together as 
we seek to support and transform the world through maps and analytics, connecting 
everyone, everywhere, every day through science. At Esri, we are encouraged and 
frankly humbled by the often heoric work of the GIS community.

GIS FOR SCIENCE: A FRAMEWORK AND A PROCES S 
by Jack Dangermond, Founder and President, Esri
and Dawn J. Wright, Chief Scientist, Esri

Science itself is driven by the organic human instinct 
to dream, to discover, to understand, to create and to 
help each other in times of great need.

This unique website, comprising collections of ArcGIS® StoryMapssm stories, apps, 
and digital maps, brings the real-world examples to life and demonstrates the 
storytelling power of the ArcGIS® platform. The website also includes links to 
learning pathways from the Learn ArcGIS site (Learn.ArcGIS.com) and blogs related 
to the practical use of ArcGIS in each of the case studies.

The companion website for this book is in many ways the most important component 
of the project. Visit GISforScience.com to access more than 100 interactive web maps, 
apps, story maps, videos, and other digital resources described in the text.

GISforScience.com
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GIS SCIENCE RESPONSE TO 
THE COVID-19 OUTBREAK

At the dawn of 2020, news began trickling out of Wuhan, China, about a new and rapidly spreading coronavirus disease 
that came to be known as COVID-19. By early Spring, a pandemic gripped the entire world. This section highlights some 
of the early responses by the global GIS community. Disease and epidemiology are uniquely rooted in place, so spatial 
analysis and mapping were a natural toolset to deploy.

Colored visualisation of electron microscopy photo of novel coronavirus (SARS-CoV-2).
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To most of the world, the mystery illness seemed far away when the Chinese 
government reported a new virus to the World Health Organization on the last day 
of 2019. But by late winter of 2020, the previously unknown virus had swept across 
the planet, touching the lives of millions of people, causing historic impacts to the 
world economy, and requiring monumental changes in the way that humans relate to 
each other. The SARS-CoV-2 virus has presented challenges unlike any humanity has 
experienced or seen in our lifetime. The world has witnessed or personally experienced 

December 31: Chinese 
authorities inform the world 
about a mysterious surge in 
pneumonia cases with no 

known cause in Wuhan City, 
Hubei province.

April 2: The US Labor 
Department reports 

that 6.6 million 
people applied for 

unemployment benefits 
in the last week of March.

January 9: China reports 
first death linked to the new 

coronavirus.

April 29: COVID-19 
had killed more 

than 200,000 people 
worldwide.

January 24: Japan and 
the United States each 
confirm their second 

COVID-19 cases.

May 2: Russia records 
a one-day record 

for the country with 
9,623 new coronavirus 
infections. The mayor 
of Moscow says 2% of 
the city’s population 

has coronavirus.
February 2: The first 

COVID-19 death outside 
China is reported in the 

Philippines.

May 27: Four months 
after the first confirmed 
case, the United States 

had recorded more than 
100,000 deaths from 

COVID-19.

 February 27: Brazil confirms its 
first case of COVID-19, marking 
the first case in South America. 

Cases of the virus have now 
been confirmed on every 

continent except Antarctica.

June 16: After a 24-day 
span with no infections, 
New Zealand records 

new cases.

July 1: The United 
States reports 55,000 
COVID-19 cases in a 

single day, the highest 
single-day total in 

the pandemic’s short 
history.

A total of 175 people test positive in early February 
for COVID-19 on the Diamond Princess cruise ship, 
quarantined in Japan.

After Italy sees a surge of cases in February, residents find 
ways to bring cheer to each other; here, performers play the 
Italian national anthem from an apartment window.

Panic buying in response to the pandemic stripped store 
shelves nearly bare in Lufkin, Texas.

Travel industry slows to a near halt; several 
major airlines announced new guidelines for 
passengers and flight attendants on wearing 
face masks.

As cancellations of major public events like concerts, 
theater productions, and festivals continued into the 
summer, Major League Baseball in the United States 
grappled with the spectre of opening its season 
without fans in the seats.

As summer temperatures arrived in California, civic leaders took 
sometimes controversial measures to enforce social distancing.

Drive-through virus testing centers increase across the United States.

Residents in Wuhan, China, line up to buy masks in January.

January 24 photo shows rapid construction site of a new 
hospital in China to treat patients infected by a new virus. 

CHRONOLOGY OF A PANDEMIC
heartbreaking scenes of grief and sometimes despair, frustration, uncertainty and crisis 
fatigue. But its also witnessed inspiring and emotional scenes of hope and resilience 
from people around the world: Italians singing together from their balconies, children 
scrawling messages on sidewalks, teachers holding drive-by car parades to cheer up 
students quarantined in their communities, doctors in scrubs and masks waving and 
smiling from their emergency rooms, and police officers bringing words  of cheer and 
sometimes even dance routines to the people they serve.

December
2019

January
2020

February March April May June July

February 29: First 
death in the  

United States.

March 11: WHO 
declared a world 

pandemic.

March 24: The Tokyo 
Olympics are delayed 

until  2021.

July 7: President Jair 
Bolsonaro of Brazil 

disclosed that he had 
been infected with 

the virus.

March 15: The United States 
officially becomes the country 
hardest hit by the pandemic, 

with more than 80,000 
confirmed infections and  
more than 1,000 deaths. 

June 28: Global 
reported deaths exceed 

a half million, with 
total confirmed cases 
surpassing 10 million.

As the crisis unfolded, governments at every level stepped up and began responding. 
Thousands of organizations, institutions, private businesses, scientists, and 
researchers began gathering data, attempting to organize the incredible stream 
of information coming from every country on the planet. As the health providers 
expanded medical treatment, and public agencies began mandating stay-at-home 
orders, quarantines, and social distancing protocols, a small army of mapmaking 
professionals and location-savvy data scientists began feeding data into spatial 
databases through the technology of geographic information systems (GIS). 

Organized geographically in layers, raw data can be analyzed in context against 
other layers  and transformed into powerful visualizations. As the outbreak grew, 
thousands of GIS-powered applications, dashboards, and maps tracked the spread 
of the virus and informed frontline efforts to fight the disease. One GIS map in 
particular appeared online early in the crisis. Next, you’ll learn how a small team  
of researchers at the Johns Hopkins University Center for Systems Science and 
Engineering created the most viral map in history.
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In late January, 2020, as the world began to fathom the magnitude of the public 
health crisis looming from Wuhan, China, a well-designed map began circulating on 
social media and then quickly found its way onto mainstream media and traditional 
news sites. The map was actually more of an information dashboard with statistics 
and charts surrounding the map itself. It drew attention with its dramatic red circles, 
scaled by size, that indicated the total number of COVID-19 cases and deaths. 
Perhaps even more important, the daily updates satisfied the desperate need for 
current and accurate information from a worldwide audience. At the time, the dark-
themed application created by the Center for Systems Science and Engineering 
(CSSE) at Johns Hopkins University seemed to be the most comprehensive and 
reliable source of information about the spread. Innumerable dashboards to track 
the virus have since been created (many of which used the underlying JHU data), 
but the now-famous “JHU dashboard” remains the leading source of consolidated 
COVID-19 data as of this writing, ultimately generating hundreds of billions of total 
views.

So what is the back story behind the world’s most viral map in history? Puns 
aside, the map came about because of an interesting confluence of people at the 
university who had an idea, a California mapping software company that provided 
the technology, and the pressing need to fill an urgent information vacuum. When 
traffic to the dashboard grew exponentially almost overnight, the company, Esri, in 
Redlands, California, stepped in to help scale it up and handle the extreme traffic 
as this single app became one of the most viewed maps of the twenty-first century. 

The editors of this book and ArcGIS Living Atlas of the World Program Manager 
Sean Breyer met with Lauren Gardner, associate professor in the Department of 
Civil and Systems Engineering at Johns Hopkins Whiting School of Engineering, 
who co-created the application, to hear the inside story of the dashboard (the 
interview has been edited for clarity).

Let’s start at the beginning. You were living your normal life and doing epidemiological 
modeling research at the JHU Department of Engineering when you heard about a new 
disease outbreak in China, right? So when did this journey actually start?

LG: In early January, I was at one of our normal weekly lab meetings with our PhD 
students. Ensheng Dong, who goes by Frank, is a first year PhD student, and his 
family is in China. We were talking that day about measles and Zika and flu and 
everything that’s not COVID. And then he brought up this new thing in China. He 
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was particularly interested in the outbreak that was happening. This was beginning 
to be big news in China at that time. It wasn’t even called COVID yet; it was just a 
few hundred cases around Wuhan. My initial reaction was to say that we’re way too 
busy to follow this new thing, but then pretty quickly, I was like, “okay, this is actually 
pretty interesting.” This was in the middle of January. Frank was personally really  
interested in it because of his family, and there was also a lot of uncertainty on the 
ground in China about what was happening. But it turns out there was some data 
available in China: daily case data linked to location. So that day we grabbed the 
data and decided to start collecting it regularly and make it publicly available. The 
idea was to aggregate all the data, organize it, and share it out. But we also decided 
we would map it as well. After all, what more of a geographically oriented subject 
could there be than spread of a transmissible disease?

Frank, who actually interned at Esri for a little while and is really skilled in GIS and 
spatial modeling, built the first dashboard that night to show the data in a map-
focused way, and then we shared it publicly the next morning, on January 21, to be 
exact. On that first map, I think there was one case in South Korea and one in the 
US, and it was pretty much just a few hundred cases in China.

I was motivated by the idea of collecting and sharing data for an infectious disease, 
a novel, new emerging disease, in realtime, and sharing it because this is a very 
data-poor field of epidemiology that tries to understand transmission and risk 
and spread, and doing that in real time is hard because usually that data just isn’t 
available. I thought, building out a dataset like this that we’d just do as a daily release 
would be something that, not knowing where it was going to go, may or may not be 
useful for us and for the community. It took just a week for that thing to take off. So 
yes, it was good to help the infectious disease research community.

Was there a particular media link or coverage that created the first spike in usage?

LG: Well, I tweeted it on the 22nd, that morning, and that got retweeted and 
recirculated quite a bit. I could see it was being pretty heavily viewed and retweeted 
on Twitter because it was trackable, but I’m pretty sure it was circulating on lots of 
other social media platforms as well; I just wasn’t following them because we were 
busy. But then, all of a sudden, we started to notice the increased traffic. It just 
kind of snowballed. We actually realized something was happening because Julia 
Holtzclaw and Sean Breyer from Esri reached out at the end of January and were 
saying this looks big and important, and you probably need our help to scale it up if 
the traffic keeps going like this. I was like, “Hi. Yes please,” so Esri jumped in and has 
been supporting this ever since.

Sean Breyer: So initially when we contacted them, really within the first week, we 
were seeing some growth, nothing large at that point, but we were starting to see 
growth, and it was actually set up under a student account; it wasn’t even running on 
a dedicated account of the center (CSSE). It was, “Hey, there’s a COVID-19 dashboard 
app set up by a student, and it’s starting to get a lot of hits. ”  I read Lauren’s blog that 
was referenced in the dashboard, and as I was reading through it my first thought 
was, “I think they’re actually updating this thing manually, like once a day, to try and 
keep up with the numbers. We should probably talk to them and see if we can help.”

LG: We were manually doing a daily update of a few different regions, which was not 
particularly problematic. But then it quickly scaled from a few to dozens to hundreds 
of reporting sites. And it was in every country, and the number of countries afflicted 
was growing; yes, it quickly overran our manual processes. Sean, when was the first 
time we had some infrastructure issues because of demand on the service? 

SB: : It was mid- to late February when we were starting to see the numbers climb 
beyond even what ArcGIS Online did on a normal day—just for this one dashboard. 
So, we took on the challenge of where to host it while Lauren’s team focused on 
the data and map design within the dashboard. Most of the infrastructure changes 
going on behind the scenes were in our web operations area. We began by isolating 
their work from everyone else’s because most AGOL content is in shared pool 
environments. So we started to separate it more and more. At the same time, we 
started automating a lot of the process. So rather than going to a manual scraping, 
we helped automate the scraping of the pages that they were using so that they 
could continue to do daily updates. This worked pretty well until they encountered 
some of the challenges that come up when you’re scraping data from websites 
rather than receiving structured and validated data. Even one change in the design 
of a website can mess up everyone who is scraping that data.

How has the workflow evolved over the ensuing months?

LG: It’s gone through three phases. There was the first one that was almost fully 
manual, and that was mostly just me and Frank. And then there was this middle 
one that lasted for a while where it was our CSSE team and Sean’s team working 
together to semi-automate data collection from one Chinese website that was kind 
of the premier site for data at the time. We were getting good Chinese data from 
there, and then they also started reporting data on other countries. 

So we used that as our source, but as time went on, the country data for outside 
of China was experiencing delays, so we were seeing other websites popping up to 
provide more updated, timely information. So we started trying to do US, Australia, 
and Canada at the city level from the start, so those were all manual the whole time. 
And it was starting to be nearly impossible to update every country daily. So that 
was when we started making this big shift to the third phase, and we expanded the 
team to include multiple software developers from the JHU Applied Physics Lab. We 
rearranged tasks and took over all the data curation on the JHU side, and since then 
have expanded the automation to include dozens of sources that cover countries 
all over the world, states, cities, counties, so we’re just scraping from all sorts of 
levels. And it’s aggregated now to subnational data, and we’re still adding sources 
and building that out all the time. But the first two versions were like that manual 
one and then the one with Sean’s team and us that lasted for a long time. That’s 
really where the dashboard grew out of and got popular, and now it just works a lot 
better. And Sean’s team’s got to spend their time and efforts doing the infrastructure 
management, which is also improved massively, but I don’t have any idea what 

magic they’ve done! At this point, we’ve gotten to focus on the data curation, quality, 
robustness, and anomaly detection, and build out that pipeline. So, it’s definitely 
gotten more stable and smoother, but it’s been a daily commitment from around 
twenty people that are still trying to tweak this thing on a regular basis.

What were some of the design challenges?

LG: Frank has a good design eye, and he would make the initial choices as far as 
colors and symbol sizes and overall arrangement of the dashboard elements. And 
then I would come in and be picky and regularly make him sit down with me every 
time we wanted to make changes and try a million different things and resize things. 
Sean got a lot of emails from us to implement some of these changes. We regularly 
had to reassess our design choices because the reporting was changing everywhere. 
For example, we were always having to manually scale the red bubbles into these 
discrete categories. And that was challenging from the start, because clearly, this is 
a highly nonlinear phenomenon.

So Lauren, this book is about how scientists use our technology to optimize their science, 
but the flipside that we often do not hear about is how the science helps Esri to improve 
our technology and push the boundaries of what we are trying to make in terms of 
software and services. So, your description here of the challenges of trying to capture a 
nonlinear event is a very good thing because it’s helping us, Esri, to improve.

LG: I do want to highlight that the software is awesome. The software has been 
amazing, and the support has been great. We were in a unique position where we 
were dealing with something live, and we had all these ideas and features and layers 
we’d like to include, but every time we had to have this conversation about adding 
things, we were constrained because of how popular this thing was. Under normal 
circumstances, you would just add all these features and layers and keep changing 
things.

SB: If there were a couple thousand viewers it would have been no big deal at all—
no one would have noticed. I wanted to mention, too, that what’s unique about 
our platform, one of the big values that we discovered, is not just the dashboard; it 
was the underlying hosted service that they built. This service was published as a 
standalone resource, freely available to anyone who wanted to use it. It ended up 

Snapshot of the JHU COVID-19 dashboard on January 22, a day after its initial launch.

Ensheng (Frank) Dong, left, and Dr. Lauren Gardner.

Lauren Gardner’s 
January 22 tweet 
about the launch of 
the dashboard.
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being reused by thousands of organizations. So a change in data structure would 
have messed up thousands of people who were connecting to it to make their own 
versions of the dashboard that focused on the area of interest, or they were running 
it to do analysis, so the dashboard became a visual hub for the public, but behind 
the scenes, the hosted service that was there became the tool, the disaster response 
and health community’s reason to make decisions. So those two were actually being 
driven by one set of services.

LG: That’s a good point. From the start, this whole thing was about open data and 
open science. So the whole service was open; people could pull the feature layers, 
and we also deposited all the data that went into the dashboard into GitHub, and 
that was available. We have to be careful about the data structure because we have 
all these files there that if we want to add variables or ever change the structure 
of these files, it affects people all over the world who are pulling those data on a 
daily basis and utilizing them in their own modeling tools and visualizations. And 
any time we change anything, it does the same thing to their scripts. So it has to 
be justifiable to make these structural changes. We can’t be selfish about making 
our own dashboard because every time we want to do something, we have to think 
about how it affects everybody else that’s using it.

That is such a fantastic point. We are learning so much now about culture change and 
science in terms of opening up our data and our methodologies and our workflows. It 
used to be when you were a student, you’d do something, and it wouldn’t go beyond your 
professor and maybe eventually a published academic paper. But today, we are getting 
used to the fact that thousands of people may be depending on our data and workflow, 
and this is such an apropos example of that.

LG: It’s true. I don’t think we do any work in my group anymore where you could  
publish unless all the data you use in your work can be published alongside of it. 
Today we share out everything, everything’s open. I think that’s the only way to 
do science now. So now you actually have trust issues if you don’t make the data 
available. This COVID dashboard is such a great example of that. A major research 
interest of mine, something I was doing before this all came about, is about issues 
of misinformation and disinformation and the growing lack of trust in science and 
empirical understandings of how the world works. So a lot of this is just about 
being a transparent source of information to the public, so that they can see what’s 
happening, but also for scientists to have open access to the data as well, so that 
they can build models that are also transparent in terms of where the data’s coming 
from. 

Many people have been surprised to learn that this dashboard that has become the 
defacto “authoritative” source of information about the pandemic would come from a 
private university as opposed to a government agency. What about that?

LG: I think there’s value in it coming from a university. And it’s been great that our 
university has been so supportive and that we didn’t have to fight for the right to 
continue. I was conscious from day 1 of where I would accept funding and support 
for this to make sure it didn’t get branded with any organizations that would take 
trust away from it. And this was a delicate issue with the federal government 
because of how politicized this pandemic was from the start and the way they were 
censoring the CDC and some of the science. So I think that whether or not it should 
have been done by the government is kind of a separate question, but I do think 
the fact that it came out of Johns Hopkins, a highly respected institution in public 
health and medicine, has been a huge benefit. But I will note that it is not in the 
public health school or the school of medicine; it’s in the engineering school, which 
is also really great!

SB: So that does bring up an interesting question that you and I have talked about a 
few times as the number of cases grew in the US and we started to collect information. 
In trying to get it down to the county level, there were a lot of challenges because 
all the sources were not just recording stuff differently but using different software 
products, and the ability to access the underlying data was a challenge. Can you talk 
a little about that?

LG: Yes, it’s been a huge challenge because the reporting criteria and guidelines 
and structure and the types of things being reported are still constantly changing, 
but yes, I think maybe what you’re getting at, and maybe something that’s been an 
interest from the start, is that we need more systematic and strategic guidelines 
and processes for reporting, moving forward, that counties and states can follow 
that all align into a system where it’s available in a timely manner. There are, of 
course, privacy issues, and things have to be aggregated and anonymized when they 
scale up. But here we were trying to collect data, and there’s some three thousand 
plus counties in the United States, and all the counties report data differently, the 
counties in a state might report differently than their state, and there are all these 
inconsistencies at all levels. 

And then you have not only this issue of cases and deaths, but also you might get 
probable cases and probable deaths, and then there’s the issue of testing, and so 
many little things around this that were (and still are) are a challenge. We’ll see 
a city or a county in one state that’s reporting something, and the state doesn’t 
even report that. And the state says something different about that county than 
the county says about itself. When we started this, there wasn’t a single COVID-
dedicated website by anyone, by any government at the state, national, city, or 
county level. And now almost all of them have it, and we’re going through those and 
trying to go straight to those as our sources to pull data directly into this dashboard. 
This is, in itself, amazing and one of the remarkable outcomes of all this. I can say 
with some confidence that people in the world of epidemiology and health science 
reporting will be much better equipped for the next pandemic.

It is crystal clear that there needs to be a system in place so that when the next thing 
happens, not five months into it but weeks into it, everyone’s already put up their 
county dashboard, and here’s how we report the data, and this data is pulled from 
this dashboard into this centralized state dashboard, and the state dashboard data 
can be pulled directly into a centralized US dashboard. And everyone, every county, 
is reporting the same variables, at the same time period, and things like that. It’s 
complicated, but it can be done. We did it, you know? We have built it, and we’re just 
some engineering professors and students. 

What should the GIS community be doing differently in the next pandemic?

LG: GIS people should have the systems in place and connected, and the data 
provided in some kind of consistent format, so that they can be pulled together into 
some centralized system that is open and public and accessible and usable. The 
CDC collects data from states and counties, and they don’t share it, which is useless 
to us. So the public can’t see it, so they don’t trust it, researchers can’t get access to 
it, so they can’t even use it, so I mean from day 1, the stuff we’ve been doing, even in 
January, people were using this to help policymakers in China understand what was 
going on, and it’s been used since then for every country as it got hit.

This has been a fascinating conversation. Thanks so much Lauren for talking with us.

LG: You’re welcome. Thanks to you and thanks to Esri for being so responsive and 
supportive during this time. 

Statistical views of the evolving pandemic as of July, 3, 2020, including the cases by country; expanded county-level infographics for all US counties; and a a breakdown of cases by race, ethnicity, and age.
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Faced with reopening facilities, leaders at organizations of all sizes must 
address multiple, complex challenges and decisions. The White House recently 
released guidelines for states to reopen and employers and individuals 
to return to the workplace in a phased approach while recovering from 
coronavirus disease (COVID-19). However, these guidelines are still evolving. 
 
The ArcGIS® platform helps those tasked with providing a safe environment while 
adjusting to the evolving guidelines. Social distancing requirements, for example, 
necessitate a new normal within facilities. Employers must rethink floor plans, 
especially if their facilities utilize an open floor plan concept. They may also need 
to designate routes that minimize interactions or avoid contaminated areas. 
Additionally, employers will need to provide clear communications with staff. 
This will be especially relevant when or if an employee has been in contact with 
someone who tested positive for COVID-19 or has been to a contaminated location. 
Employees can reasonably expect to get a clear understanding of what spaces 
are off-limits, which areas have been sanitized, and the sanitization schedule for 
contaminated areas.

On April 16, 2020, the White House released its guidelines for states, employers, 
and individuals throughout each phase of recovery from the novel Coronavirus 
(COVID-19). As states begin meeting criteria to move into the next phase of recovery, 
employers are planning how to resume business operations.

Employers with large workforces and complex campuses are particularly interested 
in how to re-open facilities in compliance with federal state and local guidelines 
without jeopardizing employee health or wellness. With more people spread across 
more buildings, it can be onerous to find and eliminate areas of high contact and 
ensure those areas are sanitized to safeguard everyone’s health.

One guideline instrumental to the wellbeing of employees and the successful 
recovery of their community proves challenging: “develop and implement policies 

REOPENING THE WORKPL ACE WITH INDOOR MAPPING
and procedures for workforce contact tracing following employee COVID+ test.”
Tracing can be as simple as asking the infected person who they came in contact 
with. In a small facility that question is simple, but in large buildings that can be a 
very difficult task.

Many solutions are capable of revealing movement of personnel outdoors, but fewer 
are capable of tracing movement indoors. Even fewer can account for the walls and 
floors within buildings to accurately represent the contact between two employees. 
To support employers planning and implementing procedures for employee tracing, 
Esri offers indoor and outdoor contact tracing solutions for your enterprise.

Protecting the workforce
As an employer, the health and wellness of your employees and surrounding 
community is vital to the global recovery process and maintaining continuity 
of business. Until a vaccine is released, the workforce will consist of people who 
had the virus, people who had the virus but don’t know (because they were either 
asymptomatic or didn’t have severe enough symptoms to receive treatment), and 
people who have not yet had the virus. As a result, at least two thirds of the workforce 
will be reluctant to return to work unless proper procedures are put in place.

Using a passive contact tracing solution provides employees with the peace of 
mind that interactions are being monitored and that high contact areas are being 
routinely sanitized. Employers can see where traffic is greatest and can automate 
alerts to cleaning crews after a certain threshold of people have passed through. 
Maintenance crews can be monitored against cleaning goals to ensure adequate 
staffing levels are in place to keep facilities clean. 

With the ability to trace movement both indoors and outdoors, public health and 
corporate security missions can both be met. This solution has the ability to scale 
to support thousands of employees across multiple sites to safely advance through 

each phase of recovery, and to enhance 
safety far into the future.

Understand Proximity Tracing
ArcGIS Indoors allows employers to 
deploy tracing apps for both iOS and 
Android devices. This gives employers 
the ability to provide tools for any 
device in order to aggregate movements 
of their workforce in real-time and 
log contacts for historical analysis.  
 
Performing spatial analysis on historical 
employee movement data not only 
enables employers to determine high 
traffic areas for sanitation, but also detect 
proximity between employees across 
space and time. If an infected employee 
gets past safeguards, having the ability to 
quickly analyze who they have come in 
contact with can help quell the spread.

Dashboard showing intersecting location tracks.

IMPORTANCE OF LOCATION
Esri Chief Medical Officer Este Geraghty
Location information has proven critical to decision-making associated with large 
outbreaks, and COVID-19 is no different. The CDC considers place to be a basic 
tenet of a field investigation: Both the who and the when of disease are relative to 
and often dependent on the where. Epidemiologists quickly turned to GIS science, 
systems, software (collectively known as GIS), and methods as a needed perspective 
to understand and track the spread of the virus. The healthcare community has used 
maps to understand the spread of disease for a long time, most famously in 1854 
when Dr. John Snow connected location and illness with his history-making map 
of a London cholera outbreak. From disease atlases of the early twentieth century 
to more recent web mapping of Ebola and Zika infections, healthcare professionals 
have long considered mapping, and more recently GIS, a critical tool in tracking and 
combating contagion.

GIS is critical to answering many infectious disease questions:

•	 How quickly is the infection spreading, and where is it going? 
•	 Do we have schools in socially vulnerable areas?
•	 Which neighborhoods are distant from a testing site?
•	 Do we have communities at a greater risk?
•	 Which facilities and staff are in harm’s way?

What does surveillance data on the number of hospitalizations and deaths suggest 
regarding :

•	 Distribution of hospital supplies and hospital beds on a regional basis? 
•	 How quickly local and regional hospital resources are being depleted? 
•	 Whether data helps predict where and how fast the pandemic will spread? 

The need for location intelligence is acute when an outbreak like COVID-19 quickly 
spreads from a small geographic location to widespread areas. Public health officials 
face a major challenge, never before undertaken at this scale, of containing the 
outbreak through contact tracing and quarantine, which proved to be successful 
after the new coronavirus was identified in the city of Wuhan, China, in December 
2019. For most of  the world, however, health officials must evaluate and implement 
a series of community-level interventions to slow the spread of the illness. Health 
officials can use location-based information to support multiple, specific community 
interventions  and activities. Common and helpful GIS applications include mapping 
and data collection apps to track cases, spread, vulnerable populations and places, 
and the capacity of our systems (like health care) to respond; dashboards for real-
time situational awareness; web apps for keeping the public informed. Health 
officials may overlay outbreak data with other location-based information, such 
as public gathering places, schools, health facilities and services, transportation 
centers and local population demographics. GIS-supported interventions led to the 
implementation of many public safeguards, and GIS continues to help monitor their 
impact in many ways:

•	 Canceling public events, meetings, and gatherings 
•	 Closing schools, public places, and office buildings 
•	 Restricting use of public transportation systems 
•	 Identifying potential group quarantine and isolation facilities 
•	 Enforcing community or personal quarantines 
•	 Screening airline passengers and assessing airline routes

Early in the crisis, public health officials began screening international airline 
passengers who completed a standardized health status questionnaire and had 
their temperatures checked for fever. Passengers stated origin and destination 
addresses. Subsequently, when a disease cluster was reported in another country, 
public health officials could better identify how many people traveled from or had 
visited that same location. Using GIS, public health officials applied the information 
collected in the questionnaire to estimate exposures and prioritize investigations. 
A digital solution to capture questionnaire data, including a standardized method 
to geographically reference each passenger’s place of origin and travel destination, 
can help save the public health community valuable time in understanding the 
transmission dynamics and potentially lessen the spread of the disease. 

GIS also plays a key role in supplementing traditional contact tracing. Geographically 
referencing contact information allows hospitals to perform location analysis 
to identify places in the community at higher risk of transmission and potential 
points of incidental infection (when the contact is unknown). GIS can help the 
public health community rapidly capture standardized and geocoded addresses for 
confirmed cases and case contacts in an effort called Community Contact Tracing. 
The effort provides essential support for attempts to slow the spread of disease 
throughout the community by breaking those disease transmission links among 
people and places.

Addressing this pandemic is part of Esri’s common mission in bringing geographic 
science, GIS technology, and geographic thinking to every organization globally 
during these difficult and challenging times. ArcGIS applications such as Survey 
123, Storymaps, ArcGIS Pro, HUB, Tracker, Dashboard, and dozens of solutions 
templates are helping people understand and tell their stories in real time. GIS 
application builders around the world have embraced the platform in the ongoing 
battle against COVID-19.

We have much more to do. Our way of living has changed, and we now need to think 
about what’s next. How do we get back to the office in a physically distanced word? 
How can we make our communities more resilient (event planning, elections, etc.), 
How do we make these important decisions around economic and public health 
balance? These are all inherently location-based problems in which GIS will play a 
crucial role.

Five steps to COVID-19 response
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Epidemiologists watched with growing concern early this year as the number of 
people around the globe diagnosed with novel coronavirus 2019 (COVID-19) 
continued increasing. As the epidemic became a pandemic, anticipation of 
shortages of hospital beds, supplies, devices, and medical personnel grew. Ahead of 
inquiries from concerned leaders, scientists began creating analytical models that 
could quantify and predict the surge in COVID-19 cases and help understand what 
interventions would be necessary to flatten the curve.

From that effort, a number of powerful models emerged as useful tools for 
hospitalization planning. Penn Medicine’s Predictive Healthcare Team adapted 
the Susceptible, Infected, and Recovered (SIR) epidemiological model, to create a 
new model it calls CHIME (COVID-19 Hospital Impact Model for Epidemics). The 
US Centers for Disease Control and Prevention (CDC) created another new tool 
called COVID-19Surge, which uses a similar epidemiological model that takes into 
account more stages of the disease. This explosion of domain experts working on 
creating essential modeling tools has helped us better understand the potential 
impact of the pandemic. And yet, these web and spreadsheet-based tools can make 
further progress in modeling complex COVID-19 phenomena by incorporating 
an important factor: geography. The GIS community is well placed to integrate 
spatial data into COVID-19 models; for example: metrics of social distancing and 
hospital capacity vary locally and have an important effect on the local outcome. 
Domain experts must visualize the model results geographically, and communicate 
actionable information in intuitive applications and information products that 

A single epidemiological model is not enough to model the complex phenomena 
of COVID-19: where one model suffers, another may excel. On the surface, the 
CHIME Model and COVID-19Surge (CDC) appear to do the same thing—estimate 
hospitalizations—using similar types of epidemiological models. However, the 
critical figures that drive these tools are very different. The results of the CHIME 
Model tool are driven predominantly by the number of hospitalized COVID-19 
patients and the amount of time it takes the disease to double in the population.
The COVID-19Surge (CDC) tool is instead driven by the number of cases and the 
number of new infections that have been observed per case. These seem like subtle 
differences, but the different inputs for each model, along with the slight differences in 
the type of compartmental epidemiological models used, can lead to big differences 
in the results of each tool. The data for one tool may be also easier to obtain—or less 
reliant on external factors such as testing—than the other. Therefore, it is important 
not to consider a single model in isolation.  Models are only a simulation, and these 
simulations depend on the modeling techniques and data inputs. The more models 
we consider, the more certain we can be of our results.

MODELING THE CURVE
Esri Spatial Statistician Lynne Buie

are designed for hospital administrators, public health administrators, emergency 
operations centers, and first responders. To help the community to take advantage of 
these models and bring location into the workflow, Esri’s spatial statistics software 
development team integrated these two models into an ArcGIS Pro toolbox.

The two tools in the COVID-19 Modeling toolbox—CHIME Model and COVID-
19Surge (CDC)—estimate how many patients will need hospitalization for COVID-19, 
and of that number how many will need ICU beds and ventilators. The models can 
account for interventions such as social distancing and mandatory face mask policies 
currently in place, or even simulate the impact of strengthening or relaxing these 
measures. By bringing these tools into a spatial analysis environment, it’s possible 
to run the models for multiple hospital catchments or counties simulaneously, and 
adapt the model to specific disease patterns or policy decisions at each location. 
Using inputs such as total population, active cases, and currently hospitalized cases 
for each location, the tools produce spatial data showing anticipated hospitalizations, 
ICU hospitalizations, and ventilated patients for each day of the modeled period, 
a curve that helps hospital administrators plan ahead to meet forecasted spikes in 
demand. The tool produces charts that visualize the modeled curve, estimating when 
hospitalizations, ICU admissions, and ventilator needs will reach their projected 
peaks. These charts can be configured to show how single or multiple interventions 
can help lower these peaks, helping informing policy makers on the impacts of 
proposed interventions.  

Analysis and predictive modeling are most effective when policy makers receive 
actionable information on complex problems in an visually understandable format. 
To this end, the Capacity Analysis configurable app provides a way to consume 
the information from the CHIME Model and COVID-19Surge (CDC) tools in an 
interactive application in ArcGIS Online or ArcGIS Enterprise. The app focuses on 
comparisons across models: for example, an analyst may compare the results of the 
two tools for the same inputs, or focus on investigating different parameters using 
a single tool. The second approach allows analysts to investigate how proposed 
interventions, such as physical distancing, may impact modeled hospitalizations. 
By comparing the outcomes across different intervention scenarios, the CHIME 
Model tool, the COVID-19Surge (CDC) tool, and the Capacity Analysis app combine 
to make an effective tool for the decision maker. ArcGIS Pro tools and configurable 
applications together help domain experts research and model the COVID-19 curve. 
The software also informs policy makers as they try to flatten the curve so that sick 
people don’t overwhelm the capacity of our health care system.

The ArcGIS implementation of the CHIME 
Model provides maps and visualizations that 
Tennessee state government officials could 
use to plan when and where they need to 
mobilize resources to lessen the impact 
of the surge. (Test data—not for policy or 
decisions.)

Analysts can put interactive results into the hands of nontechnical decision makers using the Capacity Analysis configurable app, designed to work seamlessly with the results of the 
COVID-19 tools. (Test data—not for policy or decisions.)
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In 2020, a new era of GIS exploded onto the global scene. Organizations everywhere 
banded together to form GIS communities aligned to focus on the world’s great 
challenges. Just six months earlier, it would have been hard to imagine the power 
and reach of these ArcGIS communities; today their good work is everywhere to be 
seen.

By January, 2020, ArcGIS Online had already grown into a massive, shared-cloud 
GIS for the planet, containing more than 30 million spatially referenced information 
items covering literally every nation and corner of the world. What is most 
surprising—and what gives ArcGIS Online such a huge impact—is that more than 
50% of that content is shared with other system users, forming an interconnecting 
web of content, projects, and efforts addressing every aspect of human activity. 
Public and private organizations have increasingly adopted and applied GIS as an 
integrating tool for understanding and action. This acceleration has long been a 
vision of leaders in the GIS world.

Historically, builders of GIS systems never felt like they had enough data, computing 
capacity, or bandwidth to fully realize the vision. Each GIS organization historically 
relied on data from other GIS users and organizations. Over time, computing and 
data sharing networks continued to expand. Today, we see an environment where 
GIS organizations have created formal and informal alliances among themselves 
(based on shared geographies, shared topics, or both) to deliver their analyses and 
applications. As the cloud computing phenomenon exploded onto the information 
scene, more and more GIS organizations began to share their information and make 
it publicly accessible, so that more organizations could discover and link to this 
shared information and put it to work.

Everything happens somewhere. GIS is built on this premise; its organizing and 
interconnecting principle is location. GIS application builders use the rich location 
data that is a core part of every GIS as a foundation to integrate their independent 
information layers. These sharing efforts have transformed GIS into a kind of magic 
tool for integrating content from multiple organizations. For decades now, many GIS 
organizations have collected and compiled these critical information layers, which 
now can be easily combined and brought together. The result is a 180-degree shift: 
whereas the normal behavior was to silo data, today’s progressive GIS organizations 
openly share, and the result is a quantum boost in the impact of their efforts.

A case in point emerged this year after the COVID-19 outbreak. A small engineering 
team at Johns Hopkins University ( JHU) began to assemble their now widely-
recognized global COVID-19 dashboard. Early on, Dr. Lauren Gardner and the team 
made their dashboard (and the underlying data) public to support other scientists 
and medical professionals—following the same ethics and open data principals that 
most GIS practitioner would follow.

As the JHU team shared this dashboard, the news media picked up the web address, 
and the site began to immediately promote the JHU work. Gardner and her team 
followed some common data-sharing practices and ethics from the global geospatial 
community. 

As of mid-summer, 2020, the JHU COVID-19 dashboard had hundreds of billions of 
visits, the equivalent of dozens of views from every citizen on the planet. Just six 
months ago, it would have been hard to imagine the power and reach of the GIS 
tools and the good work provided by the JHU teams. The map became so ubiquitous 
that it is hard to imagine where the world would have been collectively if this 
application had not been built to access some sort of truth about the COVID-19 

A NEW ERA OF GIS
Esri Director of Products Clint Brown

status worldwide. So why was this particular GIS application destined to become so 
accepted as the universally trusted tool used worldwide? A few thoughts come to 
mind. First, the small engineering team at Johns Hopkins that originally created the 
dashboard had the right philosophy:

•	 Make their site about sharing open information to provide the best 		
	 available and up-to-date statistics. 
•	 Respond intelligently. Pay attention to ongoing feedback about the 		
	 information, and make verified corrections and updates as soon as possible. 	
	 Build a cadence to maintain these updates and corrections.
•	 Instead of being defensive, acknowledge information errors and issues, and  	
	 follow up. 
•	 Learn how to be responsive. Continue to grow and evolve the solution 		
	 strategically over time. 
•	 Regardless of criticism and cyber-attacks, stay focused and remain open 	
	 to feedback. Don’t give up or give in.
•	 Continue to evolve and expand your offerings (e.g., the incredible work 		
	 on US state and county maps and the dashboard’s collection of county-		
	 based infographics (https://coronavirus.jhu.edu/us-map). 
•	 Share your work and practice as a pattern so that others can emulate your 	
	 results and set clear principles to follow. 
•	 Maintain your commitment to support and sustain your information offerings.

At Esri, we see how this modern GIS experience ties back to all of the efforts and 
investments that GIS organizations have made for many years. It’s useful to realize 
that your solution incorporates a synthesis of content that is delivered as high-level 
information items from multiple sources—the whole is significantly greater than 
the sum of the parts. If you are a GIS practitioner, this spirit and ethos is in your 
blood.

GIS used to be almost entirely a back-office phenomenon, with highly-trained 
professionals quietly laboring away using software and techniques only vaguely 
understood by the rest of us. The insights gained from their work benefited decision-
makers within organizations but only occasionally reached larger audiences, and 
even then only as abstruse, static reports and posters. Suddenly, GIS is as much 
about communication as it is analysis. ArcGIS StoryMaps, ArcGIS Online, ArcGIS  
Dashboard, and Survey123 have turned GIS workers into communicators. GIS has 
burst out of the back office and has become accessible and actively used throughout 
organizations—and beyond.

Meanwhile, the COVID-19 pandemic has elevated the awareness regarding the 
role of GIS as a global tool for effective and sustainable community engagement. 
All this progress was made possible because of the best practices and ethics laid 
down by the earliest users of Esri’s ArcInfo and ArcView (now ArcGIS and AGOL) 
communities.

GIS holds the promise of being a central component of a global network that can 
sense threats, map their extent, and help implement solutions. Climate change, 
environmental sustainability, and reduced biodiversity are three such global, 
existential threats. The great silver lining of the COVID-19 crisis is the possibility 
that we can apply the lessons we’re learning even more broadly, with the ultimate 
and essential goal of achieving a sustainable and peaceful future.

In response to the pandemic, public health agencies and governments at all 
jurisdictional levels  worldwide encountered intense demands for good data. As 
GIS professionals from across these myriad organizations scrambled to deploy 
useful and timely data-reporting tools, Esri globally began to put up resources and 
guidance about how best to leverage its ArcGIS technology. ArcGIS, an umbrella 
name that includes the full suite of Esri geospatial softare tools. These off-the-shelf 
tools uniquely enabled users to geographically organize, tabulate, visualize, and 
share COVID-19 data with the public. 

First, Esri released the Coronavirus Response Solution, a package of two dashboard 
configurations—the Community Impact Dashboard and the Coronavirus Case 
Dashboard. This synchronization of data enabled people to easily deploy localized 

THE RISE OF DA SHBOARDS AND HUBS
dashboards for their countries, states, and local provinces. The Community Impact 
Dashboard is designed to help public health agencies share basic COVID-19 testing 
and case metrics along with other key community information such as school 
closings and meal distribution sites. The Coronavirus Case Dashboard is designed 
to allow public health agencies to share more detailed COVID-19 testing and case 
metrics with the public. Additionally, the Coronavirus Response solution includes 
mobile versions of both dashboards.

At about the same time, Esri put up its COVID-19 GIS Hub as a central repository 
of maps, datasets, applications, templates, and other GIS resources for creating and 
offering coronavirus-related resources (https://coronavirus-resources.esri.com).

The COVID-19 GIS Hub remains an 
essential site for accessing current 
information and new applications for 
delivering virus data and is one of the 
largest GIS communities globally.
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WHY GEOGRAPHY STILL MAT TERS 
by Jared Diamond

Is geography increasingly irrelevant in the globalized world? Now that the internet, 
smartphones, and jet planes connect everyone to everyone else, has geography 
become unimportant, whether you live in Silicon Valley or the Central African 
Republic?

No, of course not. Just this year, millions of people—many for the first time—came 
to depend on maps and near real-time dashboards to stay abreast of a pandemic, 
not only to gain a sense of the global situation but to see how the new coronavirus 
affected their communities, even their neighborhoods. But geography is relevant in 
other ways, too. For example, you need money to afford a computer, smartphone, 
or airline ticket. Wealth is distributed unevenly around the world. Proportionately 
far more people in Silicon Valley than in the Central Africa Republic can afford a 
computer, smartphone, or airline ticket. First World countries on average are 32 
times wealthier per capita than poor countries, and the richest countries, like 
Luxembourg, are 200 times wealthier than the Central African Republic.

But the effects of geography on national wealth hardly exhaust the importance 
of geography: they are just a first answer. What else can you think of that varies 
geographically, besides wealth? Climate change, of course. On average, the world 
is getting hotter, drier, and less productive agriculturally, and more at risk of fires. 
But some areas are getting cooler, wetter, and more productive, and less at risk of 
fires. (For example, compare California with Alabama within the United States or 
Australia with England in the larger world context.) 

Resource problems also vary with geography—especially competition for seafood, 
timber, topsoil, and fresh water. For example, differences between China and Europe 
with respect to their peninsulas, islands, river configurations, and mountains shaped 
different political structures and technological innovation in China compared with 
Europe in the past, and they continue to do so today.

For now, let’s look more closely at why geography is such a big reason for the 
differences in national wealth. If you have any doubts, you can easily see for yourself 
by doing this simple homework assignment: print out a map of Africa showing 
national boundaries. Look up online a set of numbers for the wealth of each country 
in Africa. You can use any of the usual measures of wealth that you prefer, many of 
them tabulated by the World Bank: average income per person, GDP per person, or 
GDP per person, corrected for purchasing power parity (i.e., differences in cost of 
living). Write those numbers for the national wealth of each country over the name 
of each country on your map. Compare the numbers at a glance.

Two conclusions will leap out at you. First, as far as the geography of wealth is 
concerned, Africa is a sandwich, with a thick core between two thin slices of bread. 
The core is the big tropical center of Africa, consisting of 38 countries. The two 
thin slices of bread are Africa’s north temperate zone lying on the Mediterranean, 
consisting of five countries (Egypt, Libya, Tunisia, Algeria, and Morocco), and 
Africa’s south temperate zone at the southern tip of Africa, consisting also of five 
countries (South Africa, Namibia, Botswana, Lesotho, and Swaziland). Compare the 
wealth of the 10 countries in those two temperate zones with the 38 countries in the 
tropical core. It will be obvious that most of the countries in those two temperate 
zones are wealthier than almost all of the countries in the tropical core. (A nominal 
exception is Equatorial Guinea, which has an apparently high average income 
per person, because the president has an income of billions of dollars, while most 

other people in the small population have incomes of a few hundred dollars, so the 
average income looks high). 

Evidently, living in the tropics comes with huge economic disadvantages compared 
to living in the temperate zone. One disadvantage of the tropics is low agricultural 
productivity, resulting from thin infertile soils and abundant insect pests and 
parasites that destroy crops. A second disadvantage is that chronic tropical diseases 
hurt the economy. People have shorter average lifespans, need more sick days, and 
stay home more often to care for their young, in part because families tend to 
compensate for the higher infant mortality rate by having more children. Finally, 
machinery is constantly breaking down in the heat. You can see this economic 
disadvantage of the tropics even in countries that span a wide range of latitudes 
from the tropics to the temperate zones, including Brazil and formerly the United 
States before air conditioning became widespread.

Another conclusion about geography leaps out at you from your map of Africa. Of 
Africa’s 48 countries, 33 are along coastlines or on navigable rivers, but 15 are land-
locked—either they have no coastline or cataracts block their rivers. Transport by 
boat is seven times cheaper than transport by air or by land. You will see that land-
locked countries, regardless of location, are on the average about 40 percent poorer 
than countries with water transport.

If you still aren’t convinced about this role of geography, and if you think that it 
represents a peculiarity of Africa, put the corresponding numbers for national wealth 
on a map of South America, which is simpler because there are only 12 countries to 
compare. You will see that the three richest countries of South America—Argentina, 
Chile, and Uruguay—are in the south temperate zone. Also just as in Africa, South 
America’s poorest country—Bolivia— is its only landlocked country.

Of course, other factors besides geography affect national wealth. Those factors 
include corrupt institutions (although they too are ultimately influenced by 
geography and history), the so-called curse of natural resources (which paradoxically 
causes countries dependent on valuable natural resources to become poor rather 
than rich), the so-called reversal of fortune associated with colonial history (which 
has resulted in colonies that were formerly rich becoming predominantly poor 
today), and environmental degradation. Yes, these other factors are significant. But 
geography is one of the most important determinants of national wealth. Despite 
the internet, smartphones, and airline flights, geography still has a big effect on your 
pocketbook.

Do these maps mean that geography condemns tropical countries to a hopeless 
fate and that citizens of tropical countries should resign themselves to inevitably 
remaining poor forever? No, of course not. Just as a doctor’s diagnosis can help 
you overcome illness through medical treatment or lifestyle change, geographers’ 
diagnoses have also provided some tropical countries with recipes for achieving 
wealth. For example, if your country is in the tropics, don’t base your economy on 
agricultural exports—leave them to temperate-zone countries like the Netherlands, 
United States, Canada, Netherlands, and Argentina. If you are the president of a 
tropical country, invest heavily in public health. These lessons have enabled tropical 
countries such as Singapore, Malaysia, Thailand, Costa Rica, and Trinidad and 
Tobago in recent decades to climb out of poverty, and in some cases, achieve First-
World wealth. 

So what if tropical countries are poor? That’s unfortunate for them, but is it a 
problem for citizens of wealthy temperate-zone countries? Sixty years ago, the 
answer to that question would have been “no.” Today, because of globalization, the 
answer is “yes” for at least three reasons.

One reason is the spread of tropical diseases from poor countries with low public 
health budgets to rich temperate countries via airline travel. Examples include the 
spread of AIDS, Ebola, Marburg, Dengue fever, cholera, and Chikungunya around 
the world on airliners. Climate change creates the added risk of establishing those 
tropical diseases in temperate countries. 

Tropical disease spread isn’t the only way in which globalization brings the 
problems of poor tropical countries to rich temperate countries. A second way is 
that poverty creates support for international terrorism among desperately poor 
populations. A third way is that globalization has made immigration a permanent 

reality as citizens from poor countries seek better opportunities in wealthier 
countries. These citizens understand that their governments’ promises to create 
wealth may take decades to materialize, if ever.

The power of these examples is that they put time and place and phenomena 
together to enhance our understanding. And within the computerized world of GIS, 
our comprehension and engagement with the world are further accelerated.	
 
I trust by now that these examples—and there are many more—show that 
geography is as relevant as ever, if not more-so, in our globalized world. It remains 
the foundation of our understanding through science, and through GIS for that 
science. Geography still matters—a lot. 

Jared Diamond, professor of geography at UCLA, is the Pulitzer-Prize-winning author 
of Guns, Germs, and Steel;  as well as Collapse, The Third Chimpanzee, The World 
Until Yesterday, Upheaval, and other best-selling books.
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Severnaya Zemlya
(Northern Land)
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Ball’s Pyramid
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Chatham Islands
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Introducing the Equal Earth projection
The Equal Earth map projection shows continents and countries at their true sizes relative to
each other. Continents keep their familiar shapes and the rounded sides of the map suggest
the spherical form of the Earth. Straight parallels make it easier to compare how far north or
south places are from the equator.
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The bounding lines around scattered island
groups are shown for clarity. They are not
actual maritime boundaries.
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Equal Earth Political Map, a world map for everyone. The equal-earth projection presents countries and continents at their true sizes relative to each other. Africa appears 14 times 
larger than Greenland, as it actually is. www.equal-earth.com
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GIS for SCIENCE



PART 1
HOW EARTH WORKS
This section includes examples of GIS helping scientists to gain better insight and understanding of 
Earth process and function in natural science fields such as oceanography, geology, climatology, and 
conservation biology. By way of reliable, verifiable spatial analysis and visualization, GIS helps physical 
scientists answer a myriad of questions about spatial patterns in the natural environment (geosphere, 
biosphere, hydrosphere, atmosphere) and what process is responsible for those patterns. GIS is also a 
modern platform for the open sharing of data and for compelling science communication at a multiple 
of scales (e.g., individual researcher, lab workgroup, multi-department, multi-university, university-to-
agency collaboration, and citizen engagement).

Mosaic of satellite pictures of Baffin Island from Aqua satellite.
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Tahanea is an atoll of the Tuamotu Archipelago in French Polynesia, a 
semi-autonomous state composed of 118 islands and atolls geographically 
dispersed over an expanse of more than 2,000 kilometers (1,200 miles) in 
the South Pacific Ocean. 

THE GEOGRAPHY OF ISLANDS
By Roger Sayre, Madeline Martin, Jill Cress, U.S. Geological Survey; Nick Holmes, The Nature Conservancy; Osgur McDermott Long,  
Lauren Weatherdon, UNEP World Conservation Monitoring Center; Dena Spatz, Pacific Rim Conservation; Keith VanGraafeiland, Esri; 
and David Will, Island Conservation.

Islands come in all shapes, sizes, and types, from tiny rocky outcrops to enormous continental landmasses. The true number of islands 
distributed in the planet’s seas and oceans is still elusive. Recent efforts, bolstered by an abundance of detailed satellite imagery and 
the sophistication of geographic information systems (GIS), are bringing answers to those questions closer than ever.
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Early attempts at mapping global islandsThe word island is one of the more evocative words in any language. The word may bring 
to mind a tropical Caribbean paradise or suggest a remote polar mass of rock and ice. 
It may evoke a sense of place associated with home or a memory of a past visit across 
the waters. Some will think of island peoples and their cultures, while others may be 
drawn to thoughts of wonderful, rare, and sometimes endangered island animals and 
plants. When asked, “What is an island?”, a typical response might be, “A small area of 
land surrounded by the ocean, with palm trees and sand.” In reality, however, islands 
come in all shapes and sizes and types, from tiny islets no larger than rocky outcrops to 
enormous landmasses the size of the continents. 

All landmasses on Earth, no matter how big, are surrounded by oceans and are therefore 
islands. That means we are all islanders. It is not a case of islanders versus mainlanders. 
We all live on islands, whether we see or feel that reality on a daily basis. For all of us, 
then, islands are our homes, so we must know them well and take care of them.

Surprisingly, given that islands are our collective homes, we are still seeking answers to 
basic questions like, “How many islands are there on Earth, where are they located, and 
what are they like?” Despite many attempts to map and characterize islands across 
history, we still lack a definitive characterization. The true number of islands distributed 
in the planet’s seas and oceans remains elusive. We still don’t know exactly how much 
of the Earth’s surface is made up of islands. However, thanks to the abundance of 
satellite imagery and the sophistication of geographic information systems (GIS), the 
answers to those questions are ever closer.

This chapter describes a recent partnership to map the islands of planet Earth. This 
characterization stemmed from a fruitful collaboration among government, private 
sector, academic, and nongovernmental organizations. The team used sophisticated 
geospatial analysis technologies to elaborate a new map of global islands at a 30-meter 
spatial resolution. What follows is a description of the work to merge two authoritative 
global island databases (GID) into one. This effort involved compiling island data from 

GLOBAL ISL AND GEOGRAPHY IN ANTIQUIT YALL L ANDS ARE ISL ANDS

This map is the circa 1300 conic projection World Map by Ptolemy. The British Isles 
are depicted, as well as certain islands of the Mediterranean Sea, and what is likely Sri 
Lanka. This map was well respected and well used in its time.  

multiple sources, and reconciling and making the data available in the public domain 
as a free and open access resource. There is a solid realization that the planet’s island 
systems—as the home to a great number of threatened and endangered species—have 
significant importance from a conservation perspective. High-quality and high-spatial 
resolution maps of the distributions of global islands are important for a variety of 
science applications, including analyses of species rarity and vulnerability, exotic 
species invasions, conservation priority, ecosystem value, sea level rise, and other 
investigations.

Islands are shown on the earliest flat-Earth maps of antiquity, on the maps from 
the golden age of seafaring and exploration in the fifteenth and sixteenth centuries, 
and on the maps of the modern era. Imaginary islands often peppered early maps, 

This Martellus World Map of 1489 drew significantly from Ptolemy’s World Map but 
added many imaginary islands. Martellus’ World Map appeared in his book, Insularium 
Illustratum (Illustrated Book of Islands), which contains detailed and rich maps of 
several Mediterranean islands.

Australia, the fifth-largest landmass on Earth.

Matureivavao, the largest atoll within the 
Acteon Group, administratively part of 
the commune of the Gambier Islands.

Robben Island—approximately 6 kilometers off the coast of Cape Town, South 
Africa—a location best known for more than 400 years as a prison that held Nelson 
Mandela among other political prisoners. Today it is a UNESCO Cultural Heritage site.

This map is an inverted 
Tabula Rogeriana flat-
Earth depiction by Al-
Idrisi, drawn in 1154. 
Al-Idrisi was a technically 
competent cartographer, 
and developed this map in 
what is known as a south-
up orientation, possibly 
in an attempt to focus 
attention on the centrality 
and importance of Arabia. 
The Al-Idrisi map is often 
displayed in an inverted 
fashion, as here, to show 
the landmasses in the 
more common and familiar 
north-up orientation. While 
this map contains many 
depictions of real islands, 
recognizable by their shape, 
size, and location in spite of 
cartographic exaggerations, 
it also contains a number of 
imagined islands.  

a cartographic tradition stemming from what has been called horror vacui in Latin, 
an aversion to empty spaces on maps. 



The Geography of Islands  98  GIS for Science: Volume 2

Over time, and with increasing maps and knowledge from the accounts of the 
explorers, cartographers refined their depictions of the islands of the world. 
Meanwhile, geography rapidly evolved as a scientific discipline, with the emergence 
of sophisticated models of Earth as an irregular spheroid and numerous projections 

for representing its features on two-dimensional (2D) maps. By 1800, the general 
locations, sizes, and shapes of the world’s islands, the larger ones anyway, were well 
documented, as the next map shows.

This map is an astonishingly detailed world map from 1794 by Samuel Dunn, with the very comprehensive (and not at all mundane) title of A General Map of the World, or  
Terraqueous Globe with All the New Discoveries and Marginal Delineations, Containing the Most Interesting Particulars in the Solar, Starry and Mundane System.

INITIAL MODERN COMPENDIA OF GLOBAL ISL ANDS
With centuries worth of accumulated cartographic representations of global islands 
available and not much in the way of terra incognita remaining to be discovered, 
modern geographers have turned their attention to detailed inventory and mapping 
of islands of increasingly smaller sizes. Prior to the ubiquity of GIS as a cartographic 
and analytical tool, geographers undertook global island inventories as compilations 
of existing information into standardized lists of islands, often sorted by size. Two 
pioneers of this kind of compendium development work were Dr. Arthur Dahl of 
the United Nations Environment Programme (UNEP) and Dr. Christian Depraetere 
of the French Research Institute for Development (IRD; formerly ORSTOM). They 
collaborated frequently to produce groundbreaking work on tabular databases and 
early GIS data layers on global islands. They developed rich attribute information on 
island names, physical geography, human geography, ecology, and special features. 
During the 1980s and 1990s, these resources were considered definitive compendia, 
and the UNEP Islands Directory1 was available online in the early days of the web. 
In fact, it is still available at http://islands.unep.ch (note—the resource still exists 
online but has not been maintained since 2006).

GSHHS: The Global Self-Consistent Hierarchical High-Resolution  
Shorelines Map
In 1996, Paul Wessel and Walter Smith published the Global Self-Consistent 
Hierarchical High-Resolution Shorelines (GSHHS) database,2 a game changer in the 
continuing effort to map global islands in a standardized manner. They used a digital 
coastlines dataset called the World Vector Shorelines (WVS) resource, digitized by 
the National Geospatial Agency (NGA) from nautical navigational charts. After 
considerable editing of the WVS to clean up aberrations in the vector linework and 
fill in missing coastline segments, they applied polygon topology to the shorelines 
to create a global islands GIS database. They used  GSHHS data to delineate 180,500 

islands, several orders of magnitude greater than the numbers of islands included 
in the Dahl and Depraetere inventories (~1000–2000). For many years, this database 
has been considered both the original and definitive GIS data layer of global islands, 
with a large number of users.

IBPoW: The Island Biodiversity Program of Work
In 2006, the Convention on Biological Diversity at its eighth Conference of the Parties 
announced the first Island Biodiversity Program of Work (IBPoW) and associated 
Global Islands Partnership network. Dahl and Depraetere, in collaboration with 
UNEP’s World Conservation Monitoring Center (WCMC), then developed a Global 
Island Database (GID v. 1.0) to be used as the IBPoW-endorsed reference layer. The 
GID is a merger of earlier island data produced by Dahl and Depraetere with the 
GSHHS. 

Open Street Map® islands
During this time, the Open Street Map (OSM) resource became available. OSM is 
a remarkable crowdsoucing effort to provide detailed geographic information on a 
variety of features in an open source platform in the public domain. Local users can 
use this resource to modify existing information or add new information. Although 
users are most familiar with OSM street/transportation networks features, OSM 
also provides global shorelines and islands features. The OSM shoreline data were 
derived from a piecemeal interpretation of Landsat imagery conducted over several 
years beginning in 2006. A coastline extraction algorithm was used, and global 
coverage was ultimately achieved. Accuracy of the vector, called the Prototype 
Global Shoreline, (PGS) [https://wiki.openstreetmap.org/wiki/Prototype_Global_
Shoreline] is reported by OSM as variable and in need of improvement in many 
areas. The OSM user community is encouraged to improve the PGS, and guidance is 
provided for that crowdsourcing exercise.

Early knowledge about the location, shapes, and sizes of islands came from direct 
exploration and careful recording of observations while seafaring. While today's 
maps rely on sophisticated, satellite-supported, digital locational technologies like 
GPS, earlier maps were drawn using precision-machined hand tools such as sextants, 
astrolabes, and magnetic compasses. These machines would be considered 
somewhat primitive by today's standards, but were quite sophisticated for their 
time. Well before these simple tools saw widespread use in the Middle Ages, early 
Austronesians were navigating their seas using far simpler technologies like the 
Marshallese stick chart pictured here. These early maps captured local knowledge 
of island features and swell characteristics, and were also instrumental in the capture 
and recording of oral traditions related to seafaring.
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The WCMC Global Island Database v. 1.0
As the creator and official steward for the GID v. 1.0, WCMC maintained and 
distributed the resource, which was composed of some 180,000 GSHHS-derived 
polygons with a minimum island size of 0.1 kilometer2. With increasing discovery 
and application of the new geodata resource, users identified certain inaccuracies. 
These were mostly related to a sometimes poor fit of the GSHHS polygon to the 
shoreline of an island when the GSHHS polygons were displayed on top of satellite 
imagery. This type of issue is demonstrated with the data drawn over the satellite 
imagery from Gaya Island, Malaysia. 

This graphic shows the GID v. 2.0 islands from the same area as the above 
graphic (Gaya Island, Malaysia), with island shoreline polygons represented 
in red. Comparison of the two graphics reveals a striking improvement of 

coastline “capture” in GID v. 2.0 over GID v. 1.0.

The USGS/Esri Global Islands Data Layer
In 2018, the US Geological Survey (USGS), in collaboration with Esri, produced 
a new, standardized, high-spatial resolution (30-meter) map of global islands 
interpreted from 2014 Landsat imagery.3,4 The new data resource produced was in 
effect a “byproduct” of an effort to make a new global shoreline vector (GSV) for use 
in a global coastal ecosystem delineation and classification. The group did not set 
out to produce a definitive global islands map. But in applying polygon topology to 
the new GSV, the group recognized that a detailed new global islands map would 
be an outcome. 

The graphic shows the fit of the GID v. 1.0 (IBPoW) island shorelines (in yellow) 
to these islands. Importantly, these shorelines were derived from nautical charts, 
not satellite imagery. The inaccuracies in location, size, and shape of the GSHHS 
island shorelines suggested that an image-derived global islands map might 
represent a considerable improvement in accuracy.

This graphic shows the new USGS/Esri islands line work (in green) for Gaya 
Island, Malaysia, to facilitate visual comparison with the previous graphics  
depicting the WCMC GID v. 1.0 and v. 2.0 data layers.

PROGRES SIVE IMPROVEMENTS IN ACCURACY

The WCMC Global Island Database v. 2.0
Given the availability of the new OSM satellite-image-derived global islands resource, 
WCMC initiated the development of a new version of the GID, GID v. 2.0, replacing 
the polygons from the GSHHS with the new set of island polygons from the OSM 
product. This effort increased the number of islands represented from ~180,000 
to ~400,000. Many of the new islands that resulted in v. 2.0 were smaller than the  
0.1 kilometer2 minimum island size of v. 1.0. 

The quality of the island polygon data is more easily evaluated when zoomed in to a fine spatial resolution, and with the polygons displayed on top of satellite imagery. For example, in this 
graphic, the island of St. Thomas in the US Virgin Islands is shown with a green polygon outline surrounded by numerous smaller islets with red polygon outlines. A “gestalt” evaluation of the 
quality of the GIS data is provided from a visual inspection of the fit of the island polygon data to the shoreline of the island, as seen in the imagery.

US Virgin Islands
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The USGS/Esri global islands data layer was developed with a minimum mapping 
unit of 3,600 meters2 (the size of four contiguous 30-by-30 meter Landsat pixels). The 
product, developed directly from semi-automated satellite-image interpretation, 
has few attributes. One important attribute is size class, with all islands identified 
as either Small Islands (< 1 km2), Big Islands (> 1 km2), or one of the five Continental 
Mainlands (North America, South America, Africa, Eurasia, and Australia). Names 
were added for all islands greater than 1 km2 by a combined automated (intersection 
of polygons with the GeoNames geographic place names data) and manual (analyst-
based search for names using online mapping resources) approach. Full details of 
the methodology and results from the USGS/Esri global island data development 
effort are found in Sayre, et al.3,4

Basic characteristics of the USGS/Esri island polygons are found in the following 
table (reproduced from Sayre, et al.)3

To enable easy visualization and query of the USGS/Esri islands data by anyone 
with internet access, the USGS and Esri developed an online tool called the Global 
Islands Explorer (home page pictured at right). Accessible at https://rmgsc.cr.usgs.
gov/gie, this tool offers pan, zoom, and query functionality and allows the display of 
island polygons over a number of different basemap backdrops, including satellite 
imagery and topographic maps. The island data are served as raster image services 
but are available for download in the tool in their original vector polygon format.

Three examples of islands and island chains as viewed in the browser-based Global Islands Explorer.

The global islands data have been placed into the public domain, accessible at: 
https://doi.org/10.5066/P9C6XKL0. The free availability of the data to anyone with a 
need or interest to use it is a testament to the open data philosophy that also resulted 
in the decision to make all Landsat data openly and freely available.

The USGS/Esri Global Islands Data layer Visualizing the USGS/Esri global islands data

Zoomed in, the sheer number 
of islands in the northern 
Baltic becomes clear.

At the page format size of this 
global islands map, the smallest 
islands would not be discernable.
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MERGING THE USGS/ESRI AND WCMC GLOBAL ISL ANDS DATA SE TS
The arrival on the scene of the USGS/Esri product created an issue for seekers 
and users of global island data. First, how do two (USGS/Esri and WCMC v. 2.0) 
authoritative, spatially explicit, global islands resources available at similar 
spatial resolutions differ? And second, which one is more suitable for a particular 
application of interest? Wary of the burden this situation placed on users of global 
islands data, USGS/Esri and WCMC decided to reconcile the two resources to 
the extent possible into one. They agreed to merge the two resources to obtain an 
improved product and then place that resource squarely in the public domain for the 
greater good. This collaborative merging of resources is now complete. As is always 
the case when trying to reconcile datasets of differing origins, spatial resolutions, 
and intended uses, the merger was not perfectly straightforward and required use of 
sophisticated geospatial processing. 

The USGS/Esri global islands as the reference foundation
The first and one of the most important decisions when contemplating the merger 
of the USGS/Esri and WCMC global island datasets was which one to use as a base 
layer for providing the foundational linework for the final combined database. 
Although the optimal approach would have been to examine corresponding polygon 
pairs for all islands and then select the best one to keep in the merged dataset, the 
enormity of that task given the number of islands on the Earth (more than 300,000) 
precluded that analysis. We therefore needed to choose one data layer from the two 
global island products as the initial source of island polygons to work from.

The team visually evaluated both resources on the basis of accuracy, consistency, 
and level of detail in the linework when zoomed in to the spatial resolution at which 
the island polygons were originally interpreted (30 meters). After much globally 
comprehensive and rigorous visual inspection of the two resources, project leaders 
determined that the USGS/Esri resource would serve as the reference foundation 
and would be subsequently enriched using the WCMC data. That decision resulted 
in part due to the emerging realization that the USGS/Esri island polygons were 
more consistent globally, and because they had been produced in a documented 
and reproducible manner. Moreover, in most comparisons, the USGS data were 
more detailed in shoreline configuration. The WCMC linework (sourced from OSM) 
varied in consistency and detail from place to place, not entirely unexpected given 
the crowdsourced contribution for some of that linework. In some areas, the OSM-
sourced linework lacked sufficient detail, with geometric shapes like triangles and 
paralellograms representing island perimeters. For all of these reasons, the USGS/
Esri island polygons became the starting point for the merged linework product.

Initial preparatory edits along the continental mainlands coastline
The first step removed polygons from the WCMC data that conflicted (intersected) 
with any coastlines of the five continental mainlands in the USGS/Esri resource. 
All of the USGS/Esri polygons, including the five large continental mainland 
polygons, were mutually exclusive from a spatial perspective, with no overlap of 
islands and continental mainlands. However, of the total initial number of WCMC 
island polygons (448,036), 42,787 polygons overlapped (intersected) the USGS/
Esri continental mainland polygons and were therefore removed from the WCMC 
resource. Many of these islands were found to be located in interior freshwater lakes.

Use of the Near command to identify matching polygons in the  data layers
The next step in the merge process identifed the subset of polygons in the WCMC 
data that matched (i.e., represented the same island) the corresponding polygons in 
the USGS/Esri data layer. Given that the USGS/Esri global island data had limited 
attribution (typically just name and size), the productiion team wanted to find 
matching polygons in the WCMC data to extract useful attribute information from 
the WCMC data and transfer it to the USGS/Esri polygons. We identified matched 
polygons as a pair, one from each data source, which each corresponded to the 
same island. This determination was made using the Near command in ArcGIS®. 
Near calculates distance and additional proximity information between the input 
features and the closest feature in another layer or feature class. We used the Near 
command to find the closest polygon in the WCMC dataset to the polygons in the 
USGS/Esri dataset within a specified search distance. 

When the Near command returned a value of zero, the polygons in the two datasets 
overlapped, and an assumption was made that they matched. That assumption was 
borne out after a considerable number of initial visual comparisons revealed that in 
almost all cases the polygons were a matched pair. For the Near command, search 
radius was set to 300 meters based on the rationale that if a WCMC polygon was 
greater than 300 meters away from the USGS/Esri polygon, it may not represent a 
corresponding polygon for the same island. When the Near command returned a 
value of minus 1, it meant that no polygons were found in the search radius. For 
all matched polygons, the attribute information from the WCMC polygon was 
transferred to the USGS/Esri polygon.

The matched polygons
In all, 201,674 USGS/Esri islands directly matched to a WCMC island because their 
polygons overlapped. The country and name attribute information of the WCMC 
data was then joined to the corresponding USGS/Esri polygon. An additional 
48,317 USGS/Esri island polygons were found to have a WCMC polygon in very 
close proximity (within the 300-meter search radius). Those non-overlapping 
polygon pairs were also assumed to be a match, with the displacement attributed to 
differences related to projection dynamics, methodological differences, or errors in 
data creation. The Near command therefore successfully identified a total of 249,991 
matched pairs from which WCMC attribute information could be extracted and 
transferred. A total of 90,690 USGS/Esri polygons did not have a WCMC polygon 
in the 300-meter search radius, so these polygons are assumed to be “missing” a 
WCMC counterpart, and thus lack additional attribution at this time. 

Addition of WCMC polygons that were missing in the USGS/ESRI data 
At this point in the process, the merger of the two resources added considerable 
attribute information from the WCMC islands to the existing USGS/Esri islands. 
Another powerful enrichment of the USGS/Esri islands data using the WCMC data 
related to island polygons in the WCMC data that did not exist in the USGS/Esri data. 
To find these WCMC islands that were “missing” in the USGS/Esri data, we ran the 
Near command in reverse, this time starting with a WCMC polygon and searching 
in a 300-meter radius for the nearest USGS/Esri polygon. WCMC polygons that did 
not have a match (Near analysis returned value of -1) were considered islands that 
potentially needed to be added to the USGS/Esri dataset. A total of 36,197 WCMC 
islands polygons had no match to the USGS/Esri data.

The team was only interested in adding those WCMC islands that did not exist in 
the USGS/Esri database if, in fact, they were real islands that had not been captured 
in the USGS/Esri image-based extraction. Because the WCMC metadata had a 
disclaimer warning of the existence of “fake” islands, it became necessary to verify 
that the polygons being merged into the USGS/Esri dataset actually represented 
real islands. We did not find a suitable automated method for testing the veracity 
of these WCMC polygons and determined that manual verification was the best 
and surest evaluation approach. We therefore visually inspected each of the 36,197 
WCMC polygons over satellite imagery and marked them for inclusion in the USGS/
Esri dataset if the analyst decided that the polygon represented an actual island.

While time and labor intensive, the process effectively identified anomalies and 
errors in this set of WCMC polygons. Sometimes, deciding whether the polygon 
was real was straightforward in that land, rock, sand (emerged), or vegetation was 
discernible. Other times, the decision was quite difficult, as swirling waters and 
whitecaps indicated the probable existence of rocks just below the surface of the 
water. The decision was made more difficult when the polygon was not overtop a 
land feature, but nearby (displaced). When the displacement was not considerable, 
and the size and shape of the polygon approximated the size and shape of the land 
feature seen in the imagery, the polygon was determined to be “real” (in other words, 
it represented an island) and was subsequently added to the USGS/Esri resource.

The team added any WCMC polygons with Antarctica as a country attribute 
to the USGS/Esri resource. This resource does not otherwise include Antarctic 
islands because of the lack of imagery for that region during the satellite image 
interpretation step. However, in the merged product, an Antarctic “mainland” 
polygon is still lacking.

Most human-engineered structures, such as seawalls, were excluded from the USGS/
Esri dataset; however, certain artificial islands constructed to resemble islands, like 
the Palm Islands off the coast of Dubai, UAE, were included in the dataset. Islands 
that were created to be islands were included, while lands built to support coastal 
infrastructure were not. 

Very small islands (less than 3,600 square meters)
Many islands from the WCMC resource that were added to the USGS/Esri islands 
dataset were very small. Their small size explains why these islands were missing 
from the USGS/Esri resource in the first place. The minimum mapping unit used 
in the initial extraction of USGS/Esri island polygons from satellite imagery was 
3,600 square meters, which is the area of four contiguous 30-meter-by-30-meter 
Landsat pixels. These very small islands from the WCMC data often delineate 
rocky outcrops or islets in the surf surrounding larger islands. Some many-to-one 
and one-to-many errors were noted at this very fine level of resolution wherein 
some single polygons actually represented a cluster of islets, or a cluster of island 
polygons represented a single island feature. Moreover, the detail in the linework of 
many of these small WCMC islands was generally less than the detail of the USGS/
Esri linework. 

For these reasons, researchers had less confidence in the detail and accuracy of 
the WCMC-sourced polygons than in the original USGS/Esri-sourced polygons, and 
users were encouraged to verify the accuracy of any polygons of interest added from 
the WCMC resource to the USGS/Esri resource. In general, users who want to use 
the data at a localized scale should verify the accuracy of polygons in this class and 
may want to make edits or adjustments to the linework as needed. 

Characteristics of the merged database
During the transfer of matched-pair attribute information from the WCMC 
resource to the USGS/Esri reference, 249,990 islands were updated. Subsequently, 
an additional 28,727 islands from the missing island analysis were added from 
the WCMC resource to the USGS/Esri reference, and 12 USGS/Esri islands were 
removed. The new merged data layer now contains five Continental Mainlands,  
22,471 Big Islands (larger than 1 km2), and 346,925 Small Islands (less than 1 km2). 
The total number of islands in the merged resource at the time of this publication 
is therefore 369,401, although this number may change slightly based on future 
refinements to the resource.

These workflows summarize the detailed methodological descriptions provided earlier. The diagrams depict A) the development of the USGS/Esri Global Islands Data Layer,  
and B) the subsequent harvest of additional information from the WCMC global islands product into the USGS/Esri reference layer. The new data are available in the Esri Living 
Atlas and also in the public domain at https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global. A digital object identifier (DOI) has also been assigned to the data:   
https://doi.org/10.5066/P9C6XKL0.

A B
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ISL ANDS WITH THRE ATENED BIODIVERSIT Y—A CRITICAL CA SE STUDY
Many practical analytical applications require good, useful data on the location of 
islands, as well as their numbers, shapes, sizes, and features. These applications range 
from analysis of sea-level change to assessments of economic and noneconomic 
value of island ecosystem goods and services to identification of suitable areas 
for watercraft navigation. One extremely important application requiring good 
island distribution information is the study of island biodiversity. We now turn our 
attention to a critical case study—threatened island biodiversity—and discuss how 
GIS analysis supports the understanding of the conservation importance and status 
of island biodiversity.

Island biodiversity and islands as epicenters for species extinctions
Islands total only a small fraction of our planet’s land area,⁵ yet host extraordinary 
concentrations of unique species and are home to a disproportionately higher 
amount of the world’s biodiversity than continents.⁶ For example, of the more than 
10,000 bird species described in the literature, 17% occur only on islands.⁷ Many 
island species are found only on one island or island group and are thus considered 
endemic to that location. Madagascar, one of the largest of the oceanic islands, is home 
to as many as 15,000 native species of vascular plants, with 85% of them endemic. 
Endemism on remote oceanic islands results from the evolutionary adaptation of 

founding populations of ancestral species that arrived from continents—via flight, 
oceanic flotsam, or other natural circumstance.6 In the Hawaiian Archipelago, the 
establishment of a cardueline finch from the continent gave rise to nearly half of all 
the Hawaiian landbirds known today as Hawaiian honeycreepers, with more than 
50 species, each with a different bill morphology and tongue shape to exploit diverse 
food sources—seeds, fruit, insects, and nectar. These birds provide an astonishing 
narrative of evolution on islands.⁸

Sadly, islands have been and continue to be epicenters for extinctions. Of the 275 
total vertebrate extinctions worldwide since the 1500s, 54% of amphibians, 81% of 
reptiles, 95% of birds, and 54% of mammals were island species.5 Extinctions are 
not a thing of the distant past In 2012, the Christmas Island Pipistrelle (Pipistrellus 
murrayi) was declared extinct. This small bat underwent a rapid decline from 1994–
2005, but conservation action was too late, and the last Pipistrelle call was detected 
in 2009.⁹ Islands provide critical refuges for species at risk of extinction today. A 
study of 2,919 terrestrial vertebrate species classified as Critically Endangered 
(CR) or Endangered (EN) by the International Union for Conservation of Nature 
(IUCN) Red List of Threatened Species, a global scorecard for species conservation, 
found 1,189 (41%) breed on islands, highlighting the disproportionate number of 
threatened island species compared to continents when considering land area.10 

Birds in danger
The Floreana mockingbird (Mimus trifasciatus) has been extirpated from the 
majority of its original home range, the island of Floreana in the Galapagos. It 
is likely that Darwin’s observations of this bird species, also called the Charles 
mockingbird, strongly influenced his views on evolution and the origins of species. 
The mockingbird now exists in very low numbers on a few nearby rocky outcrops. 
Predation by dogs and cats eliminated the bird from Floreana. Sadly, this situation 
is increasingly common. The numbers of the struggling Polynesian ground dove 
(Pampusana erythroptera), a French Polynesian single island endemic,  have been 
reduced to only about 100 individuals because of feral cats and invasive rats.

Relative numbers of threatened species on 
global islands for four taxonomic groups: 
amphibians 1), reptiles 2), birds 3), and 
mammals 4), from Spatz et al., 2017.10

The Floreana mockingbird (Mimus trifasciatus) is a critically endangered bird now found 
on only a few offshore islets in the Galapagos Islands, having been eliminated from its 
namesake island by invasive rodents and feral cats. 

Invasive species and pomising 
eradication efforts
Invasive species have been a major 
driver of species losses, implicated 
in 86% of island extinctions.11 Island 
species often evolved in the absence 
of native predators and herbivores, 
leading to high vulnerability upon first 
contact with humans, and ultimately 
the extinction of many species. On 
Midway Atoll in the Pacific, the smallest 
invasive mammal, the house mouse 
(Mus musculus), recently adapted to prey upon and kill the largest of seabirds, the 
albatrosses. Incubating adults, ecologically naïve to this threat, sit tight on their 
nests and are attacked relentlessly by mice, often with fatal consequences.12

Nonetheless, islands offer hope that we can prevent extinctions and protect 
biodiversity. The development of techniques in New Zealand to control or completely 
eradicate invasive mammals from islands has led to remarkable conservation 
success stories, and these techniques are now used around the world.13 On Palmyra 
Atoll in the South Pacific, eradicating invasive Pacific rats removed a non-native 
herbivore and seed predator, allowing a 5,000% increase in native seedling growth,14 
led to the extirpation of the Asian tiger mosquito (Aedes albopictus) by removing the 
primary host,15 and created safe habitat that could host translocated populations of 
rare birds elsewhere in the Pacific. Islands within islands have also been created—
for example, the development of predator-exclusion fences that keep invasive 
mammals out of important habitats on larger inhabited islands. The establishment 
of a predator-exclusion fence in Nihoku, on the island of Kauai, Hawaii, is supporting 
conservation recovery efforts for endangered Hawaiian shorebirds. The application 
of social attraction techniques, such as broadcasting albatross calls from a sound 
system and deploying albatross decoys in breeding display, will further augment 
population recovery in these invasive-free sites.16

The critically endangered Polynesian ground dove is endemic to the Tuamotus Islands 
of French Polynesia. It is found on just a few atolls and is now extirpated from several 
islands where it formerly occurred. Predation by feral cats and invasive rats have 
reduced its numbers to approximately 100 individuals.

A predator-exclusion fence in Nihoku, Hawaii, constructed to safeguard important bird 
foraging and breeding habitat.12

Predator damage to an endangered  
blue-footed booby egg.
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Spatial assessments of islands and island biodiversity are essential to prioritize 
conservation planning and track conservation interventions. To realize these goals 
first requires a globally consistent spatial dataset that uniquely identifies each of the 
islands of the world. The World Conservation Monitoring Center (WCMC) Global 
Island database (GID) v 1.0 and v 2.0, and now the merged USGS/Esri and WCMC 
datasets, have provided a foundation to undertake these broad-scale conservation 
science investigations, two of which include the development of the Threatened 
Island Biodiversity Database and the database of Islands and Invasive Species 
Eradications.

The Threatened Island Biodiversity Database
The Threatened Island Biodiversity (TIB) Database (http://tib.islandconservation.org), 
created in partnership with Island Conservation, University of California at Santa 
Cruz–Conservation Action Laboratory, BirdLife International, and the IUCN  
Invasive Species Specialist Group, is the most comprehensive global review of 
island species listed as threatened on the IUCN Red List and at risk from invasive 

APPLYING GIS AND DATA SCIENCE TO ENHANCE BIODIVERSIT Y  
CONSERVATION ON ISL ANDS

vertebrates,17 and is considered a “gold standard” for filling biodiversity data gaps.18 
The TIB documents the current and historical distributions of highly threatened 
animals, representing 41% of all critically endangered (CE) and endangered (EN) 
birds, mammals, reptiles, and amphibians on the planet.10 These highly threatened 
animals were breeding on just 1,288 islands, representing just 0.3% of the ~400,000 
islands worldwide, and with 70% of species restricted to a single island, representing 
hotspots for biodiversity conservation efforts.

The TIB was achieved by extensive literature review and consultation with more than 
500 experts. The dataset was collated by first assessing all vertebrate taxa classified 
as CR or EN from the IUCN Redlist for breeding populations on only islands, on both 
islands and continents, or only on continents. For each island species, every unique 
island that hosted a breeding population was identified, documenting the present 
and historical breeding status for each population on each island, and linked to the 
WCMC GID. For each of these breeding islands, the presence or absence of invasive 
vertebrate species—primarily invasive mammals known to be highly damaging—
were collated. Combined, the data allow conservation planners to identify and 
prioritize feasible conservation actions, such as prevention, control, and eradication 
of invasive species, to save island species from extinction. 

The Threatened Island Biodiversity Database is the most comprehensive 
global review of island species listed as threatened on the IUCN Red 
List and at risk from invasive vertebrates. 

The Database of Island Invasive Species Eradications (DIISE)
The Database of Island Invasive Species Eradications (DIISE; openly available online at  
http://diise.islandconservation.org), created in partnership with the UCSC-CCAL, 
University of Auckland, IUCN ISSG, Landcare Research, and IC, compiles the 
methods and outcomes of invasive vertebrate eradication projects on islands.19 
To date, the database contains data on 1,400 efforts on 940 islands, of which 88% 
successfully met planned objectives.. The database provides unique insight by 
tracking the global application and success rate of a conservation tool and provides 
important utility to conservation practitioners faced with managing the threats of 
invasive species on islands.

Creation of the DIISE is primarily based on systematic review of published and gray 
literature, and expert correspondence. Each eradication event described is linked to 
an island on the WCMC GID with a unique island code. Eradications on different 
islands were recorded as separate events, regardless of whether it was in the same 
archipelago or treated concurrently. Eradications of different species on the same 
island are treated as different events. Key parameters in the database include 
method, target species, outcome, and data quality.20 

With help from the Center for Integrated Spatial Research at UCSC, the TIB 
database and the DIISE were published in 2012 and 2013 as publicly available web 
applications allowing users to identify islands from a series of parameters. Since 
their initial release, each database has undergone significant data updates. For 
earlier versions of the TIB and DIISE, spatial inaccuracies, omissions, and false 
islands in the GID v 1.0 required careful review of islands. Spatial representation 
of islands relied primarily on island centroids rather than polygons. Core island 
attributes, such as island area and degree of human habitation, were based on 
literature and expert review. With the development of the GID v 2.0, an extensive 
manual review process to “cross-walk” islands between the new and old datasets 
was undertaken and then validated using publicly available satellite imagery to 
correct island polygon size and location, resulting in more than 3,000 individual 
island polygons with rich attribution and high spatial resolution.  

Cumulative number of successful invasive mammal eradication projects by 
year since 1950. Data are restricted to whole island events, where data quality 
is scored as good or satisfactory only, and excludes domestic animals and 
reinvasion events.

This graphic depicts the location and details documenting the Eradication 
of the brown Norway rat (Rattus norvegicus) from Adak Island, a remote 
part of the Aleutian Islands in the northeast Pacific Ocean.
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Spatial data: An asset for conserving threatened island biodiversity
Island habitats are unique and inseparably linked to traditional island cultural 
lifeways.  There is a real urgency to protect habitats, many of which are among some 
of the last true wild places on Earth. The USGS/Esri/WCMC GID, the TIB, and the 
DIISE all provide insights about the biogeography of threatened island species, 
the success rate of island conservation efforts, and the prioritization of actions 
undertaken to prevent future extinctions. These databases have allowed for the 
identification of some 30,000 islands, a small but very important subset of the 369,401 
global islands, that are known to harbor endemic and threatened biodiversity and 
merit increased conservation attention. Combined, these datasets and subsequent 
analyses have been cited in more than 70 peer-reviewed publications and have 
been integrated into national, regional, and global conservation funding and policy 
decision making. Examples include identifying where globally threatened seabirds 
are at risk from invasive species and sea level rise,21 where eradicating invasive 
mammals will benefit highly threatened vertebrates,22 and what conservation 
outcomes have occurred following invasive mammal eradications.23  Data on the 
number of eradications of invasive mammal on islands over time were also used 
within the Biodiversity Indicator Partnership, contributing to measuring progress 
toward Aichi Target 9 (tackling invasive species) within the Convention on Biological 
Diversity. 

Global indicators
An indicator can be defined as a “measure based on verifiable data that conveys 
information about more than just itself.” The United Nations Environment Program 
World Conservation Monitoring Centre (UNEP-WCMC) hosts the Secretariat to 
the Biodiversity Indicators Partnership (https://www.unep-wcmc.org/resources-
and-data/biodiversity-indicators-partnership-global), an interdisciplinary global 
initiative to promote the development and delivery of biodiversity indicators. 
The Biodiversity Indicators Partnership exists to support the development of 
and reporting on indicators from a variety of intergovernmental protocols and 
agreements related to biodiversity and sustainable development. 
These protocols include the Convention on Biological Diversity (CBD; 
www.cbd.int/sp/targets/), theIntergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (IPBES; https://
ipbes.net/), the Sustainable Development Goals (SDGs; https://
sustainabledevelopment.un.org/sdgs), and other conventions. 
Indicators have also been found to be useful for regional, national, 
and sub-national reporting related to sustainable development 
and biodiversity conservation. Indicators are essential metrics 
for monitoring and reporting progress toward the achievement 
of national targets and are important in facilitating adaptive 
management.

An accurate global islands dataset will be important for the 
development of robust global indicators. Reliable and verifiable 
data is fundamental for the creation and maintenance of successful 
indicators. A high-resolution global islands dataset could be used 
to improve the accuracy of reporting units where islands intersect 
with terrestrial and marine environments, as for example, Aichi 
Biodiversity Target 11: “By 2020, conserve at least 17 per cent of 

terrestrial and inland water, and 10 per cent of coastal and marine areas….”. A 
consistent and accurate islands dataset could help to standardize the reporting 
geographies necessary for the global policy instruments like the CBD and the SDGs. 

Data from the DIISE reporting the number of invasive vertebrate eradications on 
islands—underpinned by a global dataset of islands—have been used to measure 
progress toward Aichi Target 9: By 2020, invasive alien species and pathways are 
identified and prioritized, priority species are controlled or eradicated and measures 
are in place to manage pathways to prevent their introduction and establishment 
(Convention on Biological Diversity, 2011). This indicator is currently being used by 
the Biodiversity Indicator Partnership. 

Conclusion
The mapping of islands from antiquity until today is an evolutionary tale of 
increasing geographic knowledge coupled with technological sophistication. Today, 
most of Earth’s islands are known and have been mapped, but authoritative and 
high spatial resolution data on island distributions have been relatively lacking until 
recently. A merger of the USGS/Esri global islands data and the WCMC v. 2.0 global 
islands database has produced a new, detailed, and globally comprehensive islands 
geodatabase with more than 400,000 islands included. Users can easily explore 
these islands using a web-based visualization and query tool called Global Islands 
Explorer, and they can find freely available island vector polygon data in the public 
domain. An important subset (~30,000 islands) of the global islands harbor endemic 
and threatened biodiversity and merit conservation attention.The Threatened Island 
Biodiversity database and the database on Island Invasive Species Eradications are 
two GIS-based resources supporting the global island biodiversity conservation 
effort. Satellite imagery and geospatial technologies have enabled and facilitated 
the development and analysis of global islands data in general, and threatened 
island biodiversity in particular.

On this particular atoll of the Palmyra Islands, an effort to 
eradicate invasive species has met with considerable success. 
Two manta rays are seen swimming near the island.
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UNLOCKING OCEAN
INTELLIGENCE
By Lisa C. Wickliffe, Seth J. Theuerkauf, Jonathan A. Jossart, Mark A. Finkbeiner, David N. Stein,  
Christine M. Taylor, Kenneth L. Riley, and James A. Morris, Jr.

With a veritable deluge of new data sources for oceans coming online from satellites, shipboard surveys, 
and autonomous systems, transforming raw data into meaningful information has emerged as a crucial need 
for marine industries and management across a broad spectrum of communities. The National Oceanic and 
Atmospheric Administration and Bureau of Ocean Energy Management have successfully deployed an advanced 
geographic information systems platform to unleash the power of spatial analytics to unlock ocean intelligence.

The world’s largest collection of “ocean intelligence” can now be accessed to help sustain 
and grow one of the world’s largest blue economies.

—Neil Jacobs, PhD, acting administrator
National Oceanic and Atmospheric Administration (NOAA)
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The multiple dimensions of the ocean spaceWith more than 11 million square kilometers of space, oceanic waters of the United 
States represent one of the largest Exclusive Economic Zones in the world. 1 To manage 
ecosystem and industry planning decisions in such a vast area, coastal managers 
increasingly rely on comprehensive geospatial data and information to guide decision 
making.2,3,4,5 The emergence of advanced data acquisition platforms such as satellite and 
autonomous systems has increased the volume and availability of geospatial data to 
inform these decisions. However, coastal managers still struggle to turn this data into 
comprehensive information (i.e., information for decision support) for applications in 
ocean planning and management.

The US Bureau for Ocean & Energy Management (BOEM) and the National Oceanic 
and Atmospheric Administration (NOAA) partnered to address this challenge and 
developed OceanReports, an automated geospatial tool for analyzing and visualizing  
US ocean space. The tool unlocks authoritative ocean planning data to answer essential 
questions in seconds around planning, regulating, permitting, rulemaking, and efforts 
toward conserving the diversity of ocean resources and assets in the United States.

Coastal managers tasked with regulating ocean space and the industries occupying it 
require the best available information to make confident decisions regarding current 
and future ocean uses. Ocean planning requires coastal managers to consider the 
environmental diversity and array of uses throughout our oceans—ranging from the 
distribution of sensitive habitats to the prevalence of vessel traffic—and minimize 
conflicts among them. Science-based, geospatial tools allow them to address 
specific ocean management challenges and advance economic development and 
conservation goals.

THE OCE AN PL ANNING CHALLENGE
Some major goals of ocean planning include restoring infrastructure, protecting critical 
habitats such as migratory corridors for endangered species,  and managing ecosystems. 
For ocean industry, marine planning includes matching the most appropriate ocean use 
to an ocean space. Oceans within US jurisdiction play host to numerous military and 
industrial objectives (e.g., energy production, major communication hubs, movement 
of goods and services, training for military readiness), as well as fisheries, recreation, 
and tourism activities. These activities occur in the shared ocean space with diverse 
marine habitats, sensitive species, and many other natural resources. Within the ocean 
planning schema for new activities, coastal planners must pay close attention to the 
characterization of the ocean neighborhood in which an ocean activity will occur over 
space and time.

The Port of Oakland in Northern California is typical among major US ports in 
terms of the demands placed on it from various stakeholders, including shipping, 
fishing, the cruise industry, and the general public, to name but a few.

The multiple dimensions of the ocean to account for during the planning process. 
Considerations on the sea surface, such as vessel traffic, can be accounted for 
over space and time by viewing the Automatic Identification System (AIS) ship 
transit data. Planning for Cetacean species, such as Humpback whales, movement 
(e.g. migration, feeding, reproduction), helps minimize interactions with shipping 
routes, as cetaceans not only use the water column, but also come to the surface 
to breathe. In the case of aquaculture or wind energy operations, multiple 
dimensions are important to consider, including the seafloor where important 
habitat or seafloor infrastructure (e.g., pipelines, cables) may occur.

Planners require spatial data at multiple scales and dimensions to better understand how 
different activities share a common ocean footprint. Most maps are two-dimensional 
and may leave the false impression that the ocean contains virtually no unused space. 
In reality, information needed for ocean planning spans multiple dimensions, including 
the seafloor, water column, sea surface, and interactions with the atmosphere above the 
ocean. Consideration of all dimensions is essential for conflict avoidance (e.g., shipping 
traffic, sensitive habitats). Further, some data must be considered over time, as some 
datasets only apply to certain seasons or time of day (e.g., migration of whale species, 
fish spawning aggregations).

Block Island Offshore Wind Farm, aerial view.
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Coastal managers can infer biological risks in a given area by visualizing harmful algae bloom (HAB)—in this case , Karenia brevis near Sarasota, Florida—in terms of its occurrence 
and frequency over time at cellular levels harmful to finfish. This information applies to fisheries management and inland and offshore aquaculture screening and siting.

OCE AN REPORTS: AUTOMATING OCE AN PL ANNING ANALYSIS
MarineCadastre.gov, a cooperative effort by the BOEM and NOAA, provides 
authoritative ocean data, tools, and support to marine planning communities. The 
website organizes marine planning data and disseminates it into the public domain. 
At its core, MarineCadastre.gov contains data on jurisdictional boundaries, marine 
infrastructure, transportation, alternative energy, traditional energy, physical factors, 
and biological data to support planning, management, and conservation of marine 
spaces.

OceanReports began in 2014 as a prototype to help ocean planners, industry 
representatives, and regulators more easily query a specific area of ocean space 
and receive essential summarized information. Available in seconds in the form 
of graphics and statistics, the information is used to inform planning decisions. 
Through unlocking spatial data and analysis, OceanReports increases the power 
and utility of data for technical and nontechnical users such as coastal managers, 
environment-focused nongovermental organizations (eNGOs), environmental 
policy analysts, geographic information systems (GIS) managers, K–12 educators, 
international partners, industry consultants, and congressional and policy staff. 

Designed as a freely available web application, OceanReports allows users 
with no technical experience in GIS to select an area of  US ocean space and 
instantaneously obtain more than 80 unique, information rich infographics derived 
from an automated spatial analysis of data associated with that location. These 
include information on energy and minerals, natural resources, transportation and 
infrastructure, the oceanographic and biophysical conditions, and the local ocean 
economy. For anywhere in  US ocean waters—from the coastal shelf of Florida to 

OceanReports themes and data
OceanReports delivers a customized report for a user-derived ocean “area of interest” 
that analyzes and distills key spatial data and provides location-specific insights in 
these six topic areas:

1.	 General information: Describes the size of the selected area, jurisdictional and 
political boundaries, land elevation and water depth, relevant laws, and popu-
lated places.

2.	 Energy and minerals: Highlights the energy potential available off the coast 
of the United States, current areas of extraction/collection, and the availability 
of mineral resources used to restore hundreds of miles of coastline and protect 
billions of dollars in infrastructure and ecological habitat from coastal erosion 
and destructive storms. 

3.	 Natural resources and conservation: Provides information on the distribution 
and abundance of natural resources (e.g., habitat locations that support migratory 

OceanReports chapter themes, the symbol 
representing that theme, and the info-
graphics present in each theme where 
statistics are provided for the user.

the Bering Sea of Alaska to the far ocean reaches of the Pacific Islands—users can 
start with an area of ocean space in mind and in return receive a comprehensive 
automated report detailing key environmental and space use considerations 
essential for planning, as shown in the bottom figure depicting harmful algae bloom 
data off the Gulf coast of Florida.

and endangered species). These considerations are essential for balancing a healthy 
economy and coastal ecosystems through mitigating impacts to natural resources. 

4.	 Oceanographic and biophysical: Offers critical information on a variety  
of oceanographic parameters, including data resources derived from the  
Ecological Marine Unit.

5.	 Transportation and infrastructure:  Shows the infrastructure and activities of 
the marine transportation sector along the US coastline, including information 
on vessel traffic, routing, and restricted areas. It also provides information about 
permanent and semi-permanent structures such as cables, pipelines, ports, oil 
platforms, and wells. 

6.	 Economics and commerce: Provides information on relevant marine- 
dependent jobs, commercial fish landings, census-derived indicators, and other 
key economic considerations.

One of the most important aspects of 
OceanReports is the built-in ability for 
users to immediately access the data 
underpinning the tool through map 
layer viewing, available downloads, and 
the original data source information 
provided in the metadata. This example 
from OceanReports shows a report for 
the lower Chesapeake Bay in Virginia 
state waters and a snapshot of the 
economics and commerce for that area.
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Sampling of infographics generated 
by OceanReports for the Ecological 
Marine Units (EMU) nutrient 
concentrations at depth in the 
Gulf of Alaska (top) and deep sea 
coral species in southern California 
(bottom). Each infographic is built 
from spatial analysis of underlying 
data to provide customized key 
statistics and information for the 
user-selected area of interest. 

Beyond the distilled information OceanReports provides users for a given area of ocean 
space, the tool also allows users to explore spatial data within the integrated map 
viewer. This capability allows deeper engagement and interaction, depending on user 
interest. Users can input specific coordinates to search for a location of interest, adjust 
underlying basemaps, and print and share reports, as shown. Each infographic in the 
six themes contains these functional components:

A	 Home button to return user to start page

B	 Themed chapters

C	 Access to Quick Reports

D	 Begin drawing a custom area or view Quick Reports options 

E	 View regions, input coordinates, search, measure, change basemap

F	 Toggle layers on map or look at industry themes

Data exploring via the map viewerInfographics presentation
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Under the hood The nuts and bolts
OceanReports provides synthesized and authoritative information early in 
permitting or planning process in an effort to provide a “first look” at ocean 
interactions, with the goal of longterm ecosystem sustainability in mind. Providing 
this information early in these processes can greatly impact the project trajectory 
and outcome. A comprehensive ocean neighborhood (i.e., a geographically localized 
community that interacts or overlaps  with  a  proposed  site)  analysis  allows  decision  
makers  to  see  the  big  picture  and  make  screening-level decisions quickly and 
more efficiently. It also increases transparency in decision making by allowing all 
stakeholders, from developers to regulators, to use the same data and information 
to make decisions. OceanReports ultimately streamlines communication between 
the public, agency, and industry; agency to agency; and agency to the public. 

Users can come to OceanReports with a predefined planning goal prior to exploring 
an ocean area of interest (i.e., custom area). Custom areas can be drawn in the tool, 
representing ocean areas of interest given a user’s specific geographic focus. The back-
end software then accesses the necessary data associated with that custom area, and 
applies specified reporting rules that define the automated spatial analysis (e.g., report 
what is inside or intersects with the custom area); then parallel automatic processing 
generates the themed infographic report for the custom ocean area. In some cases, 
maximum area thresholds limit the descriptive statistics returned for an area that is too 

The basic structure of a web mapping application includes the front-end (client) and 
the back-end (server). The user interacts with the front-end, most commonly in a web 
browser window. Behind the scenes, the application pulls, processes, returns, and 
displays data to the user. 

A cloud server hosts OceanReports using Microsoft Azure™ Platform as a Service (PaaS). 
The application uses the Google-developed Angular web application framework. The 
application also needs additional open source libraries and dependencies that are 
included using a JavaScript module bundler called Webpack. For the presentation of the 
application in a web browser, styles are added using a powerful cascading style sheets 
(CSS) preprocessor, known as SASS. The Highcharts JavaScript charting library powers 
the charts featured in many infographics in the application. A Socket.io connection 
establishes real-time communication between the server and client, allowing data to be 

large to provide valid statistics. These  were  determined  for  each  continuous  
data layer using the Moran’s I spatial dependence test. 6 

Although visualizing mapped data can provide useful information to guide 
decisions, summary statistics derived from the underlying spatial data can 
provide deeper insights. Subject matter experts in specific coastal planning 
topics such as wind, oil and gas, marine minerals and aquaculture, helped 
develop rules to guide the return of statistical and attribute information 
within each infographic. Each infographic follows a rule specific to the data 
being analyzed and returns a result for the user defined custom area. To 
provide useful and intuitive statistics and graphical summaries of data for 
each infographic in OceanReports, numerous different graphical displays 
were developed to convey easily interpreted important information about 
a user’s specific ocean area of interest (i.e., custom area). Infographics 
complement each dataset displayed on the map viewer portion of a custom 
report and offer critical insights about the user-defined area. Examples of 
graphical depictions of data for infographics displayed for a custom area 
include interactive tables and charts, rose plots for oceanographic variables, 
monthly displays of data with temporal components, and profiles to illustrate 
data at various depth levels. 

updated quickly in the custom report infographics. Atlassian’s Bitbucket and Bamboo 
provide continuous integration and deployment, ensuring each line of code is source 
controlled, QA tested, and deployed automatically to the cloud servers.

The two main components that comprise the back-end of the application are a runtime 
environment and a database. The runtime environment uses Express, a NodeJS server 
framework, which handles the dynamic calculations, conditional statements, and 
functions for the application. An Azure database for PostgreSQL allows for fast indexing 
and querying of the 86 vector and 72 raster data layers (i.e., relational database) and the 
application uses PostGIS for storing spatial datasets. Esri’s ArcGIS Map Services display 
and render map layers stored within the Azure database. Because of the complexity of 
the data and large load requests, the application uses Nginx for load balancing and a 
fast reverse proxy.

OceanReports architecture and workflow uses a variety of software to produce fast load times from calculations on large datasets. The user accesses the OceanReports web 
application from an internet browser, while in the background the application accesses several software and service platforms to produce and retrieve the user’s request. Local 
machines are used to update and improve the web application. 
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BOEM is the federal agency in charge of planning and leasing renewable energy 
in US ocean waters. The BOEM Office of Renewable Energy Programs facilitates 
responsible development of renewable energy on the outer continental shelf through 
conscientious planning, stakeholder engagement, comprehensive environmental 
analysis, and sound technical review.8 The first step identifies potential wind-
planning areas by the state or region’s renewable energy task force. A renewable 
energy task force is created when a state or a region expresses interest in the 
development of renewable energy in federally managed US waters and is made up of 
representatives from the states, federally recognized tribes, and federal agencies that 
have an interest in the area. A task force considers numerous factors in choosing a 
site for an offshore wind farm. These considerations include costs, potential profits, 
available resources, potential conflicts, and political will. Considerations for design 
and engineering of the structure depend on site-specific conditions, particularly 
water depth, seabed geology, and wave loading.8 In choosing a location, the task 
force recommends potential lessees to consider where the energy is needed and 
whether the wind farm is close enough to supply those needs.

All new wind energy farms must comply with BOEM’s renewable energy program, 
which occurs in four distinct phases: 1) planning and analysis, 2) lease issuance, 
3) site assessment, and 4) construction and operations. The planning and analysis 
phase seeks to identify suitable areas for wind energy leasing consideration through 
collaborative, consultative, and analytical processes that engage stakeholders, 
tribes, and state and federal government agencies. During this phase, BOEM reviews 
environmental compliance and consults with tribes, states, and natural resource 
agencies (https://www.boem.gov/Commercial-Leasing-Process-Fact-Sheet).

Before or during this phase, potential stakeholders in the region often start with 
a general area of interest. Using OceanReports, we can begin to guide some 
decisions that allow the task force to view the same general area or areas of interest. 
Stakeholders should consider answering these kinds of questions before beginning 
the first phase:

•	 Where is the energy needed? Is there a potential location with good wind 
resources close to energy needs? 
•	 Is the wind is strong enough year-round to keep the turbines going at a 
profitable rate? 
•	 Is the bottom type appropriate for a wind turbine installation? 
•	 Is it shallow enough (under 100 feet) to support a seafloor suported structure or 
is it greater than 100 feet suggesting a floating windfarm? 
•	 Are there ports and transmission connections that can handle the construction 
and operational needs? 
•	 Which authorities can approve, permit, lease, monitor, and evaluate the project? 
•	 What are the regulations that need to be considered? 
•	 What other human activities regularly occur in the area? 
•	 Are there environmental issues (wildlife harassment, air pollution, water pollution, 
potential effects to Essential Fish Habitat areas, etc.)?

In this hypothetical example, stakeholders wanted to locate a wind farm off Montauk, 
New York. The investor group and the state are interested in the area shown off Long 
Island, as these stakeholders operated a successful wind farm within Rhode Island 
state waters (i.e., Block Island Wind Farm). The investor group wanted to move to 
the open ocean that lies in federally managed waters, as offshore winds tend to 
blow harder and more uniformly than on land, and thus can produce significantly 
more energy/electricity.8 Additionally, siting turbines farther offshore makes them 
less visible from shore, minimizing potential visual conflicts. Nearby, ports and 
transmission connections are already in place that can handle construction and 
operational needs. To further investigate the proposed area, the investor group used 

SITING A WIND FARM UNDER BOEM’S RENEWABLE ENERGY PROGRAM 

OceanReports to inspect several other questions that need consideration, including 
depth, other human ocean activities in the area, characterization of the surrounding 
ecosystem, investigation of sensitive habitat and species, bottom type, and the 
potential for wind energy in the area of interest. 

First, the investors drew a custom area within the OceanReports tool for the area 
of interest for siting the wind farm (next page). Next, the investor group reviewed 
each theme chapter within OceanReports for the custom area, which provides 
synthesized information about the drawn area. The general information theme 
provided the general characteristics, including the size of the area (281 km²), 
minimum (–37.2 m) and maximum depth (–60.6 m), and whether the area is in 
federal waters or state waters. In this case, the investor group aimed to be in federal 
waters, and 100 percent of the custom area was in federal waters. 

Next, the group checked wind energy potential and found it was “outstanding” 
for the custom area. Looking further into the custom area, the group checked for 
substrate type because it is one of the main factors in determining whether and 
what type of turbines should be used. By looking at the Energy & Minerals theme 
information, the group saw the predominant substrate in the area was sand, 
which is favorable for the project. Next, clicking the Natural Resources theme, the 
group saw that 100 percent of the area is in North Atlantic Right Whale Seasonal 
Management Area, which dictates caution for ship traffic in migration season. The 
Cetacean Biologically Important Area Fin Whale feeding zone covers part of the 
area, and the Northern Right Whale Migration Area covers all of the area. 

At this point in the automated analysis, the investor group considered reviewing 
the biological opinion (i.e., formal consultation, stating the opinion of the agency 
on whether a federal action is likely to jeopardize the continued existence of listed 
species or result in the destruction or adverse modification of critical habitat) if they 
proceed from the nearest wind energy lease blocks.9 Clicking on the Transportation 
& Infrastructure theme showed that vessel traffic is relatively low, but seafloor 
infrastructure may impede progress, despite the three electric power facilities 

Artist rendering of proposed offshore wind turbine designs 
gives stakeholders and the public a sense of the visual impact 
of massive renewable energy projects.

nearby. Submarine cables run through the proposed wind farm area, but other 
proposed sites have submarine cables running in subsurface sediment. Because 
of the uncertainty associated with potential interaction with the cables, the group 
then moved the custom area by dragging the original drawn area to a nearby 
adjacent area to avoid the cables. After toggling on unexploded ordnance and 
shipwrecks, the group decided to go farther offshore to avoid the aforementioned 
constraints. The project was still economically viable but would require a different 
and more experimental type of turbine platform such as tripoled, jacketed, or tripod 
wind turbine structures in the deeper waters. After checking several oceanographic 
factors (e.g., tropical cyclone wind exposure, significant wave height, prevailing 
wind direction), the investor group decided to pursue further conversations with 
relevant agencies to determine whether the location is truly viable and permissible. 

Wind energy potential for the drawn custom area. Here we can see the area has 
“outstanding” potential and does not directly overlap with known lease areas. 

After reviewing the seafloor infrastructure inside the custom area, the hypothetical investor group decided to move the area to avoid known potential constraints.

Hypothetical custom area drawn off the coast of Montauk, New York, to determine whether 
the Custom Area characteristics meet the needs of the proposed wind farm.

In real-world applications of OceanReports, the custom area would be drawn 
multiple times within multiple areas, allowing the user to run a report for each 
area to share with collaborators and state and federal government agencies and 
compare the options for each area against one another. Not all intersecting data 
layers become roadblocks to development. Wind farms can build around cables 
to avoid them; protected areas for whales can be utilized as long as construction 
doesn’t occur while they are in the area. Finding just the right area that eliminates 
all conflict is nearly impossible, but avoiding already known impediments before 
progressing further in the planning process can save significant time. OceanReports 
helps users quickly identify the known challenges for each area, understand needed 
further investigation, and can use finer-scale data and information to provide 
needed detail once a potential area is identified.
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PIONEERING OFFSHORE AQUACULTURE IN THE GULF OF ME XICO
Aquaculture is one of the fastest-growing food production sectors in the world, and it 
plays an increasing role in sustainable seafood production across the United States. 
The need to increase food security, reduce a multibillion-dollar seafood trade deficit, 
create jobs, and revitalize coastal communities drives aquaculture development in 
the United States. Many regions around the country are preparing for this increase 
as aquaculture aims to move offshore. The Gulf of Mexico offers substantial potential 
for development of marine aquaculture. During the past decade, industry and 
proponents for aquaculture have tried to develop frames of reference and rationales 
for creating an offshore aquaculture industry in the Gulf. Stakeholders and residents 
in coastal communities have intensely debated aquaculture development. Coastal 
managers and stakeholders need awareness and confidence to use science-based 
decision tools to inform coastal ocean use plans and equitably resolve points of 
resistance to industry development.

Although the United States owns immense ocean space, identifying suitable 
locations for commercial aquaculture development requires specific environmental 
conditions and must minimize conflict with natural resources such as sensitive 
habitats, as well as established ocean industries such as energy, mining and mineral 
extraction, recreational and commercial fishing, navigation, military, shipping, 
and other public interests. The task of identifying these locations is particularly 
important within the Gulf of Mexico, where abundant resources have contributed 
to a growing ocean economy. For instance, more than 90 percent of US oil and gas 
production occurs in the Gulf of Mexico, providing billions of dollars to the national 
economy. The multibillion-dollar shipping and shipbuilding industries include two 
of the largest ports in the world, Houston and New Orleans. Gulf fisheries are some 
of the most productive in the world and yield more finfish, shrimp, and shellfish 
annually than the South and Mid-Atlantic, Chesapeake Bay, and New England areas 

combined. The region is home to three of the top eight fishing ports in the nation by 
weight, and five of the top 20 fishing ports in the nation by dollar value.10

In what has been perceived as a sea of conflict, OceanReports lends support to 
regulators and industry in prospecting for suitable locations for aquaculture 
development. Locating an aquaculture operation offshore is an expensive endeavor. 
Siting and reconnaissance in the unprotected open ocean environment depend 
upon using the best available science to account for increased exposure to extreme 
weather and ocean conditions, competition for space, and protection of natural 
resources. In this hypothetical example, industry and academic partners in the 
Gulf region want to  deploy a new, technologically advanced finfish farm in tandem 
with a decommissioned oil platform. The Energy Policy Act of 2005 granted BOEM 
jurisdiction over projects that use existing (decommissioned) oil and natural gas 
platforms for other purposes in federal waters, in addition to jurisdiction over 
renewable energy projects. Alternate uses of existing facilities may include, but 
are not limited to, research, education, offshore aquaculture, support for offshore 
operations and facilities, and telecommunication facilities.8 These infrastructures 
can withstand high-energy systems and might eventually reach economies of scale 
that offset some of the additional costs of offshore locations.11

After determining viable decommissioned platforms within the region, the team 
needed to explore Gulf waters to determine a platform area where oceanic conditions 
are conducive for finfish aquaculture. In this hypothetical example, the team aims 
to moor the finfish cage near the rigid platform structure. The team plans to use the 
structure for worker housing, storage, feed automation, extra parts for cage repair, 
and as a communication hub to transmit real-time data gathered by sensor systems 
on the cage to land-based facilities. Given the species of fish for culture, the design 

In Hawaiian waters, aquaculture uses the Aquapod finfish 
cage to grow fish in the open ocean environment.

characteristics of the cage, and the frequency of natural disasters in the region, the 
group used the automated spatial analytics in OceanReports to quickly screen large 
areas of ocean space. The analytics inform the basic engineering criteria for culture 
systems (depth, current speed, sediment type) and environmental conditions 
required for aquatic species (temperature, water quality). Because of significant 
wave heights during storms in the Gulf of Mexico, the aquaculture cage must be 
located in at least 50 meters of water. The group toggled on the depth contours to 
determine this depth before drawing a custom area. Once the depth constraint was 
met, the team investigated the Oceanographic & Biophysical theme for significant 
wave height and sediment type because these variables also limit gear type and 
placement. The team assessed temperature and salinity at the depth for culture 
species within the drawn custom area to determine whether the candidate species 
of finfish could thrive. Further, the team assessed the speed of the current on and 
below the surface to ensure it never rose above 1 meter per second on average 
(i.e., faster than the gear or species could sustain over time). During episodic 
storm events, sensors will alert the team to conditions so they can sink the cage to 
potentially mitigate damage and losses.

The map portion of OceanReports shows the average current speed at the surface of the ocean over a 20-year climatology, distilled into monthly intervals. The 
current rose diagram at the top of the infographic gives the prevailing current direction and speeds over the climatology assessed. The bottom infographic depicts 
monthly maximum, mean, minimum, and standard deviation to determine, for instance, which month the maximum current speeds occur. 
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As a screening tool, OceanReports gauges opportunities for aquaculture at a regional 
scale. Generally, a team will find multiple alternative sites before conversations 
begin with state and federal government permitting agencies, because each site 
has different sets of constraints that require negotiation. The team can streamline 
the permitting process by holding pre-permitting meetings with agencies and 

finding several locations that meet required parameters and avoid major ocean use 
conflicts. OceanReports can screen large ocean spaces to identify major conflicts in 
an area. The use of high-resolution oceanographic and biophysical data can further 
define an area and is recommended before farm planning proceeds to the next step.
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ENDNOTES
OceanReports represents the next chapter in marine spatial planning and a 
fundamental advance in our ability to access and transform big ocean data. 
In unlocking access to an unprecedented amount of essential information, 
OceanReports shares information transparently to empower ocean planning 
decisions. Public benefits derived from OceanReports include increased regulatory 
confidence, decreased time and increased efficiency in the permitting process, 
transparency, and better-informed stakeholders (e.g., public, industry, government, 
NGOs). Standard web mapping applications or data portals allow users to view and 
download numerous spatial datasets. OceanReports takes the standard web map 
application to the next level by allowing the user to draw and define a custom area 
and receive a customized report detailing essential information for an area of ocean 
space derived from an automated spatial analysis, usually in less than 2 seconds. 

OceanReports helps users engage openly with coastal communities, develop 
pilot-scale demonstrations, and plan large commercial projects. OceanReports 
stimulates an objective and rigorous analysis of ocean space to inform planning 
and preliminary permitting discussions with regulators and also provides 
transparency to the planning process. Early and informed engagement with the 
regulatory community—facilitated partly through the information provided via 
OceanReports—can illuminate crucial trade-offs, incorporate public values and 
concerns, and explore approaches to minimize environmental impacts. 

Conclusions and insights
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Plastics washed ashore in Accra Beach, Ghana. 99.9% of plastics ever 
produced still exist in their original shape (including discarded plastics).

By Orhun Aydin and Shaun Walbridge, Esri.

Since their invention in 1950s, plastics have had an alarming and highly visible impact on the 
world’s oceans that humanity certainly never anticipated. Modern scientific detectives are turning 
to big data and advanced GIS software to understand the major sources of plastic pollution in the 
world’s oceans as a first step to reducing their presence.

THE GEOGRAPHY OF
OCEAN PLASTICS
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Understanding the exposure faced by marine animals—from the largest whales 
to the smallest plankton—to moving plastic debris is a crucial first step toward  
estimating (and ultimately mitigating) the impact of this insidious and long-lasting  
type of pollution on the world’s marine ecosystems. This chapter highlights the 
work of scientists to quantify the spatio-temporal overlap between moving plastic 
debris and the marine migration paths of certain species, with the goal of modeling 
and predicting the extent to which different animal species are exposed to moving 
plastic. 

We can surmise through anecdotal evidence like the images seen on this page 
that there is a major problem. Quantifying it is another matter altogether. One of 
the grand challenges associated with understanding the dynamic relationships 
between marine life and plastic is an acute lack of data on the movement of plastics  
pollution from the major sources into the so-called ocean gyres (the well known 
example being the notorious Great Pacific Garbage Patch). Modeling the amount of 
plastic degradation that happens en route adds another layer of complexity as the 
original bags, bottles, and countless other items degrade into even more dangerous 
micro- and nano-plastics.

This work uses geographic information systems (GIS) tools to combine multiple 
data sources to mine spatio-temporal patterns behind different marine animal 
species’ exposure to moving plastics. The model represents plastic movement as 
a coupled process between ocean currents and surface winds using a Lagrangian 
simulator—an open source algorithm that is widely accepted in the realm of fluid 
dynamics. Resulting movement of spatially heterogeneous plastics is represented 
within a space-time data structure. The team developed a temporal co-location 
analysis between plastic movement and animal telemetry to model exposure times 
of different marine animal species to moving plastics. This type of analysis can be 
broadly described as spatial statistics. 

One of the biggest problems with plastics in the oceans is mismanaged plastics 
traveling into ocean gyres, areas where currents circle and accumulate plastics and 
other marine debris into so-called garbage patches. Throughout their ocean transport, 
plastics degrade and form micro-plastics that are detrimental to marine life.

THE PROBLEM WITH PL A STIC MAPPING THE GLOBAL PL A STIC WA STE SITUATION
Data from Jenna Jambeck et al4 linked worldwide data on solid waste, population 
density, and economic status to estimate the mass of land-based plastic waste 
entering the ocean. The study initially estimated the amount of plastic waste 

PLASTICS IN NUMBERS
8,300,000,000 metric tons of plastics produced 
since its invention in the 1950s1

99.9% of all plastics ever produced still exist 
in their original shape (including discarded 
plastics)2

Number of microplastics from marine debris in 
the oceans is 500 times more than the number 
of stars in Milky Way (100 billion)2

1.15–2.41 million tons of plastic waste  
currently enter the ocean every year3

74% of emissions occurring between May 
 and October3

 
100s of marine species are at direct risk2

Recycled 
and managed

Unmanaged

Whales—like this breaching humpack-—despite their place at the top of the marine 
food chain, are especially vulnerable to ocean plastics as they continually filter sea 
water in search of plankton and other small fish and ingest whatever they encounter.

Up and down the food chain, marine animals, like this crab in the Philippines, face the 
consequences of plastic products.

Environmentally unfriendly plastics impact the environment when instead of being 
recycled, they come in contact with the subsystems of our planet. Mismanaged plastic 
waste is the amount of plastics that cannot be (or are not) recycled with current  
infrastructure. Rivers, tides, winds, and illegal dumping can all carry mismanaged  
plastics to the natural environment 

Plastic waste per capita reported in kilograms per person per day. This figure displays 
the amount of plastic waste produced per capita per country. Note that United States 
is one of the top producers of plastic waste at an average of 3.6 kg per person per day.

Percentage of mismanaged plastic per country. This figure shows that some of the top 
plastic waste producers are largely managing their plastics waste, preventing it from en-
tering the environment. Amount of plastic waste left in contact with Earth’s subsystems 
is again mapped using the data on the amount of mismanaged plastics by weight.

Mismanaged plastic waste. Countries are symbolized with respect to their percentage contribution to overall plastic pollution. This map displays 
the contribution of every country to mismanaged plastic waste. Despite the high amount of plastic per capita, North America has a low amount of 
mismanaged plastic waste. However, other countries with relatively lower plastic waste per capita have higher total contributions of plastic pollution.

Mismanaged plastic
% produced

Mismanaged waste
% of global total

Per capita plastic waste
kg per person per day

produced per capita. But plastic waste becomes an environmental problem only 
when it is mismanaged, in other words, when it is not recycled and managed 
properly. 



The Geography of Ocean Plastics  4342  GIS for Science

The already complex variables that come into play when studying this problem are 
compounded by the fact that even managed plastic trash doesn’t necessarily stay 
in its country of origin. The maps on the previous page do not reflect transnational 
flow of plastic waste. Large amounts of plastic waste are being exported to countries 
in Asia.5 Thus, the amount of plastic to manage exceeds the amount produced by 
the local population in Asia.

The first line of defense to protect the environment from plastic pollution is reducing 
waste by recycling and managing the plastic waste. Managing plastic waste includes 
these mechanisms:6

•	 Mechanical recycling
•	 Feedstock recycling
•	 Incineration with energy recovery
•	 Landfilling

Mismanaged plastics can pollute the soil7 and be transported via wind and 
groundwater into major rivers.8 Once in a river, plastic debris is transported to an 
outlet that can put the plastic in contact with the ocean, a sea, or a lake.9 Once in 
the ocean, currents typically move the plastic debris along currents until they lose 
velocity and sink or start converging in areas called gyres. 

SPATIO-TEMPORAL CLUSTERS OF PL A STIC POLLUTION MODELING THE JOURNE Y OF PL A STIC DEBRIS
We can summarize the journey of many plastic molecules from site of use to an 
ocean gyre in this way:

1.	 Disposal on land
2.	 Land runoff into river
3.	 River runoff into outlet
4.	 River outlet into ocean
5.	 Ocean transport to gyre

This quantity of plastic debris is then imported to an open-source Lagrangian 
simulator—OceanParcels—to model the travel of plastic debris transported by 
different rivers. The resulting initial data describes movement patterns of plastics 
which are then visualized and quantified in ArcGIS Pro.

Pacific gyres
Global positioning system (GPS) tracker data for different marine species provided 
in the animal telemetry network dataset were filtered to focus on species that travel 
in the Pacific Ocean. A gyre is characterized as a system of circular ocean current 
movement (clockwise north of the equator and counterclockwise south of the 
equator), and with at least 100 GPS points tracking its movement.
 

Garbage patches are large areas of the ocean where litter, fishing gear, and 
other debris collects. They are formed by rotating ocean currents called 
“gyres. The Great Pacific Garbage Patch collects debris between Hawaii 
and California. It is the most well known garbage patch. (Graphic courtesy 
of National Oceanographic and Atmospheric Administration.)

Overall workflow for evaluating the impact of moving plastic debris on marine life. The flexibility of the ArcGIS platform allows incorporating open-source libraries in this scientific 
workflow while enabling the powerful suite of geoprocessing tools. In particular, space-time pattern mining and spatial machine learning tools in ArcGIS Pro are used in the geo-
processing building blocks shown here.

The study estimated the amount of plastics that rivers carry. They analyzed the 
movement of simulated plastic particles and animal tracks from river outlets to the 
Pacific gyres, relying on the Multivariate clustering in ArcGIS Pro. This detects the 
number of distinct animal movement patterns with respect to the average distance 
and angle they have to the nearest plastic stream.  In addition, we used a test of 
movement correlation based on the existing work by Laurent Lebetron and team3 

that implements the Hidden Markov Model (HMM) in R using an open-source 
package called moveHMM. The number of distinct movement patterns defined with 
respect to distance and angle was used in the HMM model to test the significance 
of impact of plastic streams and gyres to animal movement. This part of the study 
analyzed whether marine animals were significantly collocated with prominent 
bodies of moving plastic debris.
 
Reserachers used data for mismanaged plastic from Lebreton3 to quantify the 
patterns of plastics arriving at river outlets. The model shows the plastic outputs 
from 10 rivers in Asia, which contribute a major amount of plastic to the oceans. They 
datasets were binned in Esri’s space-time cube data structure to characterize spatio 
temporal patterns of plastic pollution originating from these rivers. Following the 
characterized spatio-temporal patterns, we simulated numerical plastic particles 
at these eight river outlets with respect to surface winds and geostrophic currents. 
The simulation was conducted using an open-source simulator that is integrated 
into ArcGIS Pro through the Python integration via ArcPy. Travel times and routes 
of plastic particles are analyzed using ArcGIS Pro®.

Because the study covers a global problem, its conclusions refer to that global 
scale instead of to the plastic pollution management policies of any one country. 
The analysis shows that 8 out of the 10 rivers are positioned geographically where 
their discharged plastics can reach the Pacific Ocean Gyres in less than a decade.

Following the characterized spatio-temporal patterns, the team simulated 
numerical plastic particles at these eight river outlets and simulates their 
movement with respect to surface winds and geostrophic currents. The 
simulation is conducted using an open-source simulator that is integrated into 
ArcGIS Pro through the Python integration via ArcPy. Travel times and routes of 
plastic particles are analyzed using ArcGIS Pro.

Last, the team uses two methods to analyze the relationships between marine 
animal paths in the Pacific Ocean and areas of plastic debris concentrations:

•	 Multivariate clustering in ArcGIS Pro
•	 Hidden Markov Model in moveHMM package of R

Using the multivariate clustering tool, our team detects the number of distinct 
animal movement patterns with respect to the average distance and angle they 
have to the nearest plastic stream. The number of distinct movement patterns 
defined with respect to distance and angle is used in the HMM model to test the 
significance of impact of plastic streams and gyres to animal movement. This 
part of the study analyzes whether marine animals are significantly collocated 
with prominent bodies of moving plastic debris.
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Plastic debris from rivers is not constant and seasonality has an impact. Lebreton et 
al.3 provided data on inverse-modeled mismanaged plastic by weight globally. Our 
team uses a subset of this dataset along the coast of Asia, because of its role as an 
ocean plastic source. Our team creates smooth kriging surfaces of the mismanaged 
plastic by weight in a time-discrete manner and uses measurements in rivers to 
estimate the amount of mismanaged plastics flowing through rivers at any given 
time. Smooth mismanaged plastic by weight surfaces is generated with Empirical 

The Lebretron study3 estimates that annually between 1.15 and 2.41 million tons 
of plastic flow from global rivers into the oceans. Their model of plastic inputs 
from rivers into oceans is based on waste management data, population density 
maps,  and hydrological information. The model is also calibrated against an ever-
expanding set of surface plastic field measurements being carried out in response 
to the recognition of the issue. The top 20 polluting rivers are mostly located in 
Asia and account for more than two-thirds (67%) of the global annual input while 
covering 2.2% of the continental surface area and representing 21% of the global 
population.  The data also showed that the majority of plastics is emitted between 
May and October (roughly correlating with the rainy season). 

For the purposes of the GIS part of the analysis, researchers selected the following 
eight rivers ranked by their estimated mismanaged plastic. The top-polluting rivers 
in this study set were, in order:

1. Indus [India]
2. Ganges [India]
3. Irrawaddy [Myanmar]
4. Mekong [Vietnam, China, Laos, Thailand, Cambodia, Myanmar]
5. Pearl [China]
6. Yangtze [China]
7. Yellow River [China]
8. Amur [Russia, China]

Mapping in 3D space and time
Researchers aggregated these as space-time bins along the rivers to analyze patterns 
of incoming pollution to the Pacific Ocean. Resulting hot-spot analysis on space-
time cubes per river is depicted here.

PL A STIC DEBRIS INPUT FROM RIVERS
Bayesian Kriging (EBK).10 We prefer EBK because it can capture non-stationarity, 
which is expected because of localizing effects of currents on the plastic debris. The 
small multiples below depict the resulting smooth surfaces. Notice that they display 
strong seasonality for plastic waste arriving at the Pacific coast. Note that early in 
the year the majority of the plastic pollution originates in the coast of Malaysia 
and the Philippines and later in the year is surpassed by the plastic outflow from 
Yangtze, Pearl, and Yellow rivers.

The eight worst plastic-polluting rivers that end up in the Pacific Ocean traverse some 
of the most densely populated countries on Earth. 

A SPATIO-TEMPORAL LOOK AT THE PL A STIC PROBLEM

Vertical bins depict time, the 
lowest bin being January and 
highest being December. 
Colors indicate whether the 
time series was higher than 
average (red) or lower than 
average (blue). Emerging hot-
spot analysis shows that the 
Yangtze and Ganges have high 
plastic debris outflow after May. 
Note the difference in spatio-
temporal patterns of plastic 
debris mass in the Ganges and 
Yangtze rivers. The Ganges 
exhibits distinct time cycles in 
which amount of plastic debris 
is less compared to other 
rivers earlier in the year. The 
amount of plastic debris in this 
river increases later in the year 
(around May).

Spatio-temporal patterns of plastic emissions

Vertical axis indicated time (lowest January, highest December).Empirical Bayesian Kriging maps of mismanaged plastic by weight per month.
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At this point in the workflow we move from the river sources to the ocean 
surface global scale. But closer to shore, things get more complicated because 
of the outitself and consider the spatio-temporal patterns of plastic pollution in 
the Pacific. sized impact of winds on shallow surface waters. The team simulated 
plastic particles following space-time patterns of mismanaged plastic by weight. 
Much work is currently under way to refine the computer models that describe the 

HOW FA ST DO RIVER-BORNE PL A STIC S MOVE?

Time-of-flight maps for plastics from different river outlets. Hot colors indicate fast travel times. Hot colors corresponding to 
low time-of-flights imply plastic emitted at that corresponding river can reach the locations in hot colors faster than cold colors. 
Note that plastic debris from Ganges stagnates in the Bay of Bengal without reaching the Pacific Gyre. From the Yangtze and 
Mekong Rivers, plastics enter “plastic highways” into the Pacific Gyre because islands do not impede the debris as it travels on 
strong ocean currents. Plastic particle can reach one of the Pacific Gyres in two to five years depending on which river it origi-
nates from. Thus, reducing the outflow of plastics can save a large water body in the ocean from micro-plastic emitted as these 
plastic particles travel in the ocean.

To factor all these variables, a Lagrangian particle simulation is performed using 
general circulation patterns of the oceans. Things like satellite imagery of ocean 
Open Parcels,11 an open-source simulator. Additionally, a specialized model— 
temperatures have helped us to better understand ocean movement on a macro- 
Global 1/12°—incorporates the impact of wind in shallow currents. A visualization 
of the simulated plastic particles in the Pacific Ocean is seen here. (The HYCOM 

consortium is a partnership sponsored by the National 
Ocean Partnership Program, as part of the US Global Ocean 
Data Assimilation Experiment. It’s goal is to develop and 
Time-of-flight maps for plastics evaluate the next generation 
ocean from different river outlets. Hot model used in this 
analysis. NCODA colors indicate fast travel times. Hot is a 
similar US Navy data assimilating colors corresponding to 
low time-ofmodel used in conjunction with flights imply 
plastic emitted at that HYCOM.)corresponding river can 
reach the locations in hot colors faster than Areas of plastic 
stagnation are cold colors. Note that plastic debris depicted 
in the emerging hot spot from Ganges stagnates in the Bay of 
map as areas of high plastic counts. Bengal without reaching 
the Pacific 

Areas of plastic stagnation are depicted in the emerging hot-
spot map as areas of high plastic counts. Note that the Bengal 
Bay has multiple localized hot spots due to stagnant waters 
creating high concentration in plastics. In addition, plastics 
that are on the move are also characterized to slow down on 
certain portions of their trajectories. Lagrangian simulations 
of plastic particles are terminated when particles reach a 
coast or a gyre. Thus, the map below displays areas where 
plastic streams accumulate as they are moving toward gyres.

Simulated plastic pollution tracks.
Time-tagged plastics particles in red

Emerging hot-spot analysis for Pacific Ocean

TIME-OF-FLIGHT MAPPING
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CONCLUSIONS

ENDNOTES

Animal telemetry network (ATN) data10 is the main data source for marine animal 
movement in the Pacific Ocean. A subset of the ATN network data contains 24 
species of marine animals, such as leatherback sea turtles, whales, and marlins to 
name a few. Interactions between these marine animals and plastic streams are 
quantified by calculating the minimum distance between migration paths of marine 
animals and angle of approach of marine species to plastic streams and gyres.

The team first defined cluster jointly for distance between different species’ paths 
and their angle of approach to the plastic streams. The next figure shows a map 
resulting from multivariate clustering.

Clustering map

MODELING INTERACTIONS BE T WEEN PL A STIC MOVEMENT AND MARINE LIFE
The Calinski-Harabasz index returns four distinct groups in ATN data with respect 
to distance to plastic stream and angle of movement. Clusters of animal movement 
are further explored by plotting the characteristics of every cluster with respect to 
minimum distance to plastic streams and angle. The next figure depicts the box plot 
for multivariate clusters. For every species, our group also built a Hidden Markov 
Model to investigate the probability that movement patterns discovered here are 
statistically significant. R’s Hidden Markov Model library is utilized for this purpose.

Marine animal telemetry data in the Pacific Ocean. Every point is a time-stamped GPS 
location for a species. All GPS locations are color coded with respect to clusters defined 
for distance and angle to plastic streams.

Satellite transmitters attached to a sea turtle’s back. The transmitters are small, 
lightweight devices attached to the turtle’s carapace (shell) using aquarium-
grade epoxy resin and are designed to withstand up to 300 days at sea. The 
transmitters rely on solar power to charge the unit and satellite telemetry to 
pinpoint their location every time a turtle returns to the surface for air. 

Box-plots for clustered marine animal movement data. Red and yellow indicate  
species that are collocated with plastic streams that swim with and against the current, 
respectively. Moving plastic debris is expected to impact these species the most. Blue 
indicates species that evade plastic currents due to persistent high angle movement 
and distance. In this instance, our study only investigated the overall angle and distance. 
Micro-paths may also exist that overall clusters may not reflect. Green indicates species 
that travel orthogonally to plastic streams. These are plastic-agnostic species that do not 
alter their path. Most of the species in this group are whales.

•	 Lagrangian simulation results indicate that spatio-temporal contribution of 
every river to the Pacific plastic gyres  cannot be avoided, because time-of-flight 
from every river varies considerably.

•	 Preliminary HMM analysis of movement data on marine animals shows that 
some species alter their course toward plastic streams. Although this analysis does 
not imply direct correlation simply because these species may travel on the same 
currents as plastic streams, certain species are observed to be collocated with 
prominent plastic streams

•	 The Yangtze, Mekong, and Pearl rivers are considered “plastic-highways” to 
Pacific gyres. Plastics emitted from these rivers travel a relatively short distance to 
reach one of the Pacific gyres

•	 Species that manifest distinct movement patterns include the black-footed 
albatross, northern elephant seal, salmon shark, yellow-fin tuna, and marlin (blue 
and black). In addition to these species, 20 more species have high collocation with 
plastic streams, and the angle of their movement is altered around areas of dense 
plastic.
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Layers of exposed rock tell a story about the geology in the Baffin Region, Canada. 
Subsurface scientists use deep-drilled wellbores and other records to understand 
the dynamic forces beneath the Earth’s surface.

By Jennifer Bauer, Devin Justman, MacKenzie Mark-Moser, Lucy Romeo, C. Gabriel Creason, 
and Kelly Rose, National Energy Technology Laboratory

The majority of the world’s energy and mineral resources are extracted from the below ground. 
Subsurface geologists explore the world below land and sea through the lens of current and historical 
data. Using GIS and geoscience methods, scientists are redefining our knowledge of the subsurface. 

EXPLORING BENEATH 
THE BASEMAP
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E XPLORING BENE ATH THE BA SEMAP Data to describe subsurface geologic features come from numerous sources. 
Surface-based observations as well as samples (i.e., fluid and rock) brought to the 
surface from subsurface mining and coring efforts offer insights about subsurface 
systems and processes. These types of direct measurements are often used to cross-
validate interpretations and analyses performed using other subsurface data types. 
Surface-based geophysical studies provide indirect measurements of subsurface 
characteristics and properties, which are often used to predict properties and 
patterns in the Earth’s subsurface systems. Wells serve as the primary source of 
finer-scale data, offering direct, high-resolution measurements of in situ subsurface 
properties in the Earth’s crust. Data from wells fed numerous geologic, geostatistical, 
and GIS-based studies to improve prediction and constrain our understanding 

Charles Lyell, one of the fathers of the science of Geology, is noted for his observation 
that “the past is the key to the present.” Over the past century and a half, subsequent 
geologists have leveraged the science of cartography to explore, document, analyze, 
and visualize the geospatial features of Earth’s geology. In the past couple decades, 
scientists have increasingly integrated and utilized GIS tools and techniques to 
enhance surface exploration and mapping. Efforts to integrate remote sensing data 
and methods with surface- based observations and measurements. Resulting in a 
global basemap of the Earth’s geology.

However, extending traditional GIS map analyses and interpretation methods 
into the subsurface is challenging. The geology of Earth is heterogeneous, and the 
geologic features observed today are the result of complex, systematic processes 
that have occurred over the past thousands to billions of years. Much of our 
understanding of the subsurface relies on limited physical samples or from 
indirect measurements, such as geophysical surveys and wellbore logs. 
However, data collected with indirect measurements are uncertain, and 
the accuracy of the measurements declines when used in the deeper 
regions of the subsurface, especially for the Earth’s mantle and 
core.

Analytics, such as those applied to predict, interpolate, and 
map subsurface properties, such as temperature, 
pressure, porosity, permeability, and 
others, rely upon spatially and 
temporally disparate data coupled 
with limited a priori information. 
Resulting predictions are often 
highly variable, with poorly 
constrained values and high 
degrees of uncertainty. Even 
regions with concentrated 
subsurface exploration are 
still plagued with geologic 
uncertainty that can 
obstruct safe and efficient 
exploration of the subsurface. 
As a result, even with an 
increase in human exploration 
of the subsurface, the Earth’s 
vast interior remains largely 
unexplored. There is, however, great 
potential for GIS-geoscience innovations 
to address this uncertainty and improve our 
exploration and study of the Earth’s subsurface to meet a variety of challenges and 
needs.

By far, human exploration of the subsurface for mining, water, oil, natural gas, 
geothermal energy, underground storage, and research purposes has provided most 
of  the opportunities to obtain the direct measurements, information, and samples 
that have allowed researchers to create a more complete understanding of the Earth’s 
crust. The scale of human interactions into the Earth’s crust varies across the globe, 
both spatially and temporally. Hard rock mining and wells drilled for drinking water 
and geotechnical purposes account for centuries of relatively shallow subsurface 
interactions, penetrating only the upper 100’s of meters of the Earth’s crust.  However, 
the millions of wells drilled for energy exploration for oil, gas, and geothermal 

The exploration and study of the Earth’s surface has provided key insights 
into the geology of the planet below the basemap. However, extrapolation 
and prediction of subsurface features are based on limited spatial and 
temporally disperse surface observations and indirect measurements. 
These data are limited by uncertainty, which increases the further from the 
surface that humans delve.  

Geophysical methods and tools offer insights but are based on indirect 
information and data. These measurements are calibrated against 
direct measurements and observations derived from geology at the 
surface that once resided deeper in the subsurface (e.g., ophiolites), 
and from data obtained from subsurface mines and wells.

of both the in situ geology of the Earth’s crust, and how human interactions have 
perturbed these subsurface systems over time. 

The challenges faced to explore, analyze, and visualize the subsurface with 
current techniques have resulted in a demand for better data- and knowledge-
driven methods to improve the prediction of subsurface properties. GIS offers a 
solution to integrate both indirect and direct measurements to better constrain 
the subsurface architecture and evaluate the distribution of subsurface resources. 
GIS and geostatistical methods, when coupled with data from direct and indirect 
measurement, offer solutions to further improve our ability to predict, explore, and 
evaluate the subsurface.

Surface measurements and observations 
collected in the field or from geologic core 
samples offer insights into geologic patterns 
and processes across multiples scales. Data 
obtained from these direct measurements are 
frequently paired with GIS tools to generate 
geologic maps.

Aerial surveys and satellite imagery offer 
remote sensed information about surface and 
sometimes near-surface geologic systems.

Outcrop
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resources, as well as for underground injection and research across the world offer 
greater insight into deeper portions of the Earth’s crust. Some of these wells reach 
depths greater than 40,000 ft (or more than 12,000 m) below the Earth’s surface, but 
most, on average, are within 10,000 to 20,000ft (3,000 to 6,000 m) range.  All of these 
conduits into the subsurface offer opportunities to collect data that can be utilized to 
improve characterization and mapping of the Earth’s subsurface systems. 
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HISTORY OF SUBSURFACE E XPLORATION SYSTEMATIC, DATA-DRIVEN ASSESSMENTS SPUR CHANGE
Subsurface drilling for scientific exploration, resource production, and waste 
disposal worldwide has existed since the 19th century. Deep subsurface drilling 
activities began in the mid-1800s, targeting the commercial production of salt brines 
in the present-day countries of Canada, China, Poland, and the United States.1 In 
1859, the first commercial well targeting oil, the Drake well, was drilled near Oil 
Creek, Pennsylvania.1,2 The realization that mineral oil had commercial value helped 
drive the persistent expansion of the deep subsurface drilling record. This record 

From 1960 to 2010, the chance of drilling a “dry hole,” or a well that does not contain 
any oil or gas, dropped from more than 40% to about 10%. This improved efficiency is 
directly related to the use of new and improved technologies, such as seismic surveys, 
subsurface imaging, and improved interpolation methods, like geostatistics, which 
help improve the prediction of subsurface properties. New technology coupled 
with systematic, data-driven methods that integrate GIS help improve subsurface 

Retouched 1859 photograph showing Edwin 
L. Drake, right, and his Drake Well, the first 
commercial oil well drilled in the United States.

In 1901, with the automobile era under 
way, the new “black gold” was discovered 
at Spindletop in Texas. Within a year, 
hundreds of wells were crowded together, 
one next to another, as prospectors 
rushed to discover the next gusher.

The lack of robust data, information, and mapping-based methods to explore 
the subsurface is evident from this pattern of drilling in that era, as seen in the 
image on the left from Spindletop, Texas. Most prospectors were drilling wells, 
sometimes within 10 ft of an existing well, reflecting the lack of systematic, data-
driven mapping and predictions that are the hallmark of today’s subsurface geo-
discovery efforts (right).

Six million wells have been recorded between 1802 to 2015 (footprint displayed on 
the map above).3 Through these records, wells have been drilled at increasing depths 
(graph A) over time, based on the reported “spud” year (or the year the drill bit begins 
drilling a well). The number of wells drilled each year has fluctuated greatly over time 
(graph B), showing the “boom and bust” nature of these of activities and influence of 
technology advances (in blue) and major historical events (in black).3 This entire historical 
record offers a trove of data for modern geoscientists, providing critical insights to better 
support geo-discovery, geo-exploration, and geo-hazard prevention when coupled with 
geoscience and GIS methods.

characterization and more accurately detect patterns and trends in the subsurface, 
helping transform the way geoscientists assess and map the Earth’s subsurface. By 
the 1960s, innovative technologies began to increase the footprint of drilling across the 
globe, touching every continent except Antarctica. Modern activities have expanded 
the cumulative footprint of subsurface drilling to all the continents and oceans. 

represents one of GIS and geoscience’s best foundational datasets for investigating 
and interrogating subsurface systems. To date, there are more than 6 million deep 
drilling well records worldwide associated with oil, gas, geothermal, underground 
fluid disposal, research, and permitted locations. These wells are found across all 
continents, except Antarctica, and scattered across the world’s oceans. More than 
half of these wells penetrate more than 3,000 ft (1,000 m) into the subsurface.3

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

1901 1960 2010

By the early 1900s, deep drilling mainly becomes tied to oil exploration, resulting in 
an increase in subsurface activities. The footprint of drilling expands across North 
America, South America, Europe, Asia, and parts of Oceana, with visible spatial clusters 
beginning to form in areas where oil prospects are rich across the United States.

New technologies for measuring and imaging subsurface features, such as geophysi-
cal surveys, coring, and geophysical logging of wellbores, increased in use during the 
1960s, and demonstrated how activities could benefit from more systematic efforts to 
characterize, predict, and map subsurface features. 

From 1960 to 2010, the successful discovery of oil and gas in new wells increased from 
~40% to ~ 90%.4 The increase of subsurface research and characterization and the 
integration of geologic exploration with geophysics and GIS methods have helped 
significantly improve our understanding of the subsurface.

Graph A

Graph B

1859

In the mid-1800s, the spatial footprint of deep subsurface exploration begins to 
emerge, consisting of deep wells drilled for salt brine production in North America, 
Europe, and Asia. Deep well drilling for commercial oil production also begins. Drake 
well denoted by the red star on the map above.
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GEO-DISCOVERY: AN ENDURING RECORD IN THE E ARTH’S DEEP CRUST Subsurface Data Boom
The drilling of more than 6 million deep wells during the past two centuries has left 
an enduring global footprint of human alteration of the subsurface. These activities 
have resulted in the placement of wells on all major oceans and continents, reaching 
down more than 40,000 ft (or 12,000 m) into the Earth’s crust.

Beyond simple exploration and characterization of the planet’s subsurface, human 
engineering of the subsurface has resulted in far-reaching and indelible changes 
to the in situ geology of the Earth’s crust. Carbon storage, geothermal resource 
production, underground fluid injection, compressed air storage, drinking water 
production, agricultural water storage, and natural gas storage encompass a 
growing suite of activities taking place in the subsurface worldwide. 

Ultimately, this magnitude of subsurface exploration and engineering has changed 
the composition and the behavior of the subsurface itself. The hybridization of 
geologic, geophysical, geostatistical, and GIS methods offers a unique solution to 
explore beneath the basemap, providing new insights for geo-discovery and ways 
to improve analysis and exploration of our planet’s geo-hazards and geo-resources. 

The rapid worldwide expansion in subsurface exploration coupled with innovative 
technologies to obtain subsurface signals, remote sensing tools, and GPS-enabled 
devices and equipment have also spurred an exponential boom in subsurface data.

This deluge of subsurface data has produced extensive volumes and varieties of 
high-resolution and quality subsurface signals, measurements, observations, and 
modeled data. However, spatial and temporal coverage and overlap of these data are 
highly varied, often forming a patchwork of different data types, formats, resolutions, 
ages, and quality within the area of interest. The heterogeneity of subsurface data 
presents a challenge in determining the best process to use to synthesize these large 
volumes and varieties of data to drive novel analyses.

To effectively and efficiently filter through the subsurface data deluge, scientists at 
the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) 
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Data discovery & collection
Integrate subsurface and related data from known sources (e.g., data 

collected from field/lab samples, data clearninghouses5-9) with new data 
discovered from other sources using NETL-built10,11 or other open-source 

web crawling, scrapping, and parsing tools.12-16

Data processing
Apply a variety of GIS and open-source tools to help transform, characterize, and label data. These 

efforts increase the power of our data by making it easier to rapidly integrate them into analytics, 
as well as ensure each dataset can be used more then once to support a wider range of research.
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Data interpretation & analytics
Use data coupled with GIS and open-source tools through the ArcGIS API® for Python and 

the R-ArcGIS Bridge to help evaluate, assess, model, and predict geo-resources and 
geo-hazards, such as the examples shared later in this chapter.
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are leveraging data-science computing methods paired with GIS and other open-
source data-processing tools, custom scripts, and machine learning to tease out 
pertinent information to support interpretation and analytics for subsurface data.

This rapid growth and availability of subsurface data, resulting from increased 
human exploration, offer an opportunity to produce better data- and knowledge-
driven methods with the integration of GIS. Spatio-temporal statistics, geostatistics, 
machine learning, and artificial intelligence offer prospective techniques that 
improve prediction of the subsurface beyond the limitations of current methods, 
which rely on disparate and limited a priori information. In the geo-resources and 
geo-hazards sections of this chapter, the intersection between geostatistics, geology, 
and GIS are further examined with examples of how these three disciplines combine 
to improve forecasting and insights into subsurface systems. 

Subsurface data management workflow, which integrates GIS tools and techniques, to rapidly collect, process, and analyze subsurface data.

Global cross section highlight-
ing the range and variations in 
well density, depth, and age 
across the globe. A) Well density 
per 1-degree grid cell, with a 
highlighted line that is used to 
create a cross-section through 
the northern hemisphere for B) 
the corresponding histogram of 
total number of wells, C) to plot 
the minimum, maximum, and 
average drilling depth for wells 
in each 1-degree area along the 
cross-section line, and D) to plot 
showing the minimum, maximum, 
and average spud year (or year 
that the drill bit begins to drill a 
new well) for wells in each 1-de-
gree area along the highlighted 
cross-section line.

Total density of wells per 1-degree cell as of 2015.

A

B

C

D
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GEO-DISCOVERY: GIS AND GEOSCIENCE FOR SUBSURFACE PROPERT Y PREDICTION
Traditional two-dimensional surface geology maps have long been coupled with 
cross-sectional figures to help visualize geologic data beneath the Earth’s surface. 
Now, through the power of geostatistics and GIS, we can combine data from direct 
surface-based geologic observations with subsurface data collected using indirect 
methods, including seismic data and wellbore geophysical measurements. Coupling 
geostatistics and GIS has expanded our ability to visualize in three dimensions and 
improve prediction of subsurface properties, such as temperature, pressure, porosity, 
and others. This is critical to evaluating geologic resources, such as reservoir sands 
and geothermal plays, and geo-hazards, such as wellbore blowouts and shallow gas 
accumulation, all of which have implications for ensuring the safe and responsible 
use of natural resources in the future. 

Integrating geologic information and geostatistics is most effective when 
approached methodically.17 Without geologic context, statistical methods fail to 
accurately predict subsurface properties, largely due to the heterogeneous and 
highly variable subsurface environment. The Subsurface Trend Analysis (STA) 
framework was developed to pair geologic information, geostatistics, and GIS 
together to improve subsurface property prediction. By integrating geologic history 
and context into our predictions, we receive better predictions over larger areas for 
the highly variable subsurface. Our use-case in the Gulf of Mexico demonstrates 
how we applied the STA to improve interpolations for reservoir sand pressure and 
temperature gradients.17,18

Check for autocorrelation

Gather geologic knowledge

Postulate domains based on 
systematic geologic analysis

Validate domains based on statistics

The initial use-case of the STA method improved prediction of the subsurface 
pressure gradient for oil and gas reservoir sands (map A). Predicted values were 
cross-validated with 150 new data points, and results showed that the STA 
improved the prediction of subsurface pressure gradient for two out of every three 
new data points when compared to predicted pressure gradients interpolated 
using Empirical Bayesian Kriging (EBK).17 In addition, we were able to use STA 
to predict additional subsurface properties, such as temperature gradient (map 
B), and compare interpolation trends with the presence of certain geologic 
features, such as natural seeps that allow oil and gas to migrate up to the seafloor 
(right). Improved prediction of subsurface properties and the presence of geologic 
features that can result in human and environmental hazards offers critical 
insight to ensure safe and efficient energy production and geologic storage, as 
well as supporting better decision making to help protect the environment and 
energy economy. 

The subsurface seeps 
that support unique 
seafloor ecosystems, such 
as the chemosynthetic 
community studied 
by the Alvin deep sea 
submersible shown 
at left, can indicate 
subsurface conditions 
that contribute to 
geologic hazards.

Predicted reservoir sand pressure gradient A) and sand temperature gradient B) in the offshore Gulf of Mexico performed with influence from Subsurface Trend Analysis 
domains (polygons), compared to the location of known and suspected subsurface seeps (points).  

One of the most infamous geologic hazard events, the Deepwater Horizon oil spill, was 
initiated by a catastrophic wellbore blowout in April 2010.

Workflow: 
Subsurface Trend Analysis

Advanced property prediction and feature analysis 

Multi-environment, multi-scale prediction

A B

The Subsurface Trend Analysis framework has been applied to provide subsurface 
property predictions beyond oil, gas, and geologic storage applications. One such 
effort involved integrating the STA approach into an assessment method that 
evaluates and predicts rare-earth element accumulations in sedimentary lithofacies 
(the REE-SED Assessment Method). The STA approach enables assignment of 
properties for defined geologic domains, in turn reducing geologic uncertainty. 
This improved understanding of the spatial distribution and concentration of REE’s 
offers critical insights to ensure effective extraction from discarded coal tailings 
and sedimentary systems in the future.19 Utilizing the full spectrum of subsurface 
information afforded by the STA approach—from direct and indirect data to 
contextual information from literature—can support sustainable subsurface 
resource use for decades to come.

The Subsurface Trend Analysis (STA) approach 
utilized as a step in the REE-SED Assessment 
Method. Example shown here where distinct 
STA domains (colored areas) are defined for 
an region in the Powder River Basin, Wyoming 
(black outline).
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GEO-HA Z ARDS: IDENTIF YING AND MAPPING RISK Workflow: Predicting faults and fractures
Efforts to predict subsurface faults and fractures, or geologic structural complexity,26 
aim to offer improved geo-hazard prevention. But these efforts are limited by 
ambiguous and sparse data that often lack key attribute information. To overcome 
these challenges, a coupled data-driven, fuzzy-logic, and GIS workflow was 
developed to predict subsurface structural complexity (SC).27 The approach helps 
to improve the characterization of the subsurface and offers critical information for 
predicting and prevention of geo-hazards, especially in areas where little or no data 
on subsurface faults and fractures exist. 

To determine structural complexity, explicit fault and earthquake location data 
were used as “labels” of known structural complexity in the fuzzy logic model (steps 
1 and 2 below). These data were then used to train and test the model (steps 3 and 5) 
with other topographic, lithologic, and geophysical proxy datasets (step 4) to predict 
structural complexity. The predictions (generated from step 6) were evaluated 
(steps 7 and 8). Results demonstrate the model’s effectiveness and limitations as a 
screening approach to identify and validate structurally complex areas in maps and 
interpreted cross sections.

 ≤

 ≤

Subsurface geo-hazards include earthquakes, faults, fractures, and seeps of gas and 
other fluids. These geo-hazards are natural geologic processes that can occur at 
multiple spatial and temporal scales. Each poses a unique risk to the environment, 
people, and property. Human interactions with the subsurface often perturbs the 
state of these geologic systems and processes. Understanding human interactions 
in the subsurface and how they affect current geologic conditions can help 
characterize geo-hazard risk. Integrating “big data” volumes of different geologic, 
geophysical, and subsurface properties with GIS tools provides insights that can 
help mitigate, prevent, and prepare for future hazards. 

Induced Seismicity
Cases of induced seismicity, or earthquakes that are caused by human-related 
activities, have been documented around the world. Several cases have been linked 
to different subsurface activities, such as waste-water disposal, hydraulic fracturing, 
oil and gas production, dams (reservoir impoundment), geothermal operations, and 
mining. A study of 198 induced earthquake cases that have occurred since 1929 
suggests that these practices have potentially caused earthquakes with magnitudes 
as high as 7.9.20 Since 2008, Oklahoma has seen a dramatic increase in the number of 
earthquakes with magnitudes ranging from 3 to greater than 5, with many occurring 
on previously unknown and unmapped faults. These events are mostly attributed to 
the increase in waste-water disposal volumes, a byproduct of oil and gas operations 
within the state. Research suggests that the recent spike in earthquakes in Oklahoma 
can be linked to a range of human interactions with the subsurface, as well as other 
natural factors.21

Efforts to characterize geo-hazards, such as induced seismicity, can benefit from an 
understanding of key patterns and trends between faults, earthquakes, and other 
subsurface properties. Coupling geospatial analytics with big volumes of subsurface 
data offers a novel workflow to predict subsurface faults and fractures, especially 
for areas with little or no data, and help improve our understanding of subsurface 
geo-hazards.

Number of earthquakes (after 2010; scaled by 3D height of grid cell) 
per number of natural and anthropogenic earthquake factors within 
100 sq. mi. grid cells in Oklahoma.

Global distribution of wells22 and active faults that may become a source for  
an earthquake.23

Location of earthquakes24 before 2008 (orange) and  after 2008 (red) in relation  
to subsurface faults25 (green lines) in Oklahoma.

Illustrative workflow for predicting areas of geologic structural complexity (SC; i.e., faults and fractures) within the subsurface, applied in Oklahoma. The geologic cross section28 
(bottom right) is aligned to predicted SC for each zone (green to red scale). Model results are compared and shown as True Positives (correct prediction of SC; light blue), True 
Negatives (correct prediction of no SC; dark blue), False Positives (incorrect prediction of SC; pink), and False Negatives (unknown accuracy of SC prediction due to data limita-
tions; red) along the cross section as horizontal bars.

Identify and modify explicit structural data 
to represent Structural Complexity (SC)

Identify and modify proxy structural 
data to represent SC

Apply fuzzy inference model
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GEO-RESOURCES: RE THINKING SUBSURFACE RESOURCE 
E XPLORATION FOR STORAGE 
With new technology, depleted oil and gas reservoirs that were initially mapped 
and analyzed for oil and gas production can be reused for a variety of storage 
needs, including geothermal, water, and carbon capture and storage 
(CCS). In relation to greenhouse gases, such as carbon dioxide 
(CO2), the fossil fuel and industrial processes make up ~65% of 
global emissions29 and efforts to reuse depleted subsurface 
reservoirs for storage, especially for CCS, offers a solution 
to help mitigate emissions. The use of a depleted reservoirs 
for CSS requires the presence of a geologic seal to trap CO2 
once injected, the absence of leakage pathways to limit 
risk, existing infrastructure for transport and injection, 
and for the area to be able to meet an economically 
efficient storage capacity. Uncertainty and risk are 
inherent with CSS, including concerns over groundwater 
contamination and leakage of CO2 up to populated areas, 
which can have significant human and ecological impacts. 
Evaluating the potential for successful CCS sites relies on 
data, as it is a data-driven process, where the assessment of 
each project will only be as good as the data used to assess the 
project site. 

Differences in the subsurface: onshore versus offshore
Storage capacity has been characterized and predicted for multiple regions, 
which includes understanding where storage could occur and how this solution 
to greenhouse gas mitigation differs onshore versus offshore. The National Risk 
Assessment Partnership30 (NRAP) applies science-based predictions in engineered-
natural systems to assess the safe and long-term storage potential of CSS. This 
partnership is composed of members from five national labs including NETL, 
Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, 
Los Alamos National Laboratory, and the Pacific Northwest National Laboratory. 
With input from industry, academia, governmental, and nongovernmental 
organizations, this initiative has built the resources needed to understand how 
storage systems behave in the extreme subsurface conditions over time.

Offshore CSS, which has been explored but is yet to be proven in US waters, is 
further from human population centers and groundwater sources, but still presents 
risks due to increased data uncertainty and leakage potential to effect surrounding 
environments. The offshore environment for storage differs from the onshore with 
frequently changing pressure-temperature regimes, lithologies (i.e., type of rock), 
and depositional settings at multiple scales throughout the 3-D space. 

For example, the Gulf of Mexico subsurface is more unlithified (i.e., less solid, 
more porous) and unconsolidated than onshore areas. Taking these differences 
into consideration, NETL has implemented the DOE volumetric methodology to 
calculate storage capacity potential for geologically distinct domains in the offshore 
Gulf of Mexico. These domains are spatially defined and statistically supported by 
NETL’s STA methods. These efforts have built up spatial data resources for better 

Density of potential sources of CO2 emissions, which includes oil and gas infrastructure (wells, 
platforms and well pads, refineries, processing plants, power plants, liquefied natural gas 
(LNG) terminals, pipelines, mines, stations and storage sites), oil, gas, electrical, industrial, 
and public infrastructure, agriculture processing sites, ethanol and cement manufacturing 
sites, fertilizer and ammonia production plants, and waste management sites.10, 20, 31

Identified potential sites for CCS in sedimentary basins, which include capture and storage in basalt formations, oil and gas reservoirs, shales, saline formations, unminable coal 
areas, and others. Sites are laid over global on- and offshore sedimentary thicknesses ranging from 0 to 18 km.32,33

Potential hazards of onshore to off-
shore CCS in saline formations, includ-
ing leakage into groundwater, faults, 
and identifiers of migrating CO2 in the 
form of chemosynthetic communities.

capacity prediction and implemented GIS techniques to select injection sites and 
areas, avoiding known leakage pathways, identifying applicable infrastructure, and 
calculating storage resource potential. 

Additional Opportunities for Reservoir Reuse 
In addition to CCS, other strategic uses for the reservoirs include storage for fluid waste 
or compressed air, which essentially operates as subsurface battery, and enhanced 
oil recovery. Enhanced oil recovery is the process of injecting materials into existing 
wells to increase pressure on the trapped oil, lowering the viscosity, making it easier 
to recover. With increasing amounts of accurate data, advanced spatial analytics, 
and an understanding of geologic processes, oil and gas reservoirs can be sustainably 
repurposed for CCS and other resources with less uncertainty and risk.

> 20,000
5,000 − 19,000
500 − 4,999
50 − 499
10 − 49
5 − 9
1

16

14

12

10

8

6

4

2

0

Potential Storage Site

Potential Capture & Storage Site

Sedimentary Basins

Sediment 
Thickness (km)

>



Exploring Beneath the Basemap  6564  GIS for Science

GEO-RESOURCES: RE THINKING COAL RESOURCES TO DRIVE  
ENVIRONMENTAL AND ECONOMIC BENEFITS
Coal source footprint
A spatio-temporal understanding of the life cycle of coal resources is essential 
to optimize their use and inform resource management. Integrating geospatial 
data related to coal production, delivery, consumption, and waste streams allows 
us to characterize and evaluate coal as a resource. Coal has been extracted from 

thousands of mines throughout the United States that lie within defined regions or 
fields that have experienced similar geologic histories. Moreover, coals within these 
regions often display similar physical and chemical attributes that may be optimal 
for specific uses, including electric power generation, heating, steel manufacturing, 
carbon-based products, and other industrial processes.

Quantity of coal delivered from the top five source regions34 to power plants between 2011 and 2016.35 Both figures are colored by source region, and the size of the pie chart (map; 
above) or line thickness (Sankey diagram; left) represents the quantity of coal delivered. In the map above, the color of each pie chart represents the percentage of coal received from 
each region. In the Sankey diagram (left), percentages denote the total percentage of coal received at power plants from each region on the left to the percentage of power plants 
that receive coal from a single region (uncolored circle; top right) versus multiple regions (colored circle; bottom right) on the right.

Matching coals to associated industry needs requires transportation from the mine 
to the associated facility. From 2011 through 2016, a total of 4.8 billion short tons 
of coal was delivered to plants for electric power generation throughout the United 
States. Most (49%) of this coal was delivered from the Powder River Region, an area 
straddling the border of Wyoming and Montana. Depending on the requirements of 
coal attributes needed for a specific use, a power plant or facility may source its coal 
from one or more regions. 

During the same time period, just over half (56%) of all coal delivered was received 
by power plants that source coal from a single region, accounting for 59% of all 
power plants. While 46% of delivered coal was received by power plants that source 
coal from multiple regions, accounting for 41% of all power plants. The mixing of 
coals at individual facilities and industries can inform and optimize coal delivery 
networks from mine to facilities and supports understanding of coal byproducts or 
post-combustion waste streams as a resource.

Post-combustion waste streams
After coal is burned at a power plant or facility, significant volumes of waste streams 
or byproducts are produced, being one of the largest sources of industrial waste in 
the United States. Of the approximately 754 million tons of byproduct produced 
from 2011 through 2016, 67% was coal ash and the remaining consisted of materials 
such as gypsum, boiler slag, and others. Most coal ash was disposed of in landfills, 
ponds, and offsite locations (58%) or sold for beneficial use (38%), mainly in concrete 
and cement products, mining applications, or as structural fill. 

Understanding the fate and use of coal and coal byproducts supports opportunities 
to increase beneficial use or remediate disposal locations of coal ash. This can 
provide potential economic benefits, reduce environmental hazards, and ultimately 
optimize coal as a resource.

Map displays power plants35 as pie charts colored by percentage of coal ash disposition 
and sized by coal ash quantity produced from 2011-2016.36 Disposition is categorized 
by disposal (red), beneficial use (green), and storage (blue). Leader lines point to 
location of power plants (gray lines). The cumulative breakdown of disposition for the 
contiguous United States between 2011 to 2016 is represented by the larger pie chart 
on the bottom left.
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Integrating GIS and geospatial data, geoscience tools will help researchers move up the data pyramid and derive insights faster to improve human exploration of our planet’s 
subsurface systems.

Coupling geoscience and GIS has helped scientists apply data-driven, systematic 
frameworks to better explore, characterize, analyze, and visualize the subsurface. 
This integration has provided new insights to enhance geo-discovery, improve the 
identification and prevention of geo-hazards, as well as offered solutions to ensure 
safe and enduring access to geo-resources. But more work still needs to be done to 
fill in our knowledge gaps regarding the complex, dynamic subsurface system and 
our interactions with it. 

Looking forward, new insights into the subsurface appear on the horizon due to the 
rapid evolution of technological advances in the fields of geoscience, GIS, and data 
science. These include ongoing advances in data manipulation, integration, analysis, 
and visualization that are unlocking powerful GIS, machine learning, and artificial 
intelligence solutions to foster new opportunities to “see” into the subsurface. 

Further pairing of the geosciences with GIS, machine learning and advanced 
computing will offer improved methods to overcome numerous time-consuming 
challenges encountered due to the large, unstructured, dispersed, and uncertain 
nature of subsurface data. These integrated solutions will enable geoscientists 
to move up the data science pyramid faster, thereby arriving at new discoveries, 
insights, and solutions that improve our predictions of subsurface properties and 
optimize how we interact with the subsurface. 

Together, geoscience, GIS, machine learning, and advanced computing offer the 
opportunity to begin to build a more comprehensive, virtual understanding of our 
subsurface by combining disparate data in new and powerful ways. Ultimately, they 
allow us to further and more clearly peer beneath the basemap to understand the 
dynamic, complex subsurface system of our world. 

Learn &
optimize

Analyze

Aggregate & label

Explore & transform

Move & store

Discover & collect
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PART 2
HOW EARTH LOOKS
How Earth looks is essentially how we as humans change Earth’s appearance and function, as illuminated 
by linkages between natural science and social science, in science partnerships that work across disciplines, 
geographies, and organizations. Here, we often use GIS to interactively and iteratively create and evaluate 
alternative (geo)designs to make better decisions, especially with land cover for land-use planning, green 
infrastructure planning, urban planning, and sustainability science.

This GIS view of downtown Boston simulates shadow 
patterns at 1:40 PM on January 9, 2019. Try the interactive 
web app created by the Office of GIS, Boston Planning 
and Development Agency linked at GISforScience.com.
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With a population approaching three million people, Kano is Nigeria’s second-largest city. It attracts 
migrants from throughout the northern part of the country. Its population grows every single day, 
and no reliable census exists. Not knowing how many people there are, or who they are, or where 
they live are challenges confronting humanitarian efforts in crowded cities like Kano.

By Amy Rose, Eric Weber, Jacob McKee, Marie Urban, Dalton Lunga, Lexie Yang, Jessica Moehl, Melanie Laverdiere, Nagendra 
Singh, Mark Tuttle, Matthew Whitehead, Ashley Huff, Matt Lakin, and Budhendra Bhaduri, Oak Ridge National Laboratory.

Researchers at Oak Ridge National Laboratory are mapping the global footprints of human activity with unprecedented spatio-
temporal resolution. With a global population now exceeding eight billion people, this herculean effort demands advanced 
machine learning, artificial intelligence, and one of the world’s fastest supercomputers.

MAPPING HUMAN DYNAMICS
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The critical need to account for vulnerable populations has shaped the pioneering 
population modeling program at Oak Ridge National Laboratory (ORNL) from the 
onset. The program’s history is tied to ORNL’s nuclear legacy as a Manhattan Project 
site, initially established to support US atomic weapons priorities in the 1940s. The 
program matured into a US Department of Energy national laboratory with leading 
expertise in peaceful applications of nuclear energy, including power production, 
medical isotopes, and neutron-scattering research for open science. Population and 
environmental risk assessment developed alongside the lab’s evolving missions, 
beginning with the need to examine local contamination and exposure risks and 
becoming a multifaceted program that today looks at populations globally. 
 
Basic questions of how many people are at risk and 
where they are located continue to motivate novel 
approaches to mapping dynamic human populations 
that grow, decline, and move at often unpredictable 
paces. ORNL’s current population research combines 
geospatial and computational expertise to model 
spatially and temporally explicit populations at very 
high resolution. ORNL uses scalable methods to assess 
any region of the world and locate groups most at risk 
for or affected by the varying insecurities of urban 
settlement, ranging from natural disasters, infectious 
diseases, and strained resources to rapid population 
growth, migration, and sudden displacements. 

Data and compute advances during the past two 
decades have brought greater accuracy and immediacy 
to the work of locating global populations. The 
enormous volume of existing high-resolution satellite 
imagery along with rapidly increasing refresh rates 
enable the detection of formal and informal settlements 
everywhere in the world. The parallel-computing power 
of today’s graphics processing unit (GPU) systems has 
dramatically accelerated the time needed to extract 
relevant information from large datasets. Settlement 
maps can now capture abrupt changes in built-up 
areas, such as the overnight appearance of makeshift 
refugee camps, a feat that was not easily achievable 
before the 2000s.
 
The ORNL challenge—distributing nearly eight billion 
people into the trillions of pixels estimated to contain 
the world’s current population—is no small proposition.
 
Since the 1990s, the ORNL group has undertaken 
a critical effort to map and estimate the world’s 
population at a global scale. Their modeling-based 
approach combines high-resolution imagery, statistical 
data, and computational resources to support US and 
global population distribution databases with 90-meter 
spatial resolution and variable temporal resolutions. 

INTRODUCTION

ORNL population risk-assessment maps produced in the 1970s with US Census input data.

The program’s earliest questions—where, when, and how many—are now evolving to 
capture the dynamics of mobile populations, enabling new insights to inform urban 
development, socioeconomics, humanitarian campaigns, and emergency management. 
 
ORNL uses a full suite of geographic information system (GIS) mapping expertise 
and resources to deepen understanding of populations in motion, moving beyond 
where people are to the nuances of who they are, why they move, where they go, 
and what they do. Their efforts expand, on a global scale, possibilities for how GIS 
data and tools can be used to locate volatile at-risk groups before, during, and after 
a crisis.

This pen-plotted population density map—created for the final 1980 Census using an early GIS  system 
developed in house with Fortran using Census TIGER geography—shows the Northeast United States 
when the total US population was 226.5 million (compared to 330 million in 2020).
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Kano City is located in Kano State, 
a jurisdiction in northern Nigeria.

In 2013, ORNL began a critical effort to locate previously unmapped populations 
in northern Nigeria as part of a multiyear collaboration with the Global Polio 
Eradication Initiative (GPEI). The project demonstrated the need for a census-
independent, bottom-up approach to mapping and estimating populations with 
the spatial precision needed to account for specific demographic subpopulations, 
especially in data-poor countries.

The GPEI has conducted vaccination campaigns aimed at children younger than 
age five since the 1980s and successfully eradicated polio viruses in much of the 
developing world, but the disease remains endemic in three countries: Afghanistan, 
Nigeria, and Pakistan.  Limited access to at-risk communities and inadequate 
information on target populations can undercut the effectiveness of vaccination 
efforts in the most vulnerable areas. 

Nigeria’s most recent national census in 2006 well out of date at the time of the 
project, and the information it provided at the local government level made 
it difficult to identify smaller communities within these administrative areas. 
Moreover, projected population estimates were based on constant growth rates 
that missed the accelerated development of Nigeria’s urban areas, leaving more than 
a million people essentially invisible from any records.

To locate vaccine-eligible children in Nigeria, ORNL developed a model-based 
approach incorporating layers for settlement areas, building types, and population 
density. Researchers used supervised machine learning to extract settlement areas 
from high-resolution satellite imagery and classify the results into residential and 
nonresidential categories. Microcensus surveys conducted by locals provided per-
building population counts in sample locations. Combined with the classified 
settlement layer, population density estimates from the survey data informed 
residential population counts at a fine spatial (<100 meters) resolution.

The geospatial dataset created for the Nigeria effort helped identify chronically missed 
settlements in polio vaccination campaigns and continues to play a critical role in 
eliminating polio from the developing world. The initial GPEI-based project expanded 
to support other world health missions in sub-Saharan Africa and South Asia.

NIGERIA: A BOT TOM-UP APPROACH

High resolution 
settlement mapping

High resolution 
population estimation

Settlement
layer

Neighborhood
type layer

Microcensus 
survey data

Population
density model

Total
population

The total settlement area in Kano, Nigeria, increased more than 40% from 2006 to 
2014. Estimates based on past trends projected a 2.02% annual increase in built-up 
areas, while ORNL’s mapping results showed an increase of 4.37% per year. This 
image juxtaposes 2006 settlement areas (tan) with additional areas detected in 2013 
imagery (red). Eric M. Webera, et.al, “Census-independent population mapping in 
northern Nigeria” Remote Sensing of Environment;

ORNL’s approach captured accelerated growth post-2006 in Kano, Nigeria, accounting for new, unmapped settlements and 
yielding a population estimate much higher than previously published projections.
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METHODS
ORNL’s modeling-based approach to mapping human dynamics incorporates 
settlement, contextual, and population layers into geospatial datasets that can 
provide building-level population insights for anywhere in the world. Observations 
at the level of individual buildings now offer context on land use, neighborhood 
type, occupancy, and demographics. Population estimates are time variant and 
mapped at pixel level across the globe.

From settlement mapping to building feature extraction
Historically, ORNL developed settlement mapping methods to analyze high-
resolution imagery and distinguish settled and unsettled areas. The output achieved 
a general representation of built-up areas, initially at a coarse, 8-meter resolution. 
Today the program uses building feature extraction methods to describe individual 
buildings at near half-meter resolution. The evolution from binary to multilayered, 
contextual information on the structure and type of individual buildings has 
expanded opportunities for data analysis and enabled novel outputs relevant to the 
timely and specific needs of user communities.

Advances from many directions, especially imagery, sensing, and computing, 
continue to stimulate progress. In recent years, GPU-based platforms have 
become smaller and more affordable, making HPC (high-performance computing) 
capabilities available to data analysts and not limited to supercomputing facilities. 
Although ORNL’s leadership-class computing systems, including the 200-petaflop 
supercomputer Summit, inform the development of population modeling, day-to-
day processing happens on mini-GPU clusters that bring parallel-computing power 
to desktops.

Foundational imagery needed for settlement detection has evolved in resolution 
and availability. The satellite-based data that originally fueled settlement mapping 
were mostly panchromatic images physically transported to ORNL on hard drives. 
Now multispectral input imagery can be transfered on demand via cloud servers.
Image quality and global coverage make satellite data essential to ORNL’s large-
scale applications. However, advances in remote sensing and drone technologies 
are dramatically improving image resolutions—from meters to centimeters—and 
are potential sources of new information.

Machine-learning algorithms for object detection, image segmentation, and 
classification have also been enriched by technological advances. The algorithms 
developed at ORNL in the 1990s during the early days of the population-modeling 
program remain fundamental to current approaches. The difference now is that 
models have more and better imagery for training data, and outputs come in hours 
rather than months, opening realistic routes to improve algorithms.

Upgraded compute power and advanced algorithms now make it possible to 
rapidly extract building features from large datasets, such as countries and groups 
of countries with input imagery reaching hundreds of terabytes. For example, 
processing the country of Nigeria in 2014 took 4–5 months. Processing Afghanistan 
in 2019 took 6 days. The speed boost stems from parallel processing on GPUs and 
evolved modeling approaches generalizable to large areas. Early modeling relied on 
support-vector machine learning that required building multiple unique models to 
cover an area as large as a country. In addition to longer processing times, more 
models require more human effort to manually label training data. Now, machine-
learning algorithms can accommodate variations in landscape types, such as 
distinguishing forested terrain from deserts, increasing the workload one model 
can handle. A single model can be used to extract building features from an entire 
country.

A standout feature of the ORNL program is its scale of commitment to a mission 
that drives GIS technologies toward future, sustainable routes for modeling 
populations globally. Creating efficient models to extract building features from 
massive imagery archives—truly “big data”—over very large land areas is one step. 
However, the program encompasses all of the steps that follow, covering current 
bottlenecks as well as emerging challenges.

Advances in the spatial resolution of source data improve observations of the built  
environment. The comparison here shows urban areas detected for the same area 
using satellite imagery of varying spatial resolutions, including MODIS (500 meters) 
and Landsat (30 meters). ORNL’s Settlement Mapping Tool (SMT) achieves high spatial 
precision and granularity  at half-meter resolution using WorldView-1 satellite imagery 
(0.46 meters).

The vision for optimizing the process of settlement and building detection for global-
scale applications is essentially a quest for practical methods to store and analyze 
the estimated 10 trillion pixels that cover the planet’s land area—and maintain the 
output.

Researchers describe the challenge as akin to “drinking from a fire hose.” More 
imagery comes in than they can realistically use. Significant labor goes into 
the immediate work of making the imagery viable for analysis so that its value 
becomes tangible. Looking ahead, sights are set on greater automation and efficient 
methodologies to keep the output current.

As an example, in 2021 ORNL will complete a baseline dataset for all US structures 
larger than 450 square feet. This dataset includes regularized structure outlines 
with a variety of attributes attached to each structure, including occupancy type, 
address, and height. The project began in 2017, meaning some of the input imagery 
comes from that date or earlier. Potential updates to the end product are less of 
a compute challenge than a pragmatic one. The computational horsepower and 
imagery needed to rebuild models from the ground up already exist, but is the 
exercise practical or efficient? Future strategies that leverage machine learning to 
filter essential information from large image files, determine where changes occur, 
and automate updates are all part of a sustainable, scalable approach to population 
modeling.

•	 Level 1—Settlement layer: building feature-extraction methods are applied to high-
resolution imagery to detect individual buildings and map land use in built-up areas.

•	 Level 2—Contextual layer: urban land use is characterized using sampling 
workflows and automated feature learning techniques. 

•	 Level 3—Population layer: novel statistical methods are used to estimate 
population density and capture human activity patterns globally.

The vast amounts of data required for ORNL’s mapping projects travel a long road  
of processing before researchers can begin their study. As an example, a query for 
images of Washington State yields 11,435 image strips—swathes of high-resolution 
satellite images, each covering an average land area of 1,200 km2. A second search 
filters out images obscured by clouds or otherwise judged unsuitable, whittling the 
results down to 605 strips of ground images. Those results add up to a total of 2.7 
terabytes—2.7 trillion bytes, or the equivalent of around three-quarters of a billion 

Imagery processing pipeline

The high-resolution satellite imagery used by ORNL’s geospatial researchers translates to massive amounts of data. Researchers once physically transported the data via piles of 
hard drives but now conduct preprocessing transfers through the cloud. 

pages of text. High-speed data transfer nodes at ORNL then move the data to servers 
and begin parallel processing the images. This stage of the operation decompresses 
the data, corrects for perspective and terrain, and sharpens the resolution, ballooning 
the size to 26 terabytes, or nearly 10 times the original. A single processed image 
may consist of more than 2 billion pixels. To support GIS population research, the 
Compute and Data Environment for Science (CADES) system at ORNL holds around 
1.5 million images at any given time, a total of about 2.6 petabytes of data. 
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HIGH-PERFORMANCE COMPUTING FOR POPUL ATION MODELING NEIGHBORHOOD MAPPING—BUILDINGS WITH CONTE X T
ORNL is home to the nation’s most advanced supercomputing resources for open 
science. The lab’s leadership-class computing resources have included Jaguar, 
which became the science community’s first petaflop system in 2005, followed by 
the 20-petaflop Titan supercomputer in 2012. At 10 times more powerful than its 
predecessor, Titan introduced a hybrid GPU-CPU architecture and operated as 
a top-ranked system supporting researchers from all over the world until it was 
retired in 2019. ORNL’s current flagship computer Summit boasts 200 petaflops at 
peak performance.

ORNL’s HPC capabilities enable researchers to develop machine-learning workflows 
and prototype models, as well as explore potential new directions on HPC 
architectures. 

In 2017, ORNL researchers were allocated 25,000,000 processor hours on Titan 
for a project exploring HPC-accelerated approaches to settlement mapping. The 

Building-feature extraction methods generate first-
order (L1) information about settlement areas, such 
as individual building footprints. Once buildings are 
detected, researchers can map urban land use (L2) and 
characterize neighborhoods or clusters of buildings 
according to use functions, ranging from industrial 
to residential categories. Characterization provides 
additional layers of knowledge that open pathways 
for targeted analysis. For example, humanitarian 
campaigns may need to locate populations in 
impoverished areas, so maps that highlight informal 
settlements are critical to success. By distinguishing 
densely populated areas, impoverished areas, or 
industrial parks, neighborhood mapping generates 
contextual information about a city’s settlements 
with far-reaching potential. Understanding the 
spatial arrangement of neighborhoods can point to 
vulnerabilities and support many initiatives to fight 
infectious diseases, stimulate economies, expand 
access to resources, and otherwise sustain urban 
communities.

To map land-use patterns at scale, machine-learning 
algorithms are applied to high-resolution imagery 
to generate contextual information over very large 
areas. As a comparative example, large visual 
databases of global imagery, e.g., ImageNet, cover 
in their entire library only a fraction of the land 
surface area ORNL typically analyzes for a single 
country. One of the biggest challenges to scaling the 
approach is fitting the models to enormous datasets 
with extensive diversity. Computers learning to 
identify industrial parks in South America suddenly 
need to detect industrial areas in Southeast Asia 
that look very different. The question becomes how 
best to develop algorithms that can accommodate 
differences in terrain, land-use patterns, architectural 
style, structural density, and other variations across 
the globe. Packing in more and more training imagery 
with additional cultural diversity eventually results in 
underfit models that perform poorly. Thus, for large-
scale mapping projects, training models to recognize 
building categories inevitably tests the limits of how 
much input data the approach requires and can 
handle. 

ORNL uses experience-based machine learning 
to map neighborhoods. The process involves 
gathering imagery that contains all of the different 
neighborhood types the computer needs to detect in 
a given geography. Next, deep-learning algorithms are 
designed to examine the training data and encode the 
patterns that distinguish building categories. Having 
the computer figure out the distinguishing features of  
a neighborhood, e.g., industrial and residential areas, Neighborhood mapping workflows applied to satellite imagery in Caracas, Venezuela, identify building categories to 

generate insights on the socioeconomic patterns of urban land use.

avoids the hand-engineering otherwise required to manually code all of the rules that define each category. Deep-
learning advances such as this add efficiency that makes large-scale mapping feasible. The approach likewise 
gains additional accuracy in instances where computers detect subtle features that may be difficult for humans 
to interpret.

Formal residential—low density

Informal/impoverishedCommercial/high-rise

Industrial

First fired up in 2005, the Jaguar supercomputer was built at Oak Ridge Lab by Cray and 
had 224,256 x86–based AMD Opteron processor cores (and operated with a version of 
Linux called the Cray Linux Environment).

Decommisioned in August 2019, Titan helped launch a new era for 
science and engineering as computing approaches the exascale, or a 
million trillion calculations a second. This machine was instrumental in 
ORNL’s pioneering imagery-based population research. 

Summit is an IBM supercomputer designed for use at ORNL. As of November 2019, 
it is one of the fastest supercomputer in the world, capable of 200 petaflops. It is also 
one of the world’s third most energy-efficient supercomputer, with a measured power 
efficiency of 14.668 gigaflops per watt.

team processed more than 45 terabytes of imagery for Yemen in less than 2 hours. 
New projects are planned on Summit in 2020, a machine with eight times the 
computational power of Titan.
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Getting a good fit
Given the scope of the ORNL program, which aims to map every pixel across the 
globe, the organization will need more than one model to meet the challenge. 
Ideally, the fewer the models there are, the better. Current research is testing a 
proof-of-concept workflow with multiple models that characterize sample imagery 
across the planet. The concept is based on observations that pockets of similarities 
tend to reappear globally that are not necessarily tied to regional geographies. The 
idea is to analyze the entire collection of global imagery using an algorithm that can 
gather similar pixels and distribute them into multiple “buckets” for unique models. 
When unseen imagery enters the workflow, the computer quickly determines 
which bucket to use and pushes the input through the appropriate model. The 
beauty of the highly automated workflow is that once the buckets are allocated, the 
corresponding models can be changed as needed to support not only neighborhood 
mapping but also other kinds of analysis.

Estimating global populations—a people-per-pixel approach
To populate settlement and contextual layers at scale with the critical “missing 
pixels”—people—researchers must overcome global disparities in data availability. 
While the United States conducts regular censuses and household surveys that 
provide population insights at the national level, many other countries do not 
record adequate, up-to-date, or reliable population information (if any at all) at the 
minimum coverage needed to estimate and distribute populations with any degree 
of confidence. That means outside of North America top-down disaggregation 
methods of population modeling are impractical. To scale population modeling 
for the world, bottom-up solutions for aggregating populations in any country are 
essential.

ORNL is testing the feasibility of automating the identification and quantification 
of graves—both formal and informal—like these in North Korea. By using satellite 
imagery and modified convolution neural networks for image classification, 
researchers are able to automate the manual quantification of graves.

Open-source data
PDT collects open-source data from more than 50,000 published references, 
including:

•	 Academic journals
•	 Official government statistics
•	 Corporate and university webpages
•	 Tourism brochures
•	 Nongovernmental organization publications and data
•	 Real estate databases 
•	 Surveys
•	 Websites
•	 Images

The database delivers transparent information about the source data, methodology, 
and uncertainty for probabilistic population density estimates. All source data are 
geotagged and reviewable.

A unique feature of the ORNL program is the use of statistical data in addition to or 
in lieu of census reporting to model populations outside the United States. ORNL-
developed population density tables (PDT) report building occupancy estimates of 
people per 1,000 square feet at the national and regional levels and for night, day, 
and episodic activities where large gatherings occur. Using a Bayesian statistical 
machine-learning approach, baseline models cover every geographic area in 
the world and include more than 50 building functions, ranging from residential 
households to museums, churches, schools, hospitals, and even open-air locations 
people visit such as cemeteries. The PDT database is dynamically updated and 
published through a content-management system that reports building occupancies 
in both tabular and geospatial formats.

The concept is about capturing human activity at the building level to understand 
how people use spaces in normal patterns of life—during a typical workweek, 
weekends, holidays, special events, and potential seasonal fluctuations. 

Mining the source data is an exhaustive attempt to collect snapshots of all of these 
experiences. The project includes personal accounts, subject-matter experts, and an 
assemblage of open-source data such as publications, websites, and reports. 

TIME VARIANCE
ORNL’s population-modeling approach achieves high temporal resolution in addition 
to fine spatial resolution. Ambient, day, and nighttime estimates are mappable for 
populations both in and outside of the United States. A broad distinction between 
day and night values for residential populations can be thought of as ranges when 
daytime populations are likely at work, school, or moving through daily routines vs. 
nighttime ranges when populations are expected to be at their residences. Not all 
countries have the same day and night ranges because business hours and cultural 
activity patterns vary around the world. US Census data inform time-variant 
population estimates for America, while PDT informs estimates globally. As more 
data become available, the day and night distinction may evolve into a 24-hour 
account of the world’s activity patterns.

For the United States, ORNL has created LandScan USA, the only national dataset 
delivering day and night residential populations at an incredibly high 90 meter-
resolution.

The capability to deliver time-variant population information has been critical 
to national risk assessment and emergency management. As a unique geospatial 
resource, LandScan USA has proved indispensable to the Federal Emergency 
Management Agency (FEMA), Department of Homeland Security, and National 
Geospatial-Intelligence Agency missions.

New York City daytime population

San Francisco daytime population

New York City daytime population

San Francisco nighttime population
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New York City nighttime population

This dramatic view of nighttime population in New York 
City is in stark contrast to the daytime view (shown in the 
previous image) when the city is descended upon by a 
massive commuting workforce. These four maps  were 
created by importing ORNL’s grid data into ArcGIS Pro® 
where the raster cells were converted to points and 
extruded on the basis of their population values.  
Learn more at GISforScience.com.

IMPACTS
Critical infrastructure and emergency response
ORNL develops critical infrastructure data that supports US federal agencies 
in assessing the interdependent vulnerabilities of at-risk populations and 
infrastructures during emergencies. Open-source data are used to create critical 
infrastructure layers that inform ORNL’s population models and contribute to 
user platforms, namely, the Homeland Infrastructure Foundation-Level Data open 
platform, a public domain resource for geospatial data to support preparedness, 
resiliency, and research among diverse user communities. National critical 
infrastructure includes: schools; prisons; rail networks; day cares; solid waste 
facilities; mobile home parks; hospitals; energy infrastructure (e.g., petroleum, 
natural gas, electricity); major sports venues; national shelters; nursing homes; law 
enforcement; and convention centers.

ORNL data supported emergency response during the record 2017 hurricane season 
that impacted areas of Texas, Florida, Puerto Rico, the Virgin Islands, and Caribbean 
territories. 

As an example, to address Hurricane Harvey–related flooding in Texas, ORNL 
delivered buildings and structures data for the state’s coastal counties—processing 
2,000 images covering 26,000 square miles of land—in just 24 hours. Natural 
disasters and other emergencies have intensified the need to quickly identify 
and characterize vulnerable and affected populations. To that end, ORNL makes 
invaluable data contributions to FEMA and other government agencies, enabling 
first-response efforts as well as post-impact damage assessments. A massive effort 
in 2017 supported federal response to areas of Texas, Florida, Puerto Rico, the 
Virgin Islands, and Caribbean territories in the wake of Hurricanes Harvey, Irma, 

Mobile homes, which are especially vulnerable to tornadoes and other natural 
disasters, were previous gaps that are now included in national infrastructure data. 

Critical infrastructure across Houston, Texas, 
was ranked by concentration and importance 
and combined with population data to identify 
populations at the highest risk during Hurricane 
Harvey-related flooding.

and Maria. In recent years, ORNL has provided critical, timely population and 
infrastructure data to help assess the impacts of devastating volcanic eruptions in 
Hawaii and raging wildfires across California. 
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Small plot vegetable farming in Ethiopia. Small and medium farms occupy more 
global land than large farms and provide much of the world’s crop diversity. The 
harvests from small farms also tend to be consumed closer to their source.

SUSTAINABLE  
FOOD PRODUCTION
By Paul West, James Gerber, and Deepak Ray, University of Minnesota,  
Institute on the Environment; Mauricio Castro Schmitz, The Nature Conservancy

Facing the prospect of feeding an additional 2 billion people by the year 2050 has agricultural 
scientists scrambling for practical and sustainable solutions. Using data from a broad range of 
sources, geospatial innovations are creating breakthroughs.
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One of humanity’s grand challenges is feeding a growing population on a warming 
planet. The current situation is daunting—hundreds of millions of people go hungry 
most days. And while crop production must double between 2010 and 2050 to 
bridge the gap,1 current yield projections are not on track to meet the anticipated 
demand.2 Agriculture already occupies about 38% of the ice-free land,3 including 
the best land for growing food. Further, agriculture accounts for 70 percent of 
the freshwater used by people4 and 20% to 25% of all greenhouse gas emissions.5  

CRE ATING A SUSTAINABLE GLOBAL FOOD SYSTEM
Agriculture activities contribute to degraded water quality and are the leading 
driver of habitat loss globally, especially across the tropics. A changing climate, 
growing population, and increasingly rich diets accelerate these challenges. 

With nearly three-quarters of the planet covered in water, relatively small part of 
the earth is available for humans and other land-dwelling organisms; this map3,6 
depicts the current balance of Earth’s croplands and pasture lands.

How can humanity  rise to meet the global food supply challenges? This chapter explores 
how scientists at the University of Minnesota’s Global Landscape Initiative (part of 
the Institute on the Environment) study the many complex geographic factors that 
interact to shape the global food system. Integrating and synthesizing geographically 
referenced data from a myriad of international, national, regional, and local sources 
form an inherently large-scale geospatial problem. Ecological factors, including 
climate, soils, topography, and geology, provide the basic constraints that determine 
what’s possible for food production. Socio-economic factors—prices, policies, cultural 
preferences, land tenure, management, etc.—add further complexity. Combined, 
these factors determine which food grows where, how it is produced, whether a crop 
becomes feed or fuel, how it impacts the environment, how the climate changes, who 
trades with whom, and where food waste occurs. By 2050, the world population is 
expected to reach about 10 billion. That’s more than 2 billion more people who need 
food, water and shelter to survive. This rapid population growth, combined with rising 
dietary and biofuel consumption, has led to a major transformation of Earth’s land, 
water, and air systems.

Spatial data and computational analysis with a geographic information system (GIS) 
are essential for both assessing the challenge and designing solutions. The patterns, 
trends, opportunities, risks, and trade-offs in the food system vary across scales and 
from place to place. For example, the relationships among scales and stakeholders 
might look like this: multilateral institutions working at the global scale assess progress 
toward Sustainable Development Goals. Other stakeholders, such as development 
banks, develop strategies designed to address regional strategies and identify projects 
where investments can promote sustainable development and improve human well-
being. Nationally, governments work with stakeholders to set goals and policies 
to meet their specific needs as well as achieve their targets toward meeting the 

FOOD IS MORE THAN CALORIES
Sustainable Development Goals, the Paris Accord, and other international agreements. 
Locally, communities design strategies where farming is important for tradition and 
the economy, environmental resources are a protected tradition and important to the 
economy. Having a common information platform on which to synthesize all these 
data is imperative. Ideally, the assessments and solution designs are integrated such 
that global assessments shape regional solutions, regional assessments shape local 
solutions, and local solutions help achieve both local and global goals. While this ideal 
situation may not be common in practice, the possibility of it isn’t there in the absence 
of spatial data that are managed and used to make science- and place-based decisions.

Fortunately, many companies, governments, development banks, foundations, non-
governmental organizations (NGOs), and others are working toward a sustainable 
food system. Their work includes reducing the environmental impacts of commodity 
production, increasing yields in regions where poverty is high and food is scarce, and 
adapting to a changing climate. Since the many ecological and social parts of the food 
system are all intertwined, strategies to improve food security need to be holistic. In the 
absence of this approach, progress in areas such as increasing commodity production 
through irrigation may do little for (or further set back) efforts to improve local food 
and water availability.  

This chapter examines several data-driven strategies for improving global food security 
and the environment through a three-part strategy: producing more food on current 
agricultural land, growing food sustainably, and using what we already grow more 
efficiently. 

At the end of this chapter, a case study in Latin America illustrates how large-scale 
analyses and datasets can be integrated to direct action at regional and local scales.

Food not only provides dietary 
energy, it is also a source of 
many different nutrients that 
play important roles in human 
growth and development, as 
well as disease prevention and 
longevity. Getting all the nutri-
ents we need to grow, develop, 
and thrive requires eating and 
producing a variety of foods.

MAP 2

People use about 38% of Earth’s ice-free land to grow crops and raise animals.3,6 More than 15 million square kilometers, an area about the size of South America, are needed just to grow 
crops. For pasture and rangeland, we use more than 32 million square kilometers—an area comparable to the continent of Africa. In comparison, urban areas cover less than half a percent 
of total land area. 
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THE BIG PICTURE: FARM SIZE AND NUTRIENT DIVERSIT Y Farm size around the world
Across the planet, farms vary greatly in size and in what they grow. In many parts 
of the developing world, small farms play a critical role in producing a diversity of 
foods that are essential for local food security and nutrition. Collectively, small farms 
produce between half and three-quarters of the world’s food and micronutrients. 

There are broad, regional patterns of farming systems. For example, small farms (<20 
hectares), which tend to be more diverse than large farms, produce more than 75% 
of most foods and 80% of essential nutrients in sub-Saharan Africa, Southeast Asia, 
South Asia, China, and the rest of the East Asia and Pacific region.7 Where large 
farms dominate the landscape, they produce the majority of the region’s cereals and 
livestock. Globally, large farms produce more than half of the world’s sugar and oil 
crops.7 

Spatially, the patterns of field size show very large farms concentrated in North 
America, southern Australia, eastern Europe. and western South America. Small 
and very small farms dominate India, China, and other Asian nations.8  Very small farms (< 2 ha) produce more than half of most foods and nutrients 

in China. This includes 71% of Vitamin A and 63% of Vitamin B12. While rice 
is a staple crop for most Chinese farmers, relatively small field sizes allow for 
a higher diversity of agricultural production between fields.

Very small and small farms produce more than 90% of nearly all foods and 
nutrients in India. Large farms produce less than 4% of all major nutrients.  
These farms are managed by millions of smallholder farmers and are vital to 
local food security.

Large farms account for more than 85% of protein, iron, and folate in North 
America, and at least 77% of all other nutrients. They also account for at least 
three-quarters of foods, including cereal, livestock, and fruit production.

Central America, along with western Asia, North Africa, and Europe, is nota-
ble in that medium-sized farms (20–50 ha) are more significant producers. In 
Central America, medium-sized farms are responsible for about a quarter of 
most key foods, and more than 20% of all nutrient production.

This image, from the Matopiba region of Brazil, shows the massive extent of 
soybean farming that has become the norm in recent decades. Very large 
farms (>200 ha) account for more than half of all food and nutrients pro-
duced in South America, including 75% of sugar crops and oil crops. 

Both large and small farms are 
critical for food security.7 

Agricultural field size was mapped 8 using a data fusion approach, combining landcover maps derived from satellite imagery, national agricultural production statistics, and 
crowd-sourced data from Geo-Wiki. This data set, developed by the International Institute for Applied Systems Analysis, the International Food Policy Research Institute, and 
several other organizations, illustrates how multiple data sources can be combined to address the difficulty of mapping agricultural lands in many parts of the world. 

Most of sub-Saharan Africa is dominated by smallholder farming, though in 
many cases systems are less dense than in Asia, as farms use less-productive 
or more arid land for grazing livestock. Small farms are responsible for over 
80% of essential nutrients, and 60% of regional food calories.

As published in the Diverse Farm, Diverse Foods Story Map.9

The scale of all 6 images on this spread 
is the same to invite comparison:

 about 1.5 miles miles across.
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Redesigning a sustainable food system requires baseline data for the basics of 
how much of what is produced and where: crop distribution and yields, livestock 
distribution and density, and cropland and pasture area. Croplands and rangelands 
have been mapped in several landcover data products derived from satellite 
imagery, such as from Landsat and MODIS.8, 10, 11, 12 Crop-specific distribution maps 
have also been developed for a few commodity crops, such as soybean and maize, 
for a few specific regions.13,14 but estimating crop yields from satellite data largely 
remains elusive. The United Nations Food and Agriculture Organization (FAO) 
tracks national-level data on more than 150 crops. While each of these datasets has 
its own strengths, they do not allow for subnational analysis for crop production. 

TAKING STOCK OF TODAY ’S FOOD PRODUCTION GROWING MORE FOOD ON E XISTING AGRICULTURAL L AND
About land, Mark Twain once said that “they’re not making any more of it.” Much of 
Earth’s most fertile lands are already tied up in the production of food. To avoid the 
major environmental costs of agriculture expansion—habitat loss, water quality—
more intense management on existing farmland is viewed as a critical strategy for 
boosting production. The research shows that yield trends are generally increasing 
most where wealthier countries commonly use crops for feed and fuel instead of 
food. But increasing corn yields in the Midwestern United States, which is largely 

To fill this information gap, coarser-scale global maps of crop distribution and 
production can be created by integrating landcover map products with tabular 
data on yield and harvested area from agricultural census and survey statistics 
from counties, states, and countries.15,16 Similar approaches of combining satellite 
and census data have been used to map livestock production around the world.17,18 
These tabular data on crop and livestock production can then be combined with 
other spatial datasets to map detailed aspects of the food system, such as where 
micronutrients are produced, field size, resource use, and the impact of the global 
food trade system. A path to sustainably improving both global food security and 
the environment requires assessing how the food is produced and used.

This figure shows how many more calories could be produced on current croplands by increasing crop yields in underperforming areas. The white areas indicate places where the crop 
yields are already at least 50% of what’s possible using today’s best management practices.19 The green areas represent how many additional calories could be produced by boosting 
yields in underperforming areas.

Agricultural census records report what is grown, but not exactly where.  Satellite data reveals where crops are cultivated, but not what is grown. Together, these  
two sources of information are combined to create maps of harvested yield and area for more than 170 crops tracked by the United Nations Food and Agriculture  
Organization.

used for animal feed and fuel, does little to improve food security in countries where 
hunger is prevalent. What if instead of aiming for marginal increases in areas where 
yields are already near the maximum, yields in the lowest-performing areas were 
increased? Given current crop varieties and management practices, increasing the 
yield for the top 16 crops to 50% of what’s attainable would add enough additional 
calories to feed 850 million people.19

Potential calories to gain from boosting 
yields in the lowest-performing areas.

Low High
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Food production arguably is the biggest driver of global change. Agricultural land 
and production methods are major (and, in some cases, the main) sources of habitat 
loss, water use, greenhouse gas emissions, and degraded water quality. Geospatial 
data and analysis are critical for quantifying and mapping the status, trends, and 
hotspots of the environmental impacts of agricultural production. Researchers 
can use insights gained from analysis to assess risk, develop strategies, and track 
progress toward creating a sustainable food system. 

Habitat loss
Agriculture is expanding most rapidly in the tropics,  driving habitat loss. Although 
deforestation rates have dramatically decreased since the 1990s, about 5.5 million 
hectares of tropical forests were cleared each year from 2010-2015.20 To counter this 
trend, many countries and companies established laws and commitments to reduce 
or eliminate deforestation from commodity supply chains. Spatial data are critical 
for tracking progress and compliance. The ArcGIS Emerging Hot Spot Analysis 
tool helps streamline analysis of forest cover trends in large datasets.21 Online 
tools, such as Global Forest Watch, combine annual tree cover data, near real-time 

GROWING FOOD MORE SUSTAINABLY USING WHAT WE GROW MORE EFFICIENTLY
deforestation alerts, commodity production, biodiversity, and other data to increase 
transparency and encourage compliance with laws and voluntary standards. ArcGIS 
can integrate these tools.

Water use and quality
Agriculture profoundly affects water quantity and quality. Irrigation enables 
agriculture to thrive in parts of the world where rainwater is inadequate in volume or 
falls at the wrong time. However, irrigation for agriculture, which accounts for 70% 
of all freshwater withdrawals, can severely impact the environment in water-limited 
areas. Understanding and addressing the impacts of irrigation—and assuring wise 
stewardship of groundwater resources—rely on datasets of irrigation infrastructure. 
Using irrigation datasets,22 models, and satellite data, other researchers estimate 
that about 71% of all irrigated areas have periodic water shortages,23 and that 
groundwater aquifers are being depleted in many parts of the world.24 Globally, 
nearly all water used for irrigation in water-limited areas is for wheat, rice, maize, 
cotton, and sugarcane.19

Agriculture is also a major source of degraded water quality. Sedimentation and 
nutrients (particularly nitrogen and 
phosphorus) from farmlands reduce the 
quality of nearby streams and lakes and 
downstream coastal areas. The added 
nutrients enrich the waters, causing 
some species, like algae, to thrive to the 
point of limiting oxygen available for fish 
and other animals. To identify where 
these sources of excess nutrients are 
around the world, fertilizer and manure 
application data can be constructed 
by building off the base data described 
earlier. Average application rates for 
nitrogen and phosphorus fertilizer 
reported elsewhere can be mapped onto 
the crop distribution data.  Nutrient 
inputs from manure can be mapped 
using livestock density data and 
developing a set of rules for how the 
manure is distributed across pastures 
and crops.

Additional nitrogen inputs also come 
from nitrogen fixation by leguminous 
crops and atmospheric deposition. The 
nitrogen and phosphorus removed from 
the land is calculated as the amount of 
those nutrients that are in the harvested 
crops. From there, the amount of excess 
or deficit is calculated using a simple 
mass balance model of the inputs 
( fertilizer, manure, Nitrogen fixation, 
atmospheric deposition) minus the 
outputs (nitrogen or phosphorus in the 
harvested crop).

Planners can use these assessments to target policy or management interventions to increase efficiency and reduce nutrient pollution. 

Excess nitrogen on croplands. Globally, about 60% of the nitrogen inputs (fertilizer, manure, nitrogen fixation, and atmospheric deposition) are in excess of the nitrogen in the 
harvested crop.19 Much of this excess nitrogen leaches through the soil, into rivers, and eventually coastal areas, where high concentrations of nitrogen have created many  
oxygen-free "dead zones.” Planners can use these assessments to target policy and management interventions to increase efficiency and reduce pollution.

Excess nitrogen on croplands

High

Low
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Greenhouse gas emissions
Agriculture accounts for about a quarter of global greenhouse gas emissions.5 
About 80% of these emissions occur where the food is produced, with the 
remaining 20% from energy for producing fertilizer, processing, and transporting 
food.5  The main sources of emissions associated with food production are methane 
from cattle and rice, nitrous oxide emissions from fertilizer application, carbon 

dioxide emissions from draining peatlands,25 and land clearing. Greenhouse gas 
emissions associated with various farm management techniques are known, and 
thus by combining management information (e.g., flooding of rice fields, application 
of nitrogen fertilizer, draining peatlands) with maps of crop production, we can 
identify hotspots of emissions.

Greenhouse gas emissions 
from managing agricultural 
lands and clearing land for 
new agriculture account 
for 20%–25% of total global 
emissions.5 By combining 
crop management data (and 
the relationship between 
management and emissions) 
with crop distribution data, we 
see that most emissions from crop 
production are from growing rice, which is 
concentrated in Asia.25 Hotspots for nitrous 
oxide emissions are in China, India, and the 
United States. Emissions from peatlands 
are concentrated in northern latitudes and 
Indonesia.

FOOD VS FEED
Improving food security is not just about producing more food. Changing what 
we grow, what we eat, and what we waste can have a greater impact on both food 
security and the environment. About 30-50% of food is wasted.26 Similarly, 36% of 
calories produced on the world’s croplands are used for animal feed, and many of 

those calories are “lost” in the food system as it takes several calories of feed to 
produce a calorie of meat or dairy.27 Reducing food waste and eating less meat are 
two actions that not only reduce the need for more food, but also the land, water, 
and other natural resources used to produce it.

100
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40 50 908070603020100
LOW

Percentage of calories available as food

This map shows the number of calories available in the food system after accounting for the calories used to produce meat, dairy, and eggs. The areas in purple have 
few calories available that end up in the food system, whereas the green areas are places where calories produced are consumed directly.27 
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CA SE STUDY
Targeting efforts to create regenerative ranching and agricultural systems across Latin America

ENDNOTES

CONCLUSION
GIS is an essential tool for creating a sustainable food system. The examples in 
this chapter show how spatial data and analysis are used to advance three broad 
solutions to grow more food on existing agricultural lands, produce food more 
sustainably, and use what we already produce more efficiently. These products help 
instituions—including development banks, non-profit organizations, governments, 
philanthropic foundations, and companies—develop science-based strategies and 
target their investments.

Researchers and others are using global datasets to identify opportunities for 
creating sustainable agricultural systems across Latin America. Farmers use nearly 
38% of the region’s land for agriculture.28 Latin America raises 28% of the world’s 
cattle,29 and 47% of global soybean exports originate in Brazil and Argentina alone.29 
Many of these economic strengths resulted in habitat loss in several biodiversity 
hotspots within the region. Further, land degradation and a changing climate create 
risks for producing food and conserving biodiversity. 

The Nature Conservancy (TNC) and other conservation non-profits increasingly 
focus their efforts on sustainable agriculture to benefit people’s livelihoods and 
biodiversity. Using a geodesign process, TNC, the University of Minnesota’s Institute 
on the Environment, the International Center for Tropical Agriculture, and the 
University of São Paulo collaborated to identify a set of “action landscapes.” Their 
efforts focused on these landscapes to maintain and restore regenerative ranching 
and agricultural systems that increase profit, improve the environment, and build 

Learning from farmers helps shape regional strategies. Here, a ranching family in 
Colombia shares its three generations of experience restoring degraded land to 
sustainably increase meat and milk production, profits, biodiversity, and soil health.  
In other cases, collaborations with large-scale farmers producing commodities like soy 
help determine which management practices effectively increase production, build 
climate resilience, and reduce environmental impacts.

The planning process identified a set of action landscapes for The Nature Conservancy 
and its partners to focus their efforts to create regenerative ranching and agricultural 
systems. The landscape boundaries shown here are being modified as implementation 
proceeds.30

resilience to climate change. The collaboration prepared several iterations of 
analysis and maps to create a set of products that could support the data-driven 
decision making. The products aimed to provide context for people with on-the-
ground expertise and help identify major opportunities and challenges across 
the region. The partnership created map products for several attributes of TNC’s 
Regenerative Ranching and Agriculture strategy: agricultural productivity, climate-
related risks, degraded lands, and restoration of ecosystem services. Participants 
reviewed map products, developed selection criteria, and identified a draft set of 
priority landscapes based on visual interpretation of maps. Later, they completed 
additional analysis and revised maps to refine the products and ensure that the data 
supported the draft set of priorities as well as to include additional landscapes that 
met all criteria. 

TNC in Latin America is using this product to guide investments in these landscapes 
and design actions with partners.

Photo on opening spread by Nena Terrell/USAID.
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The edge of deforestation in the Democratic Republic of the Congo. The biggest drivers 
of deforestation in the Congo rainforest during the past 20 years have been small-scale 
subsistence agriculture, clearing for charcoal and fuel wood, urban expansion, and 
mining. Industrial logging has been the biggest driver of forest degradation.

By Elizabeth Goldman, Nancy Harris, WRI; Lauren Bennett, Esri; and Stephen 
Ansari, Christopher Gabris, and Michael Lippmann; Blue Raster.

Using big geodata, researchers at the World Resources Institute are using advanced 
geospatial tools and data frameworks to better monitor and model the spatial 
patterns of human activity in the world’s remaining tropical forest landscapes. 

TRACKING GLOBAL
FOREST LOSS
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Planetwide, forests have changed rapidly during the past several decades. Rising 
global demand for commodities such as timber, wood fiber, palm oil, beef, and 
soy has pushed agricultural land into previously forested areas. The forests reflect 
changes in national political and economic conditions. Forests provide wood 
for construction, fiber for paper, and fuel for energy. They offer food, medicines, 
and other non-timber forest products. They moderate the quality, quantity, and 
timing of freshwater flows and influence regional precipitation patterns (critical 
for nearby agriculture and cities). Forests are central to the fight against climate 
change because they remove carbon from the air and emit it when burned, cleared, 
or degraded. They offer a place for recreation and spiritual renewal, and are home 
to 70 million Indigenous peoples. And forests harbor the most biodiversity of any 
ecosystem on Earth. 

But the forests, and their capacity to provide these benefits, are threatened. About 
10,000 years ago in the age before humans learned to farm, forests covered about half 
of all land on Earth. Approximately half of these forests have since been cleared. Most 
forests still standing today have been degraded or fragmented; by one measure less 
than one fifth of them are still intact. The main causes of forest loss and degradation 
include the expansion of agriculture and settlements, unsustainable extraction of 
timber and fuel wood, and roads and other infrastructure that fragment forests and 
bring settlers to new frontiers. Climate change impacts, including severe fires and 
new vectors and outbreaks of forest pests and diseases, exacerbate the decline.

Underlying causes of forest loss and degradation include market and governance 
failures driving land-use choices that do not recognize the value of forests or 

THE COMPE TITION FOR FORESTS GLOBAL FOREST WATCH
mitigate the risks of depleting them. For instance, decisions about the fate of a 
forest are often made in the absence of accurate information, in a nontransparent 
manner, without participation of all relevant stakeholders, and without adequate 
accountability. In some places, corruption and powerful vested interests hold 
sway, governance is opaque, and laws are poorly enforced. And poor recognition of 
customary rights to forest lands and resources fans conflict and robs people of their 
cultural heritage and livelihoods.  

During the past decade, many governments and companies have made time-
bound commitments to end deforestation, restore degraded forest landscapes, 
and achieve sustainable forest management. The Sustainable Development Goals, 
the New York Declaration on Forests (NYDF), the Paris Climate Agreement, and 
the Bonn Challenge provide policy frameworks, accountability mechanisms, and 
financing opportunities to help these goals succeed. These global and local policies 
such as the moratoria on agricultural development in Brazil and Indonesia, have 
been enacted with much fanfare. Policy makers and local enforcement agencies 
all need timely, reliable, and trustworthy data to track individual and collective 
progress, guide decisions about where and how to invest, and inform the design and 
implementation of policies and programs. 

Instituted by the World Resources Institute, Global Forest Watch is an online 
platform that synthesizes data from authoritative sources and provides geodata 
and tools for monitoring forests, providing near-realtime information about where 
and how forests are changing around the world.

A landscape under change, this region near Yangambi in Democratic Republic of 
the Congo shows the effects of agricultural encroachment.

Launched in 2014, the Global Forest Watch (GFW) platform provides timely and 
spatially detailed information on forest dynamics that is globally consistent and 
locally relevant. The GFW platform enhances the practical use of these data by 
providing solutions to the challenges often associated with big data including 
visualization, storage, analysis, sharing, and querying. These and other data products 
derived from satellite imagery have fundamentally changed the way the world’s 
forests are monitored by various stakeholders. But as sources of data become larger, 
more complex, and more numerous, the ability to quickly explore and interpret 

patterns with confidence has become a bottleneck for effectively using these data 
to inform forest policy and management decisions.

Products like University of Maryland’s 30-meter-resolution GLAD (Global Land 
Analysis and Discovery) laboratory forest-loss data and weekly deforestation alerts 
(available on globalforestwatch.org) have made near-realtime forest monitoring a 
reality. Forest managers, law enforcement officials, and policy makers can use this 
information to track how forests fare and identify deforestation while there’s still 
time to make a difference.

The Global Forest Watch map, with annual loss, gain, and tree-cover extent 
visualized for the Democratic Republic of the Congo, creates transparency 
about what is actually happening on the ground.
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To turn this wealth of forest data into actionable information, researchers needed 
to apply methods that would illuminate the spatial and temporal trends that exist 
in the data. The goal was to find meaningful areas of primary forest loss across 
the tropics based on spatial statistics and the latest analytical methods rather than 
easily biased interpretations of thematic maps. Geospatial appliations often use the 
term hot spot to describe a region or value that is higher relative to its surroundings. 
In the context of forest conservation, deforestation hot spots can be thought of 
as fronts—broad regions of deforestation concern based on expert opinion and 
scenario analyses where available.

In GIS methodological terms, a hot spot is defined as an area that exhibits 
statistically significant clustering in the spatial pattern of forest loss. Hot spots are 
locations where observed patterns are not likely the result of random processes or 
of subjective cartographic design decisions; they represent places where underlying 
spatial processes are at work. Emerging hot spot analysis extends this definition to 
incorporate information about the temporal dimension of the data. The Emerging 
Hot Spot analysis tool, which is part of the Space Time Pattern Mining toolbox 
in ArcGIS® Pro, allows researchers to understand spatial clusters of deforestation 
across the tropics and trends in those clusters over time. Results show new, sporadic, 
persistent, intensifying, and diminishing hot spot patterns, as seen in the table.

In the graphic showing the workflow for emerging hot spots, the task is revealed 
as a high-intensity geospatial operation. Cell-based raster data derived from raw 
satellite imagery are aggregated and clipped into a space-time cube (essentially a 
set of georeferenced layers stacked in time slices). An analysis mask is applied to 
include only relevant, forested areas.

Emerging hot spot analysis applied to the University of Maryland primary forest-
loss dataset revealed important trends in loss from the years 2002–2018. Old 
growth, or primary, tropical rainforests are a crucially important forest ecosystem, 
containing trees that can be hundreds or even thousands of years old. They store 
more carbon than other forests and are irreplaceable in sustaining biodiversity. 
Primary rainforests provide habitat for animals ranging from orangutans and 
mountain gorillas to jaguars and tigers. Once cut down, these forests may never 
return to their original state. The tropics-wide analysis examined results from four 
countries that contain some of the most important forests in the world, where the 
impact of environmental, economic, and political changes on these forests must be 
better understood. For the latest analysis and primary forest loss data updates, visit 
globalforestwatch.org.

SPATIO-TEMPORAL CLUSTERS OF FOREST LOS S E XPLORING THE RESULTS: BRA ZIL

Hot spot definitions

Emerging Hot Spots Workflow

1
Primary forest loss 
datasets (2002-2018)

Raster Data

2

Resampling rasters into 
larger squares, reflecting 
higher and lower counts 
of forest loss points

Aggregation

4

Stacking 17 years of 
forest-loss layers into 
the space-time cube 

Space Time Cube

7

Categorizing forest 
loss trends such as 
new, intensifying, 
diminishing 
or historic

Emerging 
Hot Spot 
Analysis

3

Narrowing global 
dataset to study area 
(i.e., country/region)

Clipping

These steps illustrate the process of analyzing primary forest loss data over 
nearly two decades. Repeatable and applied to tropical countries and subregions, 
this workflow helps to understand and reduce deforestation, preserving forests 
for future generations.

8

Narrowing the 
analysis categories, 
providing a 
meaningful 
forest-loss 
narrative

Forest 
Narrative

6

Removing influence of 
areas where forest loss 
is not possible, 
(e.g., barren lands and 
water bodies)

Masking

5

As a parameter of 
nearby influence the 
optimal value depends 
on unique conditions 
of the study area

Neighborhood
Distance

These spatio-temporal patterns are based on statistical analysis of the clustering of 
instances of primary forest loss, where statistically significant hot spots of primary 
forest loss represent places where researchers found more clustering of primary 
forest loss than would be expected based on random spatial processes. Finally, 
statistical results were summarized into categories as shown in the table to help 
users of the data interpret and communicate the information. 

From 2002 to 2018, Brazil lost an average of 1.4 million hectares of primary forest 
per year, an area about the size of the Bahamas. The government enacted policies 
such as the Amazon Soy Moratorium in the early 2000s to curb deforestation in 
the Amazon rainforest. Nevertheless, Brazil experienced its third-highest rate of 
primary forest loss in 2018 after a prominent fire-related spike in 2016–2017.

In this analysis, it is still too early to assess how the devastating fires from the 
summer of 2019 and the weakening of environmental laws and enforcement under 
Brazil’s Bolsonaro administration will impact forest loss. The high rate of primary 
forest loss in 2018 occurred before President Jair Bolsonaro took office (though 
there is evidence of deforestation rates spiking during the election season).

Hot spot:

Indigenous 
lands:

New Intensifying Persistent Sporadic Diminishing

 Guyana
French 
Guiana

SurinameVenezuela

Colombia

Hot spot: New Intensifying Persistent Sporadic Diminishing

Amazonia biome:

Peru

Chile

Bolivia

Paraguay

Argentina

Brazil

Notably, several hot spots of primary forest loss occurred near and within indigenous 
territories. For example, the Ituna Itata Reserve had more than 4,000 hectares illegally 
cleared in the first half of 2018, more than double the total loss from 2002–2017. The 
reserve is home to some of the world’s last remaining uncontacted peoples, who 
depend on the forest for survival and have conserved it for centuries.

The maps of Brazil show hot spots  across the country, representing new fronts of 
primary forest loss. Wildfires caused some of the 2018 loss, but most of it can be 
attributed to clear-cutting in the Amazon, threatening to reverse the declines in 
deforestation the country achieved in the early 2000s. 

Ituna Itata Reserve
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Colombia
Primary forest-loss data for Colombia reflects a 9 
percent increase in primary forest loss between 2017 
and 2018, continuing a dramatic upward trend that 
began in 2016. Three regions on the border of the 
Amazon biome (Meta, Guaviare, and Caquetá) show 
new hot spots of loss advancing into pristine intact 
forest landscape, and these areas account for about 
half of the increase that occurred in Colombia in 2018.
 
The rapid increase in forest loss happened as peace 
came to the country. In 2016, the Revolutionary 
Armed Forces of Colombia (FARC), the country’s 
largest rebel group, was pushed out of large amounts 
of remote forest it previously controlled. The FARC 
had kept tight control over land use and allowed little 
commercial use of resources. After FARC demobilized, 
a power vacuum emerged, leading to illegal clearing 
for pasture and coca, mining, and logging by other 
armed groups. 

Land speculation is rampant, as people occupy and 
deforest new areas in the hopes of getting a land 
title under the rural reform law, a key component of 
the peace agreement. Abandoned FARC trails also 
provide access to previously remote forest areas, with 
some regional governments officially expanding these 
roads to promote development. New hot spots in the 
northeastern part of the country could also indicate 
loss associated with some migration across the border 
from Venezuela. 

The Colombian government is actively working to slow 
forest destruction. It canceled a major highway project 
connecting Venezuela and Ecuador, destroyed several 
illegal roads, expanded Chiribiquete National Park 
by 1.5 million hectares, and launched the Green Belt 
initiative to protect and restore a 9.2-million-hectare 
forest corridor. Norway, Germany, and Britain have 
also pledged to spend up the $366 million from now to 
2025 to slow deforestation in the Colombian Amazon. 
It’s too early to tell whether these actions and others 
will be enough to slow the country’s rampant forest 
loss, but evaluating the data again with the Emerging 
Hot Spot tool and looking for diminishing and 
historical patterns will help us to better understand 
the rapidly changing conditions in this country. 

New hot spots of primary forest loss encroach into intact forest landscapes in the Colombian states of Meta, Guaviare, 
and Caquetá. Intact forest landscapes are pristine forests with little human-caused deforestation. 

The Democratic Republic of the Congo 
The Democratic Republic of the Congo (DRC) 
primary forest-loss data reflect the country’s 
conflicting environmental regulations and lack of 
enforcement. From 2002 to 2018, DRC lost an average 
of 256,000 hectares per year, an area about the size 
of Luxembourg, and reached its second-largest 
total loss in 2018. Agriculture, artisanal logging, and 
charcoal production drive much of the forest loss in 
the region, with nearly 75 percent of DRC forest loss 
in 2018 occurring in shifting cultivation areas known 
as the rural complex. Shifting cultivation is a type of 
rotational farming system, in which trees are cleared 
and the land is farmed for several years. Once soil 
nutrients can no longer support agriculture, the land 
is left fallow, and trees and secondary forest regrow 
until eventually the vegetation is cleared again for 
agricultural activities.

While shifting cultivation does not necessarily 
indicate expansion into primary forest, growing 
populations can intensify agricultural practices, thus 
reducing fallow periods during which trees regrow 
naturally. Overlaying the shifting cultivation areas 
with emerging hot spot results reveals overlapping 
areas with the sporadic hot spot category. This on-
again, off-again category matches the cadence of 
periodic tree clearing that typically occurs in shifting 
cultivation areas.

In addition to sporadic hot spots, some shifting 
cultivation also falls into new and intensifying hot spot 
categories, as well as no–hot spot categories, meaning 
no statistically significant pattern was detected or 
a statistically significant low amount of forest loss 
occurred. Further research could compare shifting 
cultivation practices and other local conditions in 
the expected sporadic hot spot areas, with conditions 
in the intensifying, new, and non-hot spot areas 
determining whether changes in population or other 
agricultural practices are impacting forest loss. 

While shifting cultivation is associated with much of 
the forest loss observed in DRC recently, changes in 
federal law could see pressure on forests shift to new 
areas. For the past 16 years, DRC has had a moratorium 
on new industrial logging concessions, but the 
government reinstated concessions to two companies 
in 2018. Environmentalists worry that opening the 
forest to additional logging could exacerbate the 
country’s growing deforestation problem. But there 
is more to DRC’s forest loss than industrial logging 
concessions. While the moratorium applied only to 
industrial logging, artisanal logging, often illegal, also 
soared. Given the increasing trends observed since 
2016, it is critical that DRC move ahead with improved 
land-use planning and forest law enforcement, and 
vigorously transition to better management practices.

In DRC, overlaying shifting cultivation with emerging hot spots reveals overlapping areas with the sporadic hot spot 
category. This on-again, off-again category matches the cadence of periodic tree clearing that typically occurs in 
shifting cultivation areas.
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South Sudan

Congo
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Indonesia
Indonesia lost about 538,000 hectares of forest 
annually between 2002 and 2018, an area about the 
size of Brunei. Unlike most tropical forests, Indonesia 
experienced a drop in forest loss in 2017 and 2018, 
including a 40 percent decline in primary forest loss in 
2018 compared to the average annual rate from 2002–
2016. The country experienced an even more dramatic 
decline in forest loss in protected forests, suggesting 
that recent government policies are working. 

On peatlands deeper than 3 meters, which have been 
legally protected from development since 2016, forest 
loss dropped 80 percent from the 2002–2016 average. 
And in areas under Indonesia’s forest moratorium, 
primary forest loss dropped 45 percent in 2018 
compared to 2002–2016.

Normally, the presence of large agricultural tree 
plantations such as oil palm complicates the task of 
measuring loss, especially in Sumatra, Kalimantan, and 
Papua. Because tree-cover loss data don’t distinguish 
between natural vegetation and planted trees, harvest 
activity within plantation boundaries are observed 
within the tree-cover loss data. However, since the team 
used the primary forest extent data in the emerging hot 
spot analysis, this removed the expected loss within 
plantations and draws attention to more concerning 
trends occurring within primary forests.

Using the emerging hot spot analysis to dive further 
into the primary forest loss trends, the research team 
discovered several concerning new hot spots of forest 
loss in protected areas. Two areas in Kerinci Seblat 
National Park in Sumatra overlap with new hot spots, 
and additional research reveals that small areas of forest 
have been cleared for agriculture and other purposes in 
this protected area. 

In a country with recent forest-loss decline but also 
thousands of smaller, fragmented areas of loss to 
investigate, it can be daunting to try to understand 
where to focus deforestation reduction efforts. 
When paired with contextual layers like protected 
areas, emerging hot spots can be especially helpful 
in evaluating the statistical importance of loss and 
identifying the most concerning areas of forest loss.

The foundation of the analysis is the emerging hot spot analysis, which identifies 
spatio-temporal trends in the clustering of data, in this case, with a focus on finding 
clusters of forest loss. It takes as input a space-time cube, created from the forest 
loss raster data through a process of reclassification and aggregation. The space-
time cube represents the data in a cube-like structure with information about what 
has happened at each location over time. The analysis calculates a spatio-temporal 
Getis-Ord Gi* statistic. The statistic tests to see whether there is clustering of 
deforestation in space and time, and, more important, to see whether that clustering 
is more than the team would expect to see based on random chance. 

The team made several more important decisions in order to fine-tune the analysis 
based specifically on the exploration of forest-loss data. First, the team used a 
dataset representing the extent of forest in each country as a mask for the analysis. 
This mask limited the locations evaluated in the analysis to include only relevant 
locations. This was a critical aspect of the workflow, because every location included 
in the analysis contributed to the global average against which all locations were 

New hot spots of primary forest loss overlap with Kerinci Seblat National Park on Sumatra, Indonesia. Forests in this 
area have been cleared for agricultural activities. 

GE T TING TO EMERGING HOT SPOTS

Protected area: Hot spot: New Intensifying Persistent Sporadic Diminishing

An emerging hot spot analysis starts with an aggregation process, 
turning the global forest-loss raster data into a series of space-time 
cubes representing the spatio-temporal forest-oss data in space 
and time. Next, the statistical analysis evaluates each location to 
determine whether it is part of a statistically significant hot or cold 
spot based on a comparison of local values (in space and time) and 
global values. Those locations marked as hot or cold are locations 
where it is unlikely that the clustering observed happened as the 
result of random chance. Finally, those spatio-temporal hot and 
cold spots are summarized into categories that help communicate 
the trends in clustering over time. 

compared. When locations are included that either do not have forests or are 
not relevant to the analysis, the global average can become unrepresentative 
and lead to unreliable results. Additionally, while the default neighborhood size 
was helpful as a first iteration, it was frequently found to be too large for the 
forest-loss data. Usually a distance of about two thirds the default brought out 
additional, nuanced patterns in the loss data. Ideally, the neighborhood size is 
selected based on the width of loss patterns in the landscape, such as that along 
roads and rivers, or of typical patchy loss, such as farms or pasture. 

Once the space-time hot spot analysis completes, each bin in the input cube has 
an associated z-score and p-value added to it. These hot and cold spot trends 
are evaluated using the Mann-Kendall trend test on the z-scores at each bin 
over time. Those trends, along with the z-score and p-value for each bin, are 
then used to categorize each study area location (each location is composed of 
a time series of space-time bins). 

The hot and cold spots of 
primary forest loss in Liberia as 
seen in the red and blue areas, 
respectively, can be stacked into 
a 3D visualization to see the 
underlying patterns that ultimately 
make up the hot spot categories. 
On their own, they tell only part of 
the story of forest loss in Liberia. 
The categorization plays a critical 
role in the interpretation and 
communication of the results. 

Kerinci Seblat 
National Park
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ENDNOTESCONCLUSIONSINTERPRE TATION ACROS S THE TROPIC S

Data, maps and community engagement can lead to positive outcomes for forests and the people who rely 
on them. (Photo Courtesy of  Center for International Forestry Research.)

Emerging hot spot analysis can provide powerful information about precisely which 
places experience the most significant impacts of deforestation, a valuable insight 
for decision makers, law enforcement, journalists, and activists. Focusing on the 
places with the largest, new clusters of clearing can help decision makers, law 
enforcement, and other forest advocates can apply their limited resources in a way 
that will have the most impact. 

The emerging hot spots of primary forest loss layer are now available on the GFW 
platform. Several organizations have adopted the methodology in their work to 
combat forest loss. The Monitoring of the Andean Amazon Project has used emerging 
hot spots of forest loss to identify urgent forest loss and synthesize forest-loss data 
for policy makers, researchers, and journalists who are looking for a concise and 
comprehensive overview of loss in a particular region. The World Wildlife Fund 
uses emerging hot spots as an input to identify and report on key deforestation 
fronts around the world. The Rainforest Trust uses the methodology to identify 
and prioritize tropical rainforests in dire need of protection through purchases, 
partnerships, and/or community engagement interventions.

As more frequent data updates become possible, rapid assessment of the most 
significant loss can strengthen efforts to reduce deforestation. Rising demand for 
commodities and a destabilized climate mean that more work is needed to ensure 
deforestation doesn’t continue unchecked, and that we make smart decisions about 
how we develop and preserve our forests for future generations. 

The Emerging Hot Spot tool outputs 17 categories of results: eight different hot 
spot types, eight different cold spot types, and a no-pattern-detected category. 
The results identify different long- and short-term trends, with variations in the 
intensity of clustering over time, and the presence or absence of hot and cold spots 
at different points in the time series. Since the researchers mostly care about where 

forests are experiencing important loss, they chose to recategorize locations 
by eliminating all cold spots (clusters of statistically significant low amounts of 
forest loss) and combined and eliminated other categories to focus just on the 
stories that would matter most to policy makers. This resulted in five categories, 
which are outlined before the results section.

Comparing the resulting maps before 
and after recategorization (top and 
bottom), reveals how important this 
step is in the analysis process. Before 
recategorization, the map is visually 
cluttered, and the eye is mostly drawn 
to the persistent hot and cold spot 
categories in dark red and blue. 
After recategorization, there are only 
five colors, and the eye is drawn to 
the most important categories for 
stakeholders—the new and intensifying 
categories in bright red and brown.   

Hot spot : New Intensifying Persistent Sporadic Diminishing

Consecutive hot spot 

Consecutive cold spot 

New hot spot 

New cold spot 

Persistent hot spot

Persistent cold spot

Intensifying hot spot

Intensifying cold spot

Sporadic hot spot

Sporadic cold spot

Diminishing hot spot

Diminishing cold spot

Historical hot spot

Historical cold spot

Oscillating hot spot

Oscillating cold spot
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HOW TO FEED THE WORLD
By Daniel Roberts, Bruce Vandenberg, Steven Mirsky, Michael Buser, USDA—Agricultural Research Service;
Chris Reberg-Horton, NC State—Center for Environmental Farming Systems; Nick Short, Sudhir Shrestha, Esri

Milling truck in a field harvesting crops near Austin, Texas. Access to 
adequate healthy, nutritious food is central to several of the United 
Nations’ Sustainable Development Goals.

Agricultural science is searching for more efficient and sustainable farming practices in the face of an additional 2 billion 
mouths to feed by 2050. Big data from new innovations in sensors, delivered within the geospatial cloud, will in turn 
enable a new crop of precision farming techniques and analytics.
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Regardless of the country or farming region, feeding a human population that 
could reach 10 billion by 2050 presents enormous challenges to the agricultural 
community.1 Plant-food production must increase 60 to 100 percent to keep pace 
with current food consumption, food waste levels, and population trends. Food 
producers must successfully grow more crops, and while enacting strategies to 
conserve, they must also build soil resources and minimize agriculture impacts on 
the environment. Additionally, they must enhance the nutritional quality of many 
plant foods to ensure a healthy human population.2,3 New agricultural practices 
required to meet this challenge must evolve quickly because a radical change in 
farm practices can take decades to adopt.

Simply increasing land acreage devoted to crop production will not likely be going 
to satisfy the food needs of future populations. Competition for land use with urban 
development and the loss of land to salination and desertification will reduce 
suitable farming land. Repurposing natural landscapes for farming also impacts 
global carbon and hydrological cycles, greenhouse gas emissions, soil conditions, 
and biodiversity. It’s also unlikely that agriculture can increase crop production 
using previous agricultural intensification methods. Food production doubled 
worldwide during the past several decades, largely because of the extensive use of 
synthetic fertilizer, pesticides, and irrigation.4,5,6

These methods are unsustainable for a few reasons. First, certain feed stocks for 
fertilizer production are dwindling, making their future availability uncertain. 
Second, water scarcity has affected many areas around the world, and the problem 
is expected to worsen. In addition, agricultural intensification practices during 
the past decades have increased soil erosion and decreased soil fertility; polluted 
ground water; contributed to eutrophication of rivers, lakes, and coastal ecosystems; 
and increased greenhouse gases.4,5,6 These harmful impacts on soil, water, and the 
atmosphere will dramatically effect food production going forward. Clearly, we 
must transform agricultural systems to scale up food production while reducing 
environmental impacts on a finite amount of land.

Managing data spatially is inherent to the development of next-generation crop 
production systems.13 Agricultural fields are highly heterogeneous with respect to 
properties that impact plant growth and health. Topography, soil type, and pathogen 
and pest populations can vary considerably within and among farmers’ fields. 
These field properties interact with climate, greatly influencing drainage, water and 
nutrient availability, and pest outbreaks and their spatial distribution. Using GIS, 
we can spatially organize geospatial data from sensors for crop yield, soil fertility 
factors, water, pathogens, and so on. Food producers can link the spatial patterns 
of field properties with climate factors to develop correlations between crop yield, 
soil type, and crop and soil management. Further, they can use this information to 
more precisely manage varying crop populations and application rates of fertilizers, 
pesticides, and irrigation. As a result, farmers can stop treating crop production 
fields as a uniform management unit and instead treat the field as a heterogeneous 
substrate for plant growth. In this way, they can maximize crop productivity and 
profitability and more efficiently use inputs of resources ( fertilizers, pesticides, 
water), resulting in less loss and fewer harmful environmental impacts. Scientists 
developed this precision agricultural approach in the 1980s with the advent of 
global positioning system (GPS) technology and GIS and improved it with sensor 
technology, big data approaches, algorithms, and robotics.13 With increased farmer 
adoption of precision agriculture (e.g., adoption was only 30–50 percent on US-grown 
corn and soybeans in 2012),14 we can minimize the footprint of food production on 
the environment going forward. 

THE CHALLENGE CONFRONTING AGRICULTURE AND THE WORLD GIS: HELPING CHANGE THE WAY WE GROW FOOD 
Food producers also must expand the development of crop cultivars and their use 
in crop production systems. (A cultivar—cultivated variety—is an assemblage of 
plants developed for specific beneficial characteristics.) Public and private breeding 
programs have focused on traits affecting yield, pest and disease resistance, and 
appearance rather than traits affecting nutritional composition of edible plant 
parts.7 Too many farmers have poorly aligned their crop and cultivar choices with 
human dietary needs, understandably being driven mostly by price, yield, and 
market preference.8 As a result, crop cultivars tend to be calorie rich—containing 
macronutrients such as fat, protein, and carbohydrates—but poor in vitamin and 
mineral micronutrients and in human health-promoting phytochemicals. A key 
technical challenge for food producers is thus to expand crop cultivar development 
and use to maximize yield and nutritional quality. Crop cultivars must also be 
developed that efficiently use water and soil nutrients needed for plant growth.9,10

Global climate change will greatly constrain our ability to produce more nutrient-
dense food.1 Researchers expect climate change to bring increased temperatures and 
increased frequency and intensity of extreme weather and drought. These changes 
may well offset any possible benefits to crop yield because of expected associated 
negative impacts. Yields of most crops decline dramatically at temperatures much 
above 30°C. Drought, salinity stress, higher ozone levels, and the onset of new pest 
and pathogen problems would limit crop yields.11 And elevated temperature and 
carbon dioxide levels can degrade the nutritional quality of certain crops.12

Getting the most nutrition from the world’s agricultural operations is inherently 
a geospatial problem: crops grow in specific places with specific climate and soil 
conditions. Within individual fields, advanced data collection methods now allow 
farmers to alter watering and fertilization practices at a precise level within a single 
crop. Thanks to advances in geographic information systems (GIS) and realtime 
machine learning, farmers can now analyze this explosion of new crop data to 
maximize the efficiency of their operations, even to the point of making real-time 
adjustments.

Precision agriculture production systems rely 
heavily on the fusion of volumes of data from a 
variety of data generators with varying degrees 
of data velocity and moving between many 
user nodes.

The intensity of agricultural activity in the US heartland is apparent in this satellite image 
of circular crop fields in Haskell County, Kansas.

Fertilizer and eroded topsoil spill from an unprotected Iowa farm in a rainstorm.

Environmentally benign crop production tools (i.e., cover crops and beneficial 
microbes) are being developed to use in next-generation crop production systems to 
make food production more sustainable.3 Farmers can use these biologically based 
tools in place of, or in conjunction with, reduced amounts of synthetic fertilizer or 
pesticides. Cover crops provide a diverse array of benefits and are gaining traction 
among US growers, their use being highly incentivized by state, federal, and private 
programs. Farmers grow cover crops during fallow periods in a crop rotation. They 
typically plant them in the fall after the summer cash crop and terminate them 
in the spring before planting the next cash crop. Cover crops fix atmospheric 
carbon dioxide and build soil organic matter as they decompose and contribute 
to soil health. Cover crops also capture excess nutrients and prevent nutrient loss 
from soil to aquifers and waterways, prevent soil erosion, and increase rainfall 
infiltration and soil water-holding capacity. In some cases, cover crops help control 
weeds, pathogens, and insect pests. Leguminous cover crops such as hairy vetch 
and clover fix atmospheric nitrogen and thereby improve soil fertility.15 Farmers can 
use other biologically based crop production tools, such as beneficial microbes, in 
next-generation crop production systems to control plant disease and insect pests, 
enhance soil phosphorus availability, and promote plant growth.3

To optimize the benefits of biologically based crop production tools, farmers must 
integrate them into a precision framework to facilitate site-specific decision making, 
an approach called precision-sustainable agriculture. Use of these biologically based 
tools adds another layer of management complexity. Their use integrates many 

factors driving the performance of cover crops 
and microbes and impacting the performance 
of cash crops. Using these tools in a precision 
framework is a challenge because data must 
be in an actionable state for real-time decision 
making. The ability to manage large amounts 
of data in precision-sustainable agriculture 
provides farmers with timely, specific, and 
context-appropriate information and is key 
for grower adoption. Geospatial information 
tools offer this ability because they manage 
complexity at scale.13 
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CA SE STUDY: COVER CROPS AND THE SMART FARM 
Work with cover crops illustrates how GIS underpins technology created to optimize 
performance and speed adoption in the agricultural community. Crucial advances 
in data science, sensing technology, and artificial intelligence (AI) and machine 
learning (ML) applications have ignited a digital revolution, which in turn has led to 
adaptive, geospatial decision support tools and on-farm monitoring systems. These 
systems provide real-time data for the most effective  use of cover crops, which are 
grown primarily to protect and improve the soil, as opposed to cash crops, which 
are grown for their commercial value. 

Cover crops respond to environmental conditions in fields that impact crop biomass 
and quality—two performance factors tightly correlated with benefits that cover 
crops deliver to these fields.16,17 New sensing technologies coupled with AI algorithms 
can quantify the performance factors and spatial variability of cover crops and how 
they affect cover-crop benefits. Remote sensing offers many tools relevant to cover 
crops, including populating landscape-level models with estimates of percentage of 
land cover. Scientists have used the Normalized Difference Vegetation Index (NDVI) 
based on reflectance of cover crops to evaluate soil cover and cover-crop biomass.18,19 
Farmers are increasingly using cover-crop mixes to deliver multiple benefits, which 
requires cover-crop species identification for optimal performance. Scientists also 
frequently use lidar technology to map structure, including vegetation height, 
density, and other characteristics across a region. Lidar helps scientists quantify 
plant height and biomass for cover crops and weeds. Lidar data and red/green/blue 
(RGB) digital images also help farmers identify species.

New geospatial decision-support tools using models calibrated from imagery for 
farm-specific conditions integrate data from these on-site sensors. These tools take 
real-time environmental conditions and other site-specific factors into account in 
offering recommendations to farmers.20 Many current decision-support tools suffer 
from usability issues that stymie adoption of the tools and practices they support. 
Going forward, decision-support tools must be designed to reduce information 
overload on users,  use realistic modeling techniques that integrate field data, 
and enable site-specific decision making.21 Providing information and tools for 
processing this information in near real time will allow farmers to optimally adjust 
the way they manage cover and cash crops, thus increasing profits and reducing 
stress. 

Going forward, tools must be designed to move on-station field experiments to 
the farm for development of decision-support tools. Historically, approaches to 
manipulate farmer practices in their fields have been met with varied success, often 
failing 50 percent of the time. This success rate speaks mostly to the complexity of 
farming and how farmers must react to climate and logistics in real time. Fortunately, 
a diverse array of sensing platforms makes it possible to link large networks of farms 
to exploit the communal nature of farmers and to explore causal relationships 
between climate, soil, and farm management without additional cognitive time 
burdens to farmers. Increasingly, farmers—even small family farmers—are becoming 
comfortable with technology.

These next sections will show how to use geospatial tools to manage and monitor 
the performance of cover crops and cropping systems in general.

Today’s modern farmer is at home with technology. The ubiquity of digital  
communications means everyone already knows how to use these tools.

Inexpensive tablet technology brings the “agri-data” to the field.

Located less than 20 miles from the nation’s capital, the Beltsville Agricultural 
Research Center (BARC) is actually a collection of growing fields and research 
facilities located around Beltsville, Maryland. Scientists there lead the operation 
of working farms to envision, create, and improve agricultural knowledge and 
technologies. The center’s mission is to help the United State and the world provide 
healthy crops and animals; clean and renewable natural resources; sustainable 
agricultural systems; and abundant, high-quality, and safe agricultural commodities 
and products.

The Beltsville complex is managed by the US Department of Agriculture’s (USDA’s) 
Agricultural Research Service (ARS). Overall, ARS is the chief scientific in-house 
agricultural research agency for the nation. ARS scientists perform research on 
more than 660 projects within 15 national programs. Their research covers crops, 
insects, animals, nutrition, fertilizers, water, and many other broad topics that help 
create a viable food supply for a nation of over 300 million people.

The Beltsville research farms complex

ARS scientists perform much of their work in a complex of farm plots named for Henry A. Wallace, America’s 11th Secretary of Agriculture and former US vice president.
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Collecting ground truth is key not only for traditional models but also for developing 
training data for AI/ML, which is heavily dependent on collecting large amounts of 
training data for the models to properly generalize. Reducing training data collection 
costs through a variety of techniques is, therefore, critical for driving the adoption 
of these modern models.  To illustrate this concept,  this section describes the use 
of GIS,  satellite data, ground truth around a cover-crop case study at Beltsville 
Argricultural Research Center (BARC) using a variety of technologies designed to 
reduce data collection times in the context of ArcGIS® Pro tool.  The case study 
used VENµS (vegetation and environmental monitoring on a new micro satellite) 
imagery for the exploratory analysis in ArcGIS Pro that feeds into a data network 
used by cover-crop researchers.   

The case study used 13 cloud-free images for BARC available from November 2018 to 
May 2019. These superspectral images have 12 visible near-infrared spectral bands, 
a swath width of 27.6 kilometers, and spatial resolution of 10 meters.  A mosaic 
dataset—a data model developed by Esri within the geodatabase to manage a 
collection of raster datasets (images)—allows one to store, manage, view, and query 
large collections of raster and image data. At the start of the process, an empty 
mosaic dataset was created as a container in the geodatabase in ArcGIS Pro that  
was populated with the VENµS data. 

Cover crops in the test field at Beltsville respond to environmental conditions that 
impact biomass and quality. The NDVI and Soil Adjusted Vegetation Index  (SAVI) 
were used as good estimators in aboveground biomass. Raster functions that allow 
on-the-fly processing operations were used to explore spatial variation of vegetation 
health and to understand the relationship between soil moisture and vegetation. 
These indices were saved as persisted cloud raster format (CRF) format, where 
the CRF data cube is optimized for writing and reading large files in a distributed 
processing and storage environment. In a CRF file, large rasters are broken down 
into smaller bundles of tiles, allowing multiple processes to write simultaneously 
to a single raster. 

Application of Earth observation data for cover-crop spatial variability Ground truthThe VENµS microsatellite

ArcGIS Pro map and chart of NDVI readings from 
the VENµS microsatellite. NDVI is a standard way 
to measure healthy vegetation. High NDVI values 
correspond to healthier vegetation. Low NDVI 
values correspond to less or no vegetation. This 
view of the BARC test field data shows changes in 
NDVI during the winter cover-crop period.

The Israeli VENµS  program is a vegetation and environment monitoring system 
that utilizes emerging micro-satellite technology.  The sensor provides high 
resolution digital multi- and superspectral imagery to monitor, analyze, and model 
land surface  behavior under different parameters. This is high spatial resolution 
Earth imaging for a wide range of commercial and scientific applications.

In remote sensing, groundtruth refers to information collected on location, which 
can be compared to remote sensing data (e.g., data collected from VENµS) for 
validation. The acquisition of carefully documented groundtruth data enables 
scientists to calibrate their models and aids in the interpretation and analysis of 
what is being sensed. To illustrate the correlation between actual biomass and 
the VENµS vegetation indices for biomas estimation, researchers intially collected 
ground truth manually at randomly dispersed locations (shown as red dots on the 
Central Farm 4-7 map). This literal “on the ground” data was then supplemented 
with image data collected from a multispectral, camera-bearing Hiboy tractor 
system, which collected NDVI samples directly.

However, since not every farmer has a Hiboy platform with an NDVI sensor at 
their disposal, an emerging investigative area at BARC is the deployment of low-
cost robotics. These so-called Internet of Things (IOT) approaches offer lower-cost 
options moving forward that might ultimately lead to the Holy Grail for farming: 
an automated recommendation engine that growers can act on in real time.  The 
EarthSense robot, called TerraSentia, has been developed to measure attributes 
such as plant height, stand counts, stem widths, and so on for under-canopy plant 
phenotyping. By navigating through a cornfield, for example, the robot can use 
methods ranging from computer vision to 2D lidar to construct a model that can 
be associated with field maps to support biomass volume estimation. Therefore, a 
swarm of TerraSentia robots operating simultaneously in a field offers an efficient 
method for continuously monitoring the growth of biomass.

Imaging 
sensor

Driving a Hiboy tractor equipped with sensors through a soybean 
field at the USDA research farm in Beltsville, Maryland.

This map shows the result of manually collecting groundtruth biomass, which can be used 
for calibration. The map also shows the path of the Hiboy through the same field to col-
lect many more control points. By averaging the Hiboy points using a nearest-neighbor 
approach, we can compare the results directly to the VENμS reflectance values.

Central Farm 4-7 map showing the sample point locations and a popup indicating 
 biomass and other details from a data collection pass on April 30, 2019.

TerraSentia is an automated, less-expensive robotic solution that uses computer vision 
and lidar to get detailed biomass estimates for use as ground truth.

LO REZ NEEDS TO REPLACE

Artist’s rendering VENµS microsatellite in action with rainbow suggesting the 
multiple spectral bands “visible” to the sensor.

Integrated GPS

3 gimbal stabalized
UHD cameras with
LED illumination 

Lidar for 
3D mapping of 
the environment4-wheel

independent
drive

Lidar for  
autonomy  

and analytics

Lidar for  
autonomy  

and analytics

Upward facing 
camera

Terra Sentia



How to Feed the World  119118  GIS for Science

Crop field boundary detection using deep learning
The previous section focused on cost-effective methods for collecting ground 
truth and correlating this with well-known vegetation indices using out-of-the-box 
functionality in ArcGIS Pro. But new capabilities in ArcGIS Pro leveraging ML and 
AI will significantly reduce the time it takes to build these models.

To develop these new capabilities, ARS researchers considered one of their classic 
problems: how to define and create features depicting field boundaries (i.e., crop 
masking), called common land units. Using automated techniques has the potential 
to significantly reduce the time needed for farmers to create reports on their current 
fields and crop plantings, as typical techniques require looking over multiple 
growing seasons for field accuracy. But this work also shows great promise in helping 
scientists build potential candidate farms for their on-farm research network, and 
acting as geofences for queries to imagery stores and other data sources.

Farmers use the same techniques to identify crop types that are used to quantify 
global production of cash crops such as corn, soybeans, and so forth, and this is 
essential information to people working in the commodities  markets.

Using the Beltsville farm as an example, scientists classified VENµS imagery to 
determine field boundaries. Specifcally, the imagery was resampled to 1 meter to 
match the spatial resolution of the National Agriculture Imagery Program (NAIP) 
output. The images are band stacked to get 16-band imagery (12 bands of VENµS 
and 4 bands of NAIP) using the Composite Bands geoprocessing tool as shown in 
the NAIP imagery. The trained neural network model has two outputs (croplands 
versus non-croplands). The NAIP imagery shows the workflow in ArcGIS Pro.

ArcGIS Pro and machine learning can classify VENµS 
data using NAIP imagery. The resultant image clearly 
delineates crop fields in black versus other features 
such as forest and water.

Aerial platforms capture NAIP imagery from USDA at high resolution and cover the  
entire United States every two years. Software training data for classification of the 
VENµS data is created with ArcGIS Pro.

Field data to analytics: Real-time data flow for cover crops
Microsoft Azure’s FarmBeats is another way to collect and aggregate ground-truth 
data. The product combines IoT sensors, data analysis, and ML on a cloud-based 
framework and allows farmers to gather data-driven insights in a cost-effective 
way. FarmBeats uses AI/ML to turn data from many sources, including sensors, 
satellites, drones, and weather stations, into actionable intelligence for farmers.
FarmBeats also uses a new, low-cost networking solution to connect the sensor 
network to the cloud. The connection leverages unused frequencies allocated to 
broadcasting services (called TV white space) not used in rural areas.  

Visualizing the FarmBeats data with the ArcGIS platform.

GIS-driven dashboards allow data 
from FarmBeats and other sensors to 
display in real time.

Combining FarmBeats with the ArcGIS platform creates the potential to develop 
a complex network of sensors from the agriculture industry with GIS data. For the 
cover-crop network, a Python script pulls data from the FarmBeats application 
program interface (API) for each sensor location and populates the data to ArcGIS 
Online as a feature service every 15 minutes. 

This real-time data pipeline opens the door for field data analytics and visualization, 
improving the access to spatial analysis tools in the ArcGIS platform.  As an example 
of a decision-support tool, the team built a dashboard on top of real-time data to 
monitor a kind of  digital “heartbeat” of field observations, a critical tool for the 
modern farmer.

VENµSNAIP
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AUTOMATING AND A S SISTING THE FIELD WORK OF CROP DEVELOPMENT
GIS serves as the backbone for emerging technologies that support the development 
of cultivars with increased resilience to abiotic and biotic stressors related to 
climate change and nutrition. For example, drought—the greatest threat to soybean 
yields—is expected to more than double worldwide by 2050. For this reason, 
developing a more drought-resistant soybean cultivar is a priority. The genetics of 
drought tolerance are complex and poorly understood, so field-based phenotyping 
is typically central to soybean cultivar development. Although visual traits that 
correlate with drought response are known for soybeans (e.g., midday leaf wilting), 
screening for these traits is time consuming and often requires highly trained 
screeners. This reality limits the scale and number of testing locations. 

A system that automatically rates drought-related phenotypes in soybeans in 
a high through-put scale would significantly reduce the time and labor required 
to increase the accuracy of soybean cultivar selection. Coupling AI with machine 
vision, researchers can use low-cost solutions such as simple RBG imaging taken 
with drone-mounted cameras to detect drought stress. This method can  be widely 
distributed across breeding programs to remove the subjective nature of human 
scoring systems and greatly accelerate producing drought-resistant soybean lines.  
When the camera network detects stress, it can tansfer images of the affected plots 
to  scientists.  Categorizing stress levels within the camera requires relatively small 
data streams across rural cellular connections. 

FarmWave® is a good example of this technology because it focuses on identifying 
and diagnosing pests and pathogens that impact crops. FarmWave leverages 
cellphone technology to capture geocoded ground-truth data that can be shared on 
a common platform with the producer and scientific community.

Speech recognition technology also plays a pivotal role in crop development in the 
form of AgVoice®, a voice recognition technology. With AgVoice, the application 
uses an AI “bot” to prompt you through data collection. The focus is a two-way 
interaction on domain-specific knowledge around food and agricultural terms. 

GIS: Helping change the way we do science
The rapid development and transfer of these new technologies will help farmers 
produce more food with better nutrition. Yet these technologies must  safeguard the 
integrity of the soil, water, and air needed to grow this food while also confronting 
the headwinds of  global climate change. Until recently, the public and private 
sectors largely developed technologies in silos, slowing progress. However, recent 
advances in computing infrastructure, big data, and advanced algorithms portend 
a paradigm shift in the way we develop technology in the agriculture sector. An 
infrastructure based on these new technologies will allow the mass transfer and 
sharing among scientists of agronomic data required for the development of next-
generation cropping systems and omics (genomic, transcriptomic, proteomic, 
metabolomic) and other data necessary to develop advanced crop cultivars. 
Integrating data collected from sensored smart farms into a collaborative network 
will create a positive feedback loop that allows rapid testing of next-generation 
cropping systems and advanced crop cultivars for different crop-production regions 
worldwide. On-station laboratories now must move to farms to better represent 
farm conditions and subtle differences in farming practices. A diverse array of 
sensing platforms can link large networks of farms to explore causal relationships 
between climate, soil, and management.  The ability to analyze data from more 
farming sites results in better models, decision-support tools, and outcomes, and 
will result in more growers adopting these methods.

Technologically, providing a platform for connecting field systems and existing 
GIS nodes results in a new architectural pattern called Web GIS. The Web GIS 
pattern supports implementation patterns ranging from on-farm, edge-oriented 
architecture to the system of systems approach that acts like a nervous system for 
agriculture.  From an agricultural perspective, Web GIS provides a framework for 
reducing silos between scientists, across the public sector, and between the public 
sector and the agricultural industry.

AgCROS: a collaborative data sharing platform 
The USDA leverages GIS built on a cloud infrastructure to increase collaboration 
among ARS scientists and collaborators to enhance cooperative science. Developed 
using the industry standard Agile approach, the Agricultural Collaborative Research 
Outcome System (AgCROS) illustrates a collaborative vision by providing a single 
platform to store and disseminate new agricultural data and models.22  Data from 
studies on greenhouse gas emissions, soil health, genomics, cover crops, renewable 
energy, antibiotic resistance, nutrient use, and nutrition are all contained within 
AgCROS.22,23 AgCROS is built on ArcGIS Hub with connections to ArcGIS Online 
and ArcGIS Enterprise. Data for the system is stored on Microsoft Azure ARS cloud 
as an enterprise geodatabase and referenced in ArcGIS Online. ArcGIS Enterprise 
allows for storage of imagery, and real-time data. The ARS cloud allows for on-
demand processing of AI and ML techniques and other analytical tools. Microsoft 
FarmBeats and Esri Geo-event server combine to act as the sensor data generator. 
Both systems leverage IoT to handle the variety of sensor types that will be deployed 
as well as data types. TV white space antennas serve as the way of transmitting 
sensor data to the cloud in areas without internet connectivity. 

The ArcGIS Hub interface to AgCROS, which covers the various sites within the ARS 
research network. 

Farmwave app running on Apple iOS.

Like virtually all human activities, corn farming is being massively disrupted by 
the digital revolution.

Remote-sensed imagery data from satellites, planes (lidar), and land or air drones 
requires large amounts of storage that the cloud allows for via hard-drive scalability. 
In addition to the automated ground-truth data-collection techniques discussed 
in the previous sections,  Esri’s field mobility apps such as ArcGIS Survey123 
and ArcGIS Collector are standards built into AgCROS to systematically reduce 
collection times and increase data quality for field scientists and collaborators. 
These applications gather data on mobile devices whether internet connections 
exist or not. Data gathered on these applications mobile-sync with AgCROS when 
internet connectivity is available. The applications provide ground-truth GIS 
data, and users can customize them to take pictures, scan barcodes, and gather a 
plethora of other observation data that does not have sensor inputs.

Having all the data and tools in the GIS central nervous system allows users to 
compare and extrapolate AI/ML worldwide at speeds previously not possible. 
These advances allow users to consider ways to improve farming methods while 
reducing harmful environmental impacts. 

Scientists can drill down from a site to the field level as shown. Once at the site level, 
scientists can use various tools such as graphing across sites to get an overall view of 
the data in question, in this case nitrous oxide.
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Breaking silos with service oriented architecture
The big challenge concerning Earth observations data in agriculture domain is how 
to make complicated data available and interoperable for a growing user community  
with varying interests and domain expertise. Based on the Web GIS pattern, the 
ArcGIS platform is evolving in step with the larger technology industry to help meet 
these challenges. 

In recent years, changes in the geospatial community have required more 
collaboration. The growth of cloud computing also has supported the use of scientific 
data from real-time field observations with sensors, field data collection, and drone 
observation. Most GIS analyists and remote sensing scientists once worked on 
their own projects, data, and computers. But the growing volume and diversity of 
scientific data and evolution of technology illustrated the benefits of sharing data 
and methods. Scientists developed centralized data storage and some centralized 
analytic services for use within their operations. Many organizations adopted a 
services-oriented architecture (SOA). 

Collaborative communities have emerged that reach beyond corporate or 
organizational boundaries.24 This system of systems is simply a collection of portals 
containing distributed data and distributed analytics, which in turn can interoperate 
as a single system. This breakthrough allows people to collaborate across space and 
discipline. One example of this is the Global Earth Observations System of Systems 
(GEOSS), which has 105 member countries and many affiliated research groups, 

including Esri and many of its customers active in GEOSS. Similarly, as a 
network of networks, the AgCROS bridges earlier gaps in data and analytics. 

Sharing the data and models through web services increases the repeatability 
of consistent and reproducible research workflows that are consistent and 
reproducible. These developments, now in practical use throughout USDA, 
have greatly improved collaboration. Cloud computing in agricultural science 
has enabled scientists to put their focus where it matters most: improving 
precision agriculture. 

With the growth of cloud computing, a platform such as ArcGIS allows 
scientists to deliver their unique data and analytics to any desktop and push 
it back to the web. Web GIS brings analytics to spatial data in a new way. 
Researchers previously had to process, modify, and extract data to answer 
a set of questions. Web GIS transforms data into web maps and services 
that are mashed up with different layers, so that data can answer questions 
dynamically without processing them for each parameter. Web GIS in 
the hands of a much larger audience reduces the need to create custom 
applications, provides a platform for integrating GIS with other business 
systems, and enables cross-organizational collaboration.

CONCLUSIONS 
GIS plays a major role in development of next-generation cropping systems and 
crop cultivars that are more nutritious and more resilient to biotic stress, abiotic 
stress, and other factors associated with climate change.  Perhaps most important, 
scientists now can leverage GIS to enhance collaboration and speed development 
of new technologies.  Future plans include linking ARS databases and modeling 
environments in AgCROS with databases and other resources from sister USDA 
agencies so that farmers and other members of the agricultural community can 
more readily access and use their services.
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PART 3
HOW WE LOOK AT EARTH
Successfully understanding how Earth works and how Earth looks to us requires integrative and innovative 
approaches to observation and measurement. These approaches include Earth observation in varying forms, such 
as from sensors on satellites, aircraft, drones, ships, and so on. They also include the important data science issues 
of conducting analysis; modeling, developing, and documenting useful datasets for science; and interoperating 
between these datasets and between various approaches. 
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MONITORING AIR QUALITY  
IN THE UNITED STATES
By Liz Naess, Halil Cakir, EPA; and Alberto Nieto, Esri.

Born in the midst of rising concern about harmful pollution in 1970, the US Environmental Protection Agency (EPA) has 
since its inception focused considerable attention and resources on air quality.  Using GIS, the agency’s Office of Air Quality 
Planning and Standards compiles, synthesizes, and publishes data to guide policy that keeps the public safe and informed. 

In 1973, Los Angeles, California, had some of the worst air pollution in the nation. Efforts by the 
EPA to document the problem led to greater awareness, then to legislation, and ultimately to 
regulations like the catalytic converter that has made a significant impact on air pollution.
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UNDERSTANDING AIR POLLUTION
The Clean Air Act requires the EPA to set National Ambient Air Quality Standards 
(NAAQS) for six common air pollutants (also known as criteria air pollutants)  
that are common in outdoor air, considered harmful to public health and the 

THE VALUE OF AIR QUALIT Y 
When was the last time you considered the quality of the air that you breathe?

Many of us take for granted the quality of our air that allows us to live our daily lives 
in relative comfort. Most of us can go out for a morning walk and enjoy outdoor 
activities without constantly checking air quality monitors for hazardous levels of 
pollutants.

Is poor air quality a thing of the past? Some of us may have heard of or even experienced 
the Donora Fog. On October 27, 1948, a sudden onset of smog settled over the town of 
Donora, Pennsylvania. Sulfur dioxide emissions from US Steel’s Donora Zinc Works  
and its American Steel & Wire plant occurred frequently  in  Donora. But  on  that 
day in 1948, a temperature inversion trapped a mass of warm, stagnant air in 
the valley. Pollutants in the air mixed to form a thick, yellowish, acrid smog that 
blanketed Donora for five days. When it finally cleared, 20 people had died, and the 
smog sickened more than 6,000 people.

Donora was not the only place experiencing air pollution with deadly consequences: 
Almost all major US cities routinely experienced toxic air. Even  though they were 
not recognized by health officials immediately, smog events killed hundreds of 
people in 1953 and 1966 in New York. Elsewhere in the world, the “killer fog” of 
1952 in London, England, killed an estimated 12,000 people. These events triggered 
a collective wake-up call that ultimately led to the formation of the EPA in 1970, 
raised public awareness to the dangers of air pollution, and served as the basis for 
the Clean Air Act.

Heavy smog shrouds the George Washington Bridge connecting New Jersey  
and New York. This view faces the New Jersey side of the Hudson River, 1973. 

A constable at work during  
London’s 1952 “killer fog.”Donora, Pennsylvania, 1948.

Ground-level
ozone

Health effects: Ozone exposure reduces lung function and causes respiratory symptoms, such as 
coughing and shortness of breath. Ozone exposure also aggravates asthma and lung diseases such as 
emphysema, leading to increased medication use, hospital admissions, and emergency department 
visits. Exposure to ozone may also increase the risk of premature mortality caused by respiratory issues. 
Short-term exposure to ozone is also associated with increased total non-accidental mortality, which 
includes deaths caused by respiratory causes. Environmental effects: Ozone damages vegetation by 
injuring leaves, reducing photosynthesis, impairing reproduction, and decreasing crop yields.

Particulate
matter

Health effects: Exposures to PM, particularly fine particles referred to as PM2.5, can cause harmful 
effects on the cardiovascular system, including heart attacks and strokes. These effects can result in 
emergency department visits, hospitalizations, and, in some cases, premature death. PM exposures are 
also linked to harmful respiratory effects, including asthma attacks. Environmental effects: Fine particles 
(PM2.5) are the main cause of reduced visibility (haze) in parts of the United States, including many 
national parks and wilderness areas.

Carbon
monoxide

Health effects: Breathing elevated levels of CO reduces the amount of oxygen reaching the body’s 
organs and tissues. For those with heart disease, this outcome can result in chest pain and other 
symptoms, leading to hospital admissions and emergency department visits. Environmental effects: 
Emissions of CO contribute to the formation of carbon dioxide (CO2) and ozone, greenhouse gases that 
warm the atmosphere.

Lead Health effects: Depending on the level of exposure, lead may harm the developing nervous system of 
children, resulting in lower IQs, learning deficits, and behavioral problems. Longer-term exposure to 
higher levels of lead may contribute to cardiovascular effects, such as high blood pressure and heart 
disease in adults. Environmental effects: Elevated amounts of lead accumulated in soils and freshwater 
bodies can result in decreased growth and reproductive rates in plants and animals.

Sulfur
dioxide

Health effects: Short-term exposures to SO2 are linked with respiratory effects, including difficulty 
breathing and increased asthma symptoms. These effects are particularly problematic for asthmatics 
while breathing deeply, such as when exercising or playing. Short-term exposures to SO2 have also 
been connected to increased emergency department visits and hospital admissions for respiratory 
illnesses, particularly for at-risk populations including children, older adults, and people with asthma.   
SO2 contributes to particle formation with associated health effects.

Nitrogen
dioxide

Health effects: Short-term exposures to NO2 can aggravate respiratory diseases, particularly asthma, 
leading to respiratory symptoms, hospital admissions, and emergency department visits. Long-term 
exposures to NO2  may contribute to asthma development and potentially increase susceptibility to 
respiratory infections.

environment, and come from numerous and diverse sources. Criteria pollutants are 
ground-level ozone (O3), particulate matter (PM), carbon monoxide (CO), lead (Pb), 
sulfur dioxide (SO2), and nitrogen dioxide (NO2).
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The process of reviewing the NAAQS involves assessing new scientific data, 
understanding the human and welfare impacts from air pollutants, and determining 
protective levels. Throughout the process, the public has a chance to weigh in on the 
decisions through public hearings and comment periods.

The Integrated Science Assessment
The Integrated Science Assessment (ISA) is a comprehensive review of policy-
relevant science, including key scientific evaluations and causal judgments, which 
provides the scientific foundation to review criteria pollutants. Draft versions  of  
the ISA undergo  review by the Clean Air Scientific Advisory Committee (CASAC), 
an independent science advisory committee whose existence, review, and advisory 
functions are mandated by the Clean Air Act. The draft ISAs are subject to a public 

A broad range of analyses can be undertaken to support the technical information 
these decisions are based on.  Daily ozone (8-hour maximum) and fine particulate air 
(24-hour average) monitoring data from the National Air Monitoring Stations/State 
and Local Air Monitoring Stations (NAMS/SLAMS) are examples of the types of data 
used to inform decision-makers. These data provide on-the-ground measurements 
of the quality of the air we breathe every day. Since monitors are concentrated in 
populated areas and are more limited in the rural parts of the country, data fusion 
methods can be used to better understand air quality in areas without monitors. 

Complex data fusion techniques allow scientists to incorporate information from 
multiple sources to come up with a better product than individual sources of data 
provide on their own. Because many factors drive air quality,  predicting local air 
quality conditions in areas without any monitors depends on identifying appropriate 
spatial modeling techniques and the right covariates.  Some of the most advanced and 

SE T TING AIR QUALIT Y STANDARDS DATA ANALYSIS
recent techniques, such as the empirical Bayesian kriging (EBK) regression prediction 
method, promise more accurate predictions than the other spatial interpolation 
models. Another advanced method developed by EPA is named the Downscaler Model. 
This model fuses outputs from a gridded atmospheric model known as the Community 
Multiscale Air Quality Model (CMAQ) with point air pollution measurements from air 
quality monitors to produce an improved air quality surface for the entire country 
which is extremely beneficial to the decision-making process. This method uses 
probability to represent the uncertainty of the input parameters and the uncertainty 
of the output. 

Recent developments and improvements in GIS and spatial modeling allow the EPA 
to more accurately depict air quality nationwide. Additionally, the Geospatial Platform 
(GeoPlatform) is democratizing access to many different data sources. Easy access to 
a suite of tools, apps, and data enables scientists to continually improve air quality 
spatial prediction models.

comment period before the final document is issued. The Risk and Exposure 
Assessment (REA) draws upon information and conclusions presented in the ISA 
to develop quantitative characterizations of exposures and associated risks to 
human health or the environment associated with recent air quality conditions 
and with air quality estimated to meet the current or alternative standard(s) under 
consideration.

Policy considerations of the REA results are considered in a Policy Assessment 
(PA), which is intended to bridge the gap between scientific evidence and technical 
information and the judgments required of the EPA administrator. Taking into 
consideration all the aforementioned assessments and reviews, the EPA develops 
and publishes a notice of proposed rulemaking. A public comment period, during 
which public hearings are generally held, follows, and after considering comments 
received on the proposed rule, the EPA issues a final rule.

Using CMAQ 1) and proximity to the US road network 2) as explanatory variables, the Empirical Bayesian Kriging (EBK) Regression Prediction tool generates the resulting air 
quality surface output 3). Supplemental views of the prediction standard error 4) and subset polygons corresponding to regional models 5) demonstrate the advantages of EBK 
regression prediction compared to other approaches: local conditions can affect air quality in many ways, allowing the model to tune itself in different areas and account for local 
effect and providing better results when compared to fitting a global model.

Detailed diagnostics from EBK regression prediction help 
scientists further understand and calibrate the models.

3
1
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IMPLEMENTING AIR QUALIT Y STANDARDS
Innovative web applications and analyses provide a wide range of data to 
internal and external stakeholders to inform the boundaries of nonattainment 
areas. They can help decision-makers understand how emissions, meteorology, 
and geography may affect their local air pollution concentrations. These 
boundaries are important because they indicate the area where air quality is 
above the standard and help state and local decision makers, and tribal leaders 
pinpoint the pollution emission sources contributing to poor air quality and 
to implement programs and control measures to improve air quality in their 
nonattainment areas. 

The EPA’s Ozone Designations 
Mapping Tool informs nonattainment 
area boundaries by combining data 
from five layers into a synthsized map 
of designation boundaries. Through 
GeoPlatform, EPA creates short-lived 
and limited use designer apps like this 
to help policy makers and the public 
interactively deliberate alternative 
policy scenarios. The EPA creates these 
web applications to address specific 
problems and replace static figures, 
maps, and data. 

Within two years of setting a new or revised standard, the EPA designates areas 
as meeting (attainment) or not meeting (nonattainment) the standard. Final 
designations are based on air quality monitoring data, state or tribal government 
recommendations, and technical information. 

The EPA has become more innovative in recent years with the designation process, 
using more advanced spatial analysis to inform the recommended attainment 
and nonattainment areas, including improvements in spatial interpolation or the 
estimation of observation in places where data have not yet been collected. 

Air quality

Emissions

Meteorology

Topgraphy

Jurisdiction

Designation boundaries

MONITORING AIR QUALIT YMONITORING AIR QUALIT Y
Air quality  data  are  spatial  by   definition:  sources of pollution  exist   at   specific  
locations. A network of thousands of outdoor air quality monitoring stations across 
the United States, Puerto Rico, and the US Virgin Islands is critical for monitoring 
changes in air quality, particularly important in areas of nonattainment. The data 
are compiled into the Air Quality System (AQS) database and available to the public 
via the AQS application program interface (API), in aggregated form via the EPA 
AirData website, and as dynamic GIS services via the ArcGIS Living Atlas of the 
World®. These data assist a wide range of people, from the concerned citizen who 
wants to be aware of unhealthy air quality days in their region over a time period to 
regulatory, academic, and health research communities that need raw data for air 
quality studies.

In 1966, the Harlem Courthouse was the only air monitoring station in New York City.

Today, the EPA partners with local, state, and tribal agencies to manage a network of thousands of outdoor air quality monitoring stations.

Rich data at the proposed designation 
boundary level comes to life in the EPA’s 
Ozone Designations Mapping Tool.
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The Clean Air Act has provided 
public health protection since 
it became law in 1970. To 
highlight the achievements 
made in the United States, 
the EPA maintains interactive 
applications and map-driven 
reports outlining the trends in 
air quality. 

Through successful state led 
implementation, numerous 
areas across the country are 
showing improvement, and 
fewer areas are in nonattain-
ment. Since 2010, there were 
no violations of the stan-
dards for CO and NO2.

TRENDS IN AIR QUALIT Y AND POLLUTION
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EPA scientists aggregate, manage, and analyze raw data from thousands of outdoor 
air quality monitoring stations for policy-making purposes. The EPA also started 
the AirNow program to provide actionable information to the public for its day-
to-day decisions. To better engage with the public, the EPA summarizes air quality 
information into the Air Quality Index (AQI), which explains how clean or polluted 
air is and what associated health effects might be of concern at their location. The 
AQI focuses on health effects that a person may experience. 

In March 2020, EPA launched a new, locally focused AirNow website. This site 
provides the user with their local air quality information using their zip code or 
location from their phone. The public can immediately assess the air quality around 
them, learn more about historical air quality in their area, and the forecasted 
air quality for the following day. This information helps users plan their outdoor 
activities. 

AirNow provides a window on local air quality data.  Millions of people live in areas 
where air pollution can cause serious health problems and affect our daily lives. Like 
the weather, it can change from day to day.  The AirNow program provides effective 
and modern ways to inform the public about air quality via the EPA AirNow website, 
widgets, and maps providing the current state of air quality around the nation. 

Accurate prediction of local air quality relies on the fidelity of the input data 
that precisely depict local conditions in many ways. Human activity, topography, 
meteorology, and atmospheric conditions can affect local air quality in many ways.

Also new is the national Interactive Map of Air Quality, which provides additional 
information about the air quality monitoring locations, current AQI values, and 
pollutant concentrations.

INFORMING THE PUBLIC AIR QUALIT Y IS LOCAL

AQI colors: The EPA has assigned a specific color to each AQI category so people can 
quickly understand whether air pollution is reaching unhealthy levels in their commu-
nities. The network of air quality monitoring stations is extensive, but spatial analy-
sis is necessary to assess air quality for each person’s location in the United States. 
Interpolated surfaces are therefore generated using each station’s readings, allowing 
the public to receive an estimate of air quality even in regions with sparse air quality 
monitoring coverage. 

These maps shows the air quality index for the entire United States on January 31, 2020. Largest area of moderate air quality for this particular day is in the Great Lakes region.

Interpolated surfaces allow for the assessment of air quality in areas without monitors. 
Currently AirNow uses the inverse-distance weighted (IDW) interpolation method 
because it provides fast results. The IDW method assumes that sites that are close 
to one another are more alike than sites that are farther apart.  AQI values in areas 
without monitors are calculated using a weighted average of the values available at 
surrounding sites.  With recent advances in algorithms and processing power, the 
AirNow team is exploring the use of more advanced and accurate but computationally 
taxing spatial interpolation methods. One method under consideration is the 
empiracal Bayesian kriging regression prediction.

In the 1970s Riverside, California, had some of the worst air quality in the nation because 
of its proximity to car-crowded Los Angeles. Today, the city routinely enjoys clear and 
blue skies but sometimes still experiences moderate air pollution, often in the form of 
particulate matter.

AirNow forecast for Riverside, California, captured in May 2020.
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Between 1970 and 2019, the combined emissions of the six common pollutants 
dropped by 77 percent. This progress occurred while the US economy continued to 
grow, Americans drove more miles, and population and energy use increased. We 
don’t need to compromise on air quality.  It is important to get data and information 

ECONOMIC GROW TH WITH CLE ANER AIR

ENDNOTES

VISIBILIT Y STUDIES IN NATIONAL PARK S
One of the most basic forms of air pollution—haze—degrades visibility in many 
American cities and scenic areas. Haze results from sunlight encountering tiny 
pollution particles in the air, which reduce the clarity and color of what we see, 
especially during humid conditions. This pollution comes from a variety of natural 
and human-made sources. Natural sources can include windblown dust and soot 
from wildfires. Human-made sources can include motor vehicles, electric utility 
and industrial fuel burning, and manufacturing operations. The same pollution that 
causes haze also poses human and ecosystem health risks.

Since 1988, the federal government has monitored visibility in national parks and 
wilderness areas. A network of air quality monitors established in these treasured 
areas is providing a steady stream of data to assess the progress over time.  Visibility 
has been improving due to pollution reductions resulting from many different Clean 

On a good day in the Great Smoky Mountains, visibility can extend more than 100 
miles. The images were taken on different days at 3 p.m.

Average visual ranges have improved during the past two decades. 

The data clearly show that the US can 
experience economic growth while 
reducing air pollution emissions and 
improving conditions for its citizens and 
the planet. 

Air Act programs, including the Regional Haze program, designed to help states 
make gradual progress to reach natural visibility conditions in national parks and 
wilderness areas. Thanks to the effectiveness of these programs, visibility in our 
national parks and wilderness areas is improving.  

In general, in eastern parks and wilderness areas, the average visual range (the 
distance a visitor can see) has improved from 50 miles in 2000 to 70 miles in 2015. 
In western parks and wilderness areas, the average visual range has improved from 
90 miles to 120 miles over the same period. The Regional Haze Storymap shows the 
visibility improvements in selected national parks. GIS is playing important role in 
managing and disseminating these important data. Spatial analytics is helping to 
evaluate national and local visibility trends.

into the hands of the public and decision-makers, which can be facilitated by 
interactive graphics, tools, and story maps. Together, we can make decisions that 
benefit the economy and help ensure we continue to improve the air for current 
and future generations. 
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THE URBAN TREE CANOPY
By Jarlath O’Neil-Dunne, University of Vermont; Dexter Locke and J. Morgan Grove, US Forest Service; Michael Galvin, SavATree

In dense urban centers, a city’s treescapes (or lack thereof) have a big impact on the quality of life. A unique government and 
academic partnership uses lidar and GIS technology to help communities map, assess, and monitor their urban tree canopy. 

Tree canopy lines the shores of the East River in New York City, with the Robert F. Kennedy 
Bridge connecting Astoria to Randall’s Island. The lidar data shown here was the foundational 
dataset for New York City’s most recent tree canopy assessment.
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MAPPING THE URBAN FOREST FROM ABOVETHE SUSTAINABLE CIT Y
The consolidation of the human population in urbanized areas during the Industrial 
Revolution of the late 1800s and early 1900s caused major challenges for cities across 
the United States. Raw sewage running down streets, air pollution, and contaminated 
water were just some of the issues that left urban residents in unhealthful living 
conditions. Over time, cities became more sanitary as they addressed these issues 
and improved their treatment plants, sewer and stormwater systems, and other 
facilities known as gray infrastructure. As a result, residents living in urban areas 
experienced measurable improvements in their quality of life. For the most part, US 
cities today are no longer focused on addressing sanitary ills, but they face a new 
set of challenges.

Today’s environmental and livability challenges, such as climate change and urban 
heat islands, are in many ways more difficult to solve than those faced in the 
nineteenth century. Cities must become more sustainable and livable to meet these 
challenges, even as demographic shifts bring more people into urbanized city cores. 
Yet cities lack the kind of traditional gray infrastructure fixes when they look for 
ways to fight climate change or reduce the impacts of urban heat islands. And in 
a global marketplace, attracting the best companies and the brightest minds to a 
city is no longer assured simply because of its historically dominant presence in an 
economic sector. To remain competitive, a city must provide other amenities such 
as parks and tree-lined streets, which in turn requires revenue from the city’s tax 
base. 

To address these challenges, cities increasingly turn to green infrastructure to 
preserve and connect open spaces, watersheds, wildlife habitats, parks, and other 
natural landscapes. Growing and sustaining a strong tree canopy is a key strategy of 
green infrastructure. Trees benefit the ecosystem in many ways, from reducing peak 
summer temperatures to providing wildlife habitat to reducing stress in the human 
population. Cities have realized that they must manage trees as a crucial asset if they 
are to become sustainable, keep residents happy, and attract commercial entities. 

The early 2000s brought a new era of remote sensing that made it possible to efficiently 
and effectively map tree canopy in urban areas. High-resolution digital imagery and 
lidar became increasingly prevalent, while new object-based approaches to feature 
extraction provided a way to automate land cover mapping. Commercial satellites 
offered detailed, on-demand acquisition, and the National Agriculture Imagery 
Program (NAIP), founded to support agricultural mapping, acquired imagery of 
entire states during the growing season while trees had their leaves. The combined 
result of these technologies allowed our team to develop workflows to map the tree 
canopy and other land cover classes that helped decision-makers estimate available 
land to plant trees.

Despite the technological advances, urban land cover mapping remained challenging. 
Cities are heterogeneous in the horizontal and vertical planes. The morphology of 
trees differs, depending on whether they grow without competition on the street or 
as part of a patch in an urban forest. Building shadows can obscure trees, and utility 
poles can look like trees in lidar data. The resolution of the remotely sensed data, 
while critical for mapping fine-scale urban features, meant that a land cover dataset 
for a single city could be made up of tens of billions of pixels, eclipsing the size of 
30-meter land cover datasets for the entire United States. Automation itself was not 
enough, and old-fashioned manual digitizing still serves as the final check on all of 
our land cover maps.

Knowing what you have so you can manage it
Baltimore, Maryland, like a lot of big US cities, has actively recognized the importance 
of its urban tree canopy in providing shade, ambiance, and character not to mention 
the climate-cooling and carbon-capture benefits. In 2004, city officials approached a 
team that includes US Forest Service scientists and academic researchers, with two 
simple questions:

1.	 How much of the city is covered by tree canopy?
2.	 How much land is available to plant new trees? 

Baltimore, like many cities, had used GIS to map, manage, and monitor its 
infrastructure for years. Baltimore used digital parcel maps to collect taxes, updated 
gray infrastructure databases such as street centerlines and building footprints to 
stay current with changes, and relied on innovative online dashboards to report and 
analyze crime. The city had a lot of geospatial information at its fingertips but lacked 
information about green infrastructure when it decided to set a realistic long-term 
goal for tree canopy coverage. Elected leaders realized they could not set a goal for 
tree canopy without knowing how much tree canopy they had. They also needed to 
know the amount of available land available for new tree canopy. 

Cities in general lacked information about their tree canopy partly because they 
did not traditionally view trees as a crucial asset. Only fairly recently have they 
understood and accepted the value of green infrastructure in urban areas. From a 
GIS perspective, technological reasons also prevented strong analysis of tree canopy 
until recently. First, cartographers historically mapped land cover at a resolution 
of 30 meters. While mapping land cover at that resolution works well to examine 
broad areas, 30-meter pixels are too coarse to analyze tree canopy in urban areas. A 
single pixel might contain dozens of different land cover features and cross multiple 
property boundaries. Cities have had access to high-resolution imagery of urban 
areas for many years. However, they acquired the data under leaf-off conditions, 
which supported gray infrastructure and property parcel mapping but served as 
a poor source for assessing tree canopy. In addition, building shadows made it 
difficult to use overhead imagery to map trees in major cities, regardless of the 
spatial resolution.

A tree stands in front of row houses in the Reservoir Hill neighborhood of Baltimore. 
The city is a leader in mapping and protecting urban forests.

The team’s approach to high-resolution land cover mapping has centered on the 
implementation of object-based feature extraction techniques. Objects have the 
advantage in that they can contain information from raster, vector, and point cloud 
datasets. Objects are also spatially aware, in that they have inherent information on 
other objects, such as the relative border. Through an iterative process that employs 
segmentation, classification, and morphology algorithms, we can minimize the 
limitations of the input data and maximize their strengths. The land cover mapping 
workflow starts by classifying objects based on basic properties (e.g., height and 
tone). 

As the workflow progresses, increasing amounts of spatial information are used in 
the classification process, such as relative border and distance. This approach allows 
us to eliminate almost entirely inconsistencies in the source data. For example, 
offsets between the lidar and the imagery due to building lean may make a building 
edge object have the height and spectral properties of tree canopy, but its spatial 
properties—its length-to-width ratio and relative border to the building—can be 
used classify it correctly. Morphology algorithms help to improve the cartographic 
appearance of the land cover features, squaring up buildings and smoothing the 
edges of tree canopy. Automation itself is never enough, and good old-fashioned 
manual heads-up digitizing still serves as the final check on all of our land cover 
maps.

High-resolution land cover mapping is the foundation of an urban tree canopy 
assessment. This example is from the 2017 mapping of New York City.

The Urban Tree Canopy Assessment Protocols from a comprehensive analytical  
framework for providing resource managers with insights into their urban forests.

Feature extraction workflow showing the progression from source data (top), to segments 
and initial classification (middle), to contextual information and final classification (bottom).

Tree canopy
Grass/shrub
Bare soil
Water
Buildings
Roads
Other impervious
Railroads
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DECISION SUPPORT TOOL S
Assessment
Landcover mapping proved to be valuable but alone did not provide enough 
information for cities to make informed decisions about their tree canopy. The 
collective benefits of tree canopy can be geographically broad, but the actual 
ownership of the tree canopy varies because most city land is privately owned. 
Cities also must understand their tree canopy at multiple geographical levels. A 
school district seeking insights into the percentage of tree canopy at each school 
needs parcel-level data. Elected city councilors want to understand the tree canopy 
in their district. Managing water quality requires the summation of tree canopy 
information by watershed.  

An urban tree canopy (UTC) assessment summarizes landcover data within 
geographical units to calculate the existing tree canopy and possible tree canopy. 
Existing tree canopy is the tree canopy the community has right now. Possible tree 
canopy is considered the area without roads, buildings, water, or trees. These places 
could hypothetically support tree canopy. The purpose of defining the existing and 
the possible tree canopy is so that communities can understand what they have 
now as well as where the opportunities lie for establishing new tree canopy. The 
geographical units used to summarize tree canopy vary by community but generally 
include property parcels, political/administrative boundaries (e.g., council districts 
and neighborhoods), US Census block groups, and watersheds. UTC developed 

an ArcGIS geoprocessing model to compute the existing and possible tree canopy 
by geographical unit, providing an efficient means to batch process the data to 
compute the UTC metrics for large collections of data.

The metrics in the assessment phase provide communities with the information 
they need to set a tree canopy goal. This integration of data also offers insights 
into the relationships between tree canopy and other variables along with cross-
tabulation information. A classic environmental justice example is to examine the 
relationship between wealth and tree canopy in public rights-of-way. This kind of 
study can help to determine whether wealthy residents, with greater means and 
political access, have disproportionately more street tree canopy. Another example 
is the founder’s effect. Trees rarely survive new construction, and thus one of the 
first things a developer or homeowner does on a new property is plant trees. These 
trees will yield robust canopies many decades after the house is built. In areas 
where the houses were constructed at a similar time, tree canopy will exhibit a 
characteristic “rise and fall” as trees reach peak canopy at a similar time, followed 
by a sudden drop as the trees die. The integration of land cover with property parcel 
data and assessor’s records can provide predictive analytics that allow cities to 
target landowners ahead of time, reminding them that they need to plant new trees 
now if they wish to sustain their tree canopy in the long term.

Canopy height information derived from lidar provides insight into the structure of a 
community’s urban forest. 

UTC assessment metrics showed that much of the tree canopy in this community is 
clustered in parcels that are 80 to 120 years old. The trees planted when these homes 
were built may now be reaching their life expectancy; thus, homeowners should plant 
new trees now to maintain current tree canopy coverage.

Prioritization
Often after a tree canopy goal is set, urban foresters, 
planners, and other decision-makers want to know 
how to reach their goal. UTC prioritizations first 
identify the places lacking the benefits of tree and then 
help identify organizations whose mission or mandate 
reflects that management priority. For example, trees 
reduce summer temperatures by blocking the sun and 
through evapotranspiration (exhaling water vapor). 
High temperatures in the summer can be lethal to 
humans. Public health officials may then choose 
to prioritize places to plant trees that are hot in the 
summer and where the young and old live—people 
most vulnerable to heat. UTC prioritization is a set of 
GIS tools and a stakeholder engagement process.

In the case of Baltimore, the team gathered members 
of 25 organizations whose missions or mandates could 
be achieved—in part—by increasing tree canopy. 
We assembled a “menu” of data reflecting different 
ecosystem services that trees provide, which could 
logically be linked to the participating organizations’ 
mission or mandate. For example, by removing 
impervious surfaces and by planting trees, flooding 
may be reduced. Areas prone to flooding could also be 
identified by the point locations of service requests—
Baltimore City’s 311 non-emergency government 
hotline. Each organization could distribute 10 votes 
across all the items in the menu to best reflect their 
organization’s priorities. Or they could place all 10 
votes in the income box, which would indicate that 
they are only interested in planting in low-income 
areas.

Using ArcGIS, UTC created custom maps for each 
of the 25 participating organizations to reflect their 
mission or mandate, using the weightings that each 
participant provided. A 26th map was created by 
summing together all 25 organizations’ maps. That 
map is now in the city’s sustainability plan as the 
official urban tree canopy prioritization map. One 
important benefit to this approach is that each 
organization can compare its own map to the map 
in the sustainability plan and to other organizations’ 
maps. In this way, people can see where they have the 
same high priorities, for similar or dissimilar reasons. 
Groups can also see how they contribute to the city’s 
overall goal.

UTC assessment infographic developed for decision makers to 
help them understand who in the city has the most land available 
(termed possible tree canopy) for establishing new tree canopy.

Tree canopy prioritization map reflecting the mission mandates of specific stakeholder groups.
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Monitoring
For cities that have completed an assessment, set a goal for tree canopy, prioritized 
areas for tree plantings, and implemented strategies to protect existing tree canopy 
and establish new tree canopy, the next logical step is to assess the change in tree 
canopy over time. Mapping tree canopy change is even more challenging than the 
initial land cover mapping. Estimating tree canopy change over time from remotely 
sensed data requires that the amount of change measured falls outside of the 
margin of error. For example, if the two tree canopy estimates, produced at different 
times, have a margin of error of +/− 2 percent, one cannot conclude that there is a 2 
percent increase. The chief obstacle in tree canopy change is the source data. 

The various imagery and lidar datasets used for monitoring tree canopy change are 
collected with other use cases in mind and different acquisition parameters, and 
then processed to different specifications. Even if individual tree canopy mapping 
done at two different time periods was perfect, the process of differentiating the two 
tree canopy datasets would result in false change due to the issues mentioned earlier. 
To accommodate the challenges, we developed mapping protocols that minimize 
errors associated with mapping tree canopy change over time by mapping three 

categories at the tree scale—no change, loss, and gain. The assissment starts again 
with monitoring. The UTC used monitoring data to generate its assessment metrics. 
These assessment metrics provide information on changes at various geographical 
units. This information, in turn, is used to draw conclusions on driving factors.

Monitoring helps to reveal changes that can go unnoticed from the ground. 
UTC monitoring helped one community understand that despite its substantial 
investment in street tree maintenance and planning, tree canopy was declining in 
the community due to losses in residential backyards. These mostly unseen areas 
contained most of the city’s tree canopy. In another city, monitoring revealed that 
neighborhoods in the lowest income quintiles lost the most tree canopy over a 
five-year period, even though they had the least tree canopy as a percentage of 
land area to begin with. This discovery had important environmental justice and 
land management implications. Monitoring does not always reveal bad news. A 
consistent finding is that existing tree canopy will continue to expand. Planting new 
trees can be expensive, and monitoring has helped cities understand that preserving 
what they have can result in greater gains at a lower cost per unit.

Monitoring tree canopy change in New York City. The data on the left is overlaid on a lidar surface hillshade from the first time period and the data on the right is overlaid on a lidar 
surface from the second time period. Purple represents no change in tree canopy, orange represents loss, and green represents gain.

Example of the land cover mapping carried out in support of San Diego’s tree canopy assessment. More than 1 billion pixels of data were analyzed.

Markets

UTC assessments provide baseline information often used for goal setting, and UTC 
prioritizations provide an implementation plan that identifies key areas for planting 
and common goals across organizations or institutions. However, residents across 
low- to high-priority neighborhoods have different motivations, capacities, and 
interests in urban and community forestry initiatives. A goal of UTC market analyses 
is to understand how participation in existing programs varies by geodemographic 
segment or market group. This data is typically used to understand purchasing 
behavior and to market consumer goods. However, previous research has shown 
that the amount of existing and possible tree canopy varies not just by household 
income but also by family structure such as marital status or number of children 
living at home.

Our market analyses help us compare where trees are being planted, through which 
planting program, who lives where the trees are planted, and how much tree canopy 
exists in that area. The results reveal how current programs are reaching—or not 
reaching—different social groups and how much tree canopy is currently available. 
The idea is to find out where alternative approaches could benefit additional tree 
planting based on the demographics and lifestyles of residents in different areas.

Odds ratios and 95 percent confidence intervals for urban greening programs on pri-
vate residential land by Esri Tapestry LifeMode®. 

Tree canopy
Grass/shrub
Bare soil
Water
Buildings
Roads/railroads
Other paved
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UTC IN ACTION
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What started as a pilot project in Baltimore, Maryland, has expanded to more 
than 80 communities in the United States and Canada. As of this writing, UTC 
assessments cover 8.5 million acres and include approximately 37 million people. 
UTC assessments are driving green decision-making in urban areas. Cities are 
setting tree canopy goals and building UTC mapping into their standard mapping 
updates alongside parcel and planimetric mapping. We are now in the era of UTC 
data informatics: the integration of UTC data with other citywide data that is 
used to measure the sustainability and resilience of neighborhoods and cities. This 
integration is possible because of data hooks associated with a parcel. These data 
hooks might include latitude and longitude for some data, such as maps of urban 
heat islands or flood zones, and an address for other data, such as crime, health, 
and water and energy use. These data hooks are the critical, unique connectors that 
make data interoperable and UTC data informatics possible. UTC data informatics 
and synthesis continue to increase in value because the amount of digital data 
about cities continues to grow at phenomenal rates. Data informatics and synthesis 
provide the basis for expanding how we understand the benefits and services of 
trees and canopy. In other words, because we can expand the types and number 
of environmental, social, economic, and health data that can be integrated with 
UTC data, we can employ a variety of techniques—hypothesis testing, machine 
learning, and time-series analysis—to gain novel insights into the effects that trees 
and canopy have on cities.

We extend our gratitude to the US Forest Service and the dozens of communities 
throughout North America that collaborated with us on Urban Tree Canopy 
Assessments during the past decade.

Tree canopy change summarized by 100-acre hexagons for the city of Virginia Beach 
for 2012–2018. Tree canopy decreased in the urbanized portions of the city to the 
north and increased in the natural areas, which tend to be in the central and southern 
portions of the city.

Trees provide important ecosystem services, such as reducing the urban heat island. Tree canopy mapping from high-resolution imagery combined with surface temperature map-
ping derived from Landsat satellite thermal imagery can illustrate the benefits that trees provide to a community.

With tree canopy assessments carried out for more than 100 communities across the 
nation, the data can be used to help resource managers find communities with similar 
tree canopy characteristics from which they can share strategies for maintaining and 
increasing their urban tree canopy.
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Hurricane Florence—viewed here from the International Space 
Station on September 12, 2018—caused widespread flooding 
along the Carolina coast on the southeastern US seaboard.

By Jeremy Kirkendall and Garrett Layne, NASA Disasters Program

Responding to major natural and human-caused hazards, the NASA Earth Applied Sciences Disasters Program 
collects, synthesizes, and shares data collected from dozens of Earth-orbiting satellites.

MONITORING DISASTERS
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The NASA Disasters Program within Earth Applied Sciences is part of NASA’s overall 
Earth Science Division (ESD), which is charged with delivering the technology, 
expertise, and global observations required to help scientists map the myriad of 
connections between Earth’s vital processes and the effects of ongoing natural and 
human-caused changes.

Using observations from satellites, instruments on the International Space Station, 
airplanes, balloons, ships, and on land, ESD researchers collect data about the 
science of our planet’s atmospheric motion and composition; land cover, land use 
and vegetation; ocean currents, temperatures and upper-ocean life; and ice on land 
and sea. These datasets, which cover even the most remote areas of Earth, are freely 
and openly available to anyone.

Of particular interest to the GIS and disasters mapping communities are the data 
coming from the Earth-orbiting satellites depicted here.

NA SA E ARTH SCIENCE

NASA’s Earth Science group processes data from a fleet of orbiting satellites that continually image Earth across the complete electromagnetic spectrum.  
Mission-specific platforms like ERRA/AQUA and the MODIS instrument, plus a wide variety of  emerging “microsatellites,” produce data applicable to serious GIS analysis.

The NASA Disasters Program promotes the use of Earth observations for disaster 
management and risk reduction. The program coordinates data and information 
among its members to minimize the impact of disasters in collaboration with 
emergency management organizations, government officials, the private sector, 
humanitarian actors, and others. The program, through the development and 
contribution to actionable Earth science research, aims to enhance situational 
awareness and empower decision making before, during, and after disasters. The 
program develops data products based on a solutions-oriented approach to identify 
vulnerabilities and assess risk factors to promote planning and mitigation, improve 
response, hasten recovery, and build resilience.  

This holistic approach offers the ability to see the bigger picture and identify more 
valuable, expansive uses of data previously siloed by a specific research question or 
hazard type. NASA develops and combines data in new, innovative, and unique ways to 
fill gaps in information and support the needs of communities, properties, or economies 
deemed most vulnerable. Whenever possible,  the program responds to direct requests 

MIS SION OF THE NA SA DISA STERS PROGRAM
for relevant data; opportunities to apply, advance, and evaluate disaster science and 
technology; potential transitions of science to operational users and collaborators; and 
advancement of science understanding and NASA capabilities.

The NASA Disasters Mapping Portal serves as a publicly accessible focal point 
to make usable, integrated, and visualized disaster GIS data available for further 
analysis by anyone. The portal provides context to data to demonstrate their value 
and potential individually and in combination with other products. Anyone can 
stream the products at no cost. The portal hosts event-specific products for disasters 
such as a tropical cyclone or earthquake, and it hosts near real-time products, many 
of which have global coverage. 

One such product used to monitor hurricanes and other large-scale weather events 
is the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 
(IMERG)—essentially a measurement of precipitation accumulation. The following 
large-format composite depicts the siuation during Hurricane Willa in 2018.

Accessible through disasters.nasa.gov, NASA Disasters Program serves as a virtual near 
real-time“news desk” providing a variety of information from across NASA’s teams. 

The Mapping Portal—built on the ArcGIS platform—offers a map and data-centric view 
of currently unfolding and historical disasters, accessible at maps.disasters.nasa.gov. 
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GPM IMERG data showing one-day precipitation accumulation 
on October 23, 2018, during Hurricane Willa (off the coast of 
Mexico at the time this image was recorded).

Hurricane Willa

Global Precipitation  
Measurement (GPM)
One-day accumulation

50+ millimeters



Monitoring Disasters  157156  GIS for Science

MEASURING RAINFALL AND PREDICTING LANDSLIDES FOR HURRICANE WILLA October 23, 2018, as much as 15 inches of rain fell 
across the region, causing the nowcast to show 
a widespread risk of landslide. When comparing 
the one-day precipitation accumulation to the 
landslide susceptibility map, the areas of overlap 
between the heaviest precipitation and highest 
landslide probability result in the landslide 
nowcast.

The nowcast system has been evaluated by 
comparing the nowcasts to each of 3,989 landslide 
event points in the Global Landslide Catalog. 
Since most landslides occur in places with no 
observations, it was not possible to verify that the 
global LHASA nowcast is accurate in all locations. 
However, it does provide a near real-time global 
summary of landslide hazards that may be useful 
for disaster response agencies, international aid 
organizations, and others who would benefit from 
situational awareness of potential landslides in 
near real-time. 

In the future, the LHASA model will be evaluated 
using the Cooperative Open Online Landslide 
Repository (COOLR), which combines data from 
the Global Landslide Catalog and data from citizen 
scientists in an effort to reduce inconsistencies in 
how landslides are reported in different regions. 
Anyone can view landslides as well as report 
a landslide event using the Landslide Viewer 
and Landslide Reporter GIS web applications. 
Growing this global landslide database will help 
validate and improve LHASA, as well as enable 
the landslide community to advance landslide 
research and understanding of where and when 
landslides are occurring.

The NASA Disasters Program updates image data products 
like IMERG automatically on a continuous basis in time 
intervals ranging from 30 minutes to daily or even weekly, 
depending on many factors related to each satellite’s orbital 
path, coverage, angle of view, and so forth. These products 
contain the most recent images “mosaicked,” or stitched 
together, into a continuous global view. The time stamps of these 
cataloged images become a critical aspect of how the imagery is 
actually applied. 
 
The Global Precipitation Measurement (GPM) mission (highlighted on 
the Hurricane Willa GPM map) is an international network of satellites that 
provide global observations of rain and snow. The IMERG product combines the 
GPM data into precipitation accumulation products, including 30-minute and 
one-day intervals. These products can provide precipitation data in areas where 
ground-based radar is not available, such as over the ocean. These datasets help 
identify areas that may be vulnerable to flooding and can be combined with other 
datasets to identify additional hazards, such as landslides.

Landslide susceptibility data
Globally, landslides cause billions of dollars in damage and numerous fatalities 
each year.  While the underlying mechanisms are understood, predicting the 
potential for landslides in near-realtime has been difficult. Combining geographic 
information and remote sensing data allows researchers to develop a global model 
to predict the near real-time potential for landslides.

Landslides tend to occur where subsurface conditions are already unstable. To 
identify landslide-prone terrain, the landslide susceptibility map was created 
by combining slope, geology, road networks, and forest loss data, as shown in 
ArcGIS ModelBuilder.™ This static basemap is then used in conjunction with other 
datasets to create near real-time landslide products.
 
Rainfall most commonly triggers landslides, so the Landslide Hazard Assessment 
for Situational Awareness (LHASA) model was developed to combine IMERG 
precipitation data with the landslide susceptibility map, updating every 30 minutes 
to provide a near real-time product. A one-day cumulative raster of the LHASA 
landslide nowcast is also provided to give a broader situational awareness. The 
LHASA landslide nowcast is created by using the last seven days of GPM IMERG 
data with the last 24 hours having the most impact. These data are then compared to 
the long-term precipitation record. In places where precipitation is unusually high, 
the model then uses the LHASA susceptibility map to determine whether the area 
is vulnerable to landslides. If the area is vulnerable, the model produces a nowcast 
identifying the area as having a high or moderate likelihood of landslide activity.
When Category 3 Hurricane Willa approached the Mexican state of Sinaloa on 

This landslide susceptibility model created in ModelBuilder™ 
combines slope, geology, road networks, and forest loss data to 
create a cohesive global picture of hazards.1,2

Landslide susceptibility
Very low
Low
Moderate
High
Very high

This landslide susceptibility map where 
Hurricane Willa made landfall on the 
west coast of Mexico shows a large area1 
with an elevated likelihood of landslides.

A) IMERG 30-minute precipitation accumulation product for Hurricane Willa on October 23, 2018; B) the Landslide Susceptibility Map of where Willa made landfall shows a large 
area with an elevated probability of landslide; C) IMERG one-day’s precipitation accumulation product for all of October 23; D) the landslide one-day’s nowcast for the date Willa 
made landfall shows areas of moderate and high landslide likelihood caused by the storm’s heavy rainfall.1,2

A CB D



Monitoring Disasters  159158  GIS for Science

Category 5 Hurricane Dorian struck the northern Bahamas on September 1, 2019, 
and stalled there for more than 40 hours, causing heavy rain and catastrophic 
storm surge. By combining multiple days of GPM data, NASA created a total rainfall 
product to highlight hardest-hit areas, with some locations experiencing more than 
4 feet of rain. 

The National Oceanic and Atmospheric Administration’s Geostationary Operational 
Environmental Satellite (GOES-East) satellite provided rapid, highly detailed 
imaging so that forecasters would have critical information about the storm’s 
movement. However, the optical sensor could not detect flooding beneath the 
clouds while the storm moved slowly over the Bahamas. 

In the evening hours of September 2, 2019, the Copernicus Sentinel-1 satellite also 
passed over the Bahamas, with a synthetic aperture radar (SAR) system capable 
of imaging the land surface through Dorian’s clouds and rainfall. The SAR data, 
provided by the European Space Agency (ESA), were then processed into a Flood 
Proxy Map (FPM) by the Advanced Rapid Imaging and Analysis (ARIA) team at 
NASA’s Jet Propulsion Laboratory in collaboration with the Earth Observatory of 
Singapore.

To help communicate the benefits of SAR during these cloudy conditions, the 
NASA Disasters Mapping Portal built an interactive web app to display the FPM 
layer beneath GOES East imagery from the same time as the Sentinel-1 overpass. 
By moving the spyglass widget, users can view flooded regions, shown in blue, as if 
they were peering beneath the clouds. The yellow box indicates the extent of the 
SAR data collected, showing the limitation of SAR’s narrower but higher spatial-
resolution swath. Thanks to SAR’s cloud-penetrating capabilities, flooding could 
be assessed before the storm and associated clouds cleared, allowing emergency 
responders to act more quickly than if only relying on optical-based imagery.

HURRICANE DORIAN: OPTICAL AND SYNTHE TIC  
APERTURE RADAR (SAR) COMPARISON

GPM Total 2-day storm rainfall

Low: 4.16 mm

High: 1255.05 mm
The GPM total rainfall for Hurricane Dorian from August 30 
to September 4, 2019, shows some areas of the Bahamas 
received more than 4 feet of rain.

This web application uses a spyglass widget to let users see beneath the NOAA GOES-
East optical imagery of Hurricane Dorian, revealing a Copernicus Sentinel-1 SAR- 
derived flood proxy map that identifies areas likely flooded by the storm. The optical 
imagery and proxy map shown here were captured within minutes of each other.

This flood proxy map image, captured on September 4, 2019, shows heavy flooding 
(in blue) at the Grand Bahama International Airport (near the top of the image) and 
throughout the city of Freeport.

THE NORTHERN CALIFORNIA CAMP FIRE: NOVEMBER 2018

Taken on the morning of November 8, 2018, just a few 
hours after ignition, this Landsat 8 image shows how 
far the Camp Fire north of Sacramento, California  had 
spread by 10:45 a.m. By that evening, the fire had burned 
over 18,000 acres and remained zero percent contained. 
Shortwave infrared light highlights the active fire.

3 miles



Monitoring Disasters  161160  GIS for Science

Before disaster strikes, satellites sometimes can observe warning signs to assess 
changes in risk. Monitoring soil moisture and evapotranspiration can help detect 
when and where vegetation dries out, which creates additional fuel for wildfires. 
The Camp Fire in November 2018 saw dry conditions for an extended period of 
time because of persistent high pressure over the western United States. The 
vegetation dried out in the weeks before the fire, helping to fuel the destructive fire, 
which devastated the Northern California town of Paradise and surrounding rural 
communities, killing scores of people.

The Land Information System (LIS) relative soil moisture products from NASA’s 
Short-term Prediction Research and Transition (SPoRT) Center uses the Noah 
land surface model, real-time Suomi NPP (National Polar-orbiting Partnership) 
green vegetation fraction, and radar- and gauge-derived precipitation estimates 
to generate daily modeled analyses of soil moisture at 0–10 cm and 0–2 m depth. 
Values of zero percent indicate no moisture in the soil, and values of 100 percent 
indicate complete saturation. The near-surface 0–10 cm layer responds quickly 

to heavy rainfall, while the deeper 0–2 m layer 
represents longer-term water storage. 

The Evaporative Stress Index (ESI) is a four-week 
composite product updated weekly and reveals 
regions of drought where vegetation is stressed due 
to lack of water. ESI observes reduced rates of water 
loss through the use of land surface temperature 
(LST) before it can be observed through decreases 
in vegetation health, or “greenness.” When the 
lack of water stresses plants, they reduce their 
transpiration to conserve water by closing their 

stomata, leading to elevated leaf temperatures 
that can be observed from space. Healthy 

green vegetation with access to plenty of 
water generally warms at a much slower 

rate than dry and stressed vegetation. 
Based on observations of variation 

changes in land surface 
temperature, the ESI indicates 

how the current rate of 
e v a p o t r a n s p i r a t i o n 

compares to normal 
conditions.

During-event and post-fire analysis
As the Camp Fire spread across Butte County, California, in November 2018, the 
ARIA team at NASA’s Jet Propulsion Laboratory used SAR to pierce through the 
dense smoke and detect areas that were likely damaged by the fire. A Damage 
Proxy Map (DPM) is derived from SAR images from the two Copernicus Sentinel-1 
satellites, operated by the European Space Agency. The color variation from yellow 
to red indicates increasingly more significant ground surface change. Copernicus 
Sentinel-1 uses a C-band SAR, which cannot penetrate dense tree canopies, so 
underlying structural damage may not be detected in more heavily forested areas.

The California Department of Forestry and Fire Protection (CAL FIRE) provided 
ground-truthing data during the event, as shown by the colored houses in the figure, 
allowing NASA to calibrate observations used to create a more accurate DPM. As 
the fire continued to burn, additional DPMs helped CAL FIRE identify areas that 
required reinspection. The DPMs are designed to increase situational awareness 
of potential damage over large spatial areas.  The ability to “see” through smoke, 
clouds, and at night increase the amount of potential information sources during 
and post-event. Responders can quickly identify critical infrastructure and assets 
that may have been damaged using the Intersect tool with a vector version of the 
DPM. These maps are a form of change detection, measuring differences in the pre- 
and post-event SAR images that represent ground surface disturbance. 

The NASA Damage Proxy Maps helped CAL FIRE validate their damage inspection 
data and isolate areas that needed to be re-inspected. The layers were shared and 
added to maps in ArcGIS Online and compared to a  field-based damage inspection 
layer for discrepancies.  CAL FIRE plans to continue sharing data with NASA during 
large scale disasters using the same ArcGIS Online framework in the future.

SOIL MOISTURE AND EVAPORATIVE STRES S INDE X
Pre-fire analysis
The 0–2 m relative soil moisture product on October 8, 2018, shows little moisture 
across most of California, which remained dry for weeks before the Camp Fire on 
November 8, 2018. The shallow 0–10 cm relative soil moisture product shows some 
soil moisture that progressively dried out by October 22. The ESI shows mixed 
areas of low-to-high evaporative stress throughout October, but after weeks of dry 
soil weather, the vegetation quickly became stressed across the state, as shown on 
November 11. The combination of so much dry vegetation, warm temperatures, 
and dry winds contributed to the quick spread of the Camp Fire. Authorities and 
decision makers could use these kinds of soil moisture and evapotranspiration 
datasets in combination with other forecasts and models. This information would 
provide a more comprehensive picture to identify areas of concern and determine 
where to carry out mitigative actions and preparedness efforts.

These images show the relative soil moisture for the top 10 centimeters of soil from the 
Land Information System (LIS) on October 8 and 22, 2018, and the Evaporative Stress 
Index (ESI) for the weeks ending on October 8 and November 11, 2018. As the top 
level of soil moisture dried out evapotranspiration decreased, which could have lead to 
more stressed vegetation and an increase in available fuel load.4,5,6,7,8

This image of relative soil moisture from the Land Information System (LIS) on October 
8, 2018, shows the top 2 meters of soil were very dry weeks before the Camp Fire, which 
could have lead to more stressed vegetation and an increase in available fuel load.5,6,7,8

This Damage Proxy Map shows areas where property was likely destroyed by the 
Camp Fire. Color variation from yellow to red indicates increasingly more significant 
ground surface change, which may not be detected under dense tree canopies. The 
field-collected damage inspection layer from CAL FIRE depicts individual structures as 
houses, with yellow and red indicating partial or total damage; green indicates  
undamaged homes, with precious few showing in this view over Paradise, California.3 

This false color Landsat 8 image of the Camp Fire on November 8, 2018, used the thermal infrared band to show areas that were on fire at the time or had been recently burned. 
Dense smoke obscures the optical sensor-based image, so SAR was needed during the fire to evaluate conditions on the ground.
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2019 MIDWEST FLOODING
Starting in early 2019, much of the US Midwest across the Missouri River and 
Mississippi River basins experienced widespread flooding that continued through 
the summer and into the fall in some locations. Many areas saw record or near-
record high water marks, with some gauges above flood stage for more than four 
consecutive months.  Because of the long duration of the flooding and the large 
geographic area affected, satellite data proved to be invaluable in monitoring and 
documenting the extent of flooding throughout the event.

Scientists at NASA Marshall Space Flight Center (MSFC) and Goddard Space 
Flight Center (GSFC) produced water extents and flood maps using optical sensors 
(MODIS, Sentinel-2, Landsat 8) and SAR (Sentinel-1) to create a composite image of 
flooding from March through June 2019. Using a collection of different sensors with 
different spatial and temporal resolutions provided a more complete view of the 
flooding on days when clouds obscured flooding and when the higher-resolution 
sensors did not pass over the affected areas.

As the flooding continued through the spring, NASA scientists produced water 
extent maps that were given to partner organizations such as the Federal Emergency 
Management Agency (FEMA), the National Guard Bureau, and US Department of 
Agriculture (USDA). These updated water extents allowed response organizations to 
understand where and how the flooding evolved, what roadways and infrastructure 
were inundated, and where they needed to send new aid.

One of NASA’s main partners was the USDA National Agricultural Statistics 
Service (NASS), which used the water extent raster data to help produce its own 
products addressing the impact of the flooding on croplands in the region. With 
flooding inundating so much cropland through spring, these water extents helped 
organizations make decisions related to food security and crop management.

March 2019

Louisiana
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Texas

Arkansas

Tennessee

Kansas

Missouri

Illinois

Nebraska

Iowa

Oklahoma

May 2019

June 2019

Accumulated anomalous 
water events by month 

Composite map of all water extents created by NASA scientists showing anomalous 
water based on the month the images were captured. Composite map used data from 
Copernicus Sentinel-1 and Sentinel-2, Landsat-8, and MODIS. Images are from March, 
May, and June 2019. Note: this map is not a complete view of all flooding that occurred 
over the time period. Some areas may not have been mapped or may have been ob-
scured by cloud cover when satellites passed overhead.

Before and after comparison of flooding on the Missouri and 
Platte Rivers south of Omaha, Nebraska using Copernicus 
Sentinel-2 natural color RGB. 

Left: March 21, 2018. Right: March 21, 2019.

Flooding on the Mississippi River on March 22, 2019, captured using three different 
views from Copernicus Sentinel-2. Left: True color. Center: Natural color.  
Right: Modified Normalized Difference Water Index (MNDWI).

Water

Modified normalized
water index (mNDMI)

Land
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HURRICANE MARIA: BL ACK MARBLE HD
Hurricane Maria made landfall on Puerto Rico on September 20, 2017, as a Category 
4 hurricane, causing widespread destruction across the island, including its 
infrastructure. Because of the island’s terrain and the magnitude of damage to the 
electrical grid, much of the island suffered from power outages lasting more than 
six months in some areas, as seen in the large map shown here. Prolonged power 
outages can result in disruptions of vital services such as medical treatments and 
procedures, access to medical records, communication, and the storage of goods 
that require refrigeration. 

Black Marble HD, developed by Dr. Miguel Román and a team of NASA scientists 
from Goddard Space Flight Center (GSFC) and Marshall Space Flight Center 
(MSFC), uses Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band 
(DNB). These data were processed and corrected to filter out stray light from 
the moon, fires, airglow, and any other sources that are not electric lights. Their 
processing techniques also remove as much other atmospheric interference—such 
as dust, haze, and thin clouds—as possible. To make the VIIRS data more useful to 

first responders, the team scaled the observations onto a basemap and incorporated 
high-resolution GIS data from OpenStreetMap to emphasize locations of streets and 
neighborhoods.

Ongoing research and development of the Black Marble HD continues under the 
guidance of Dr. Miguel Román, director of the Earth from Space Institute at the 
Universities Space Research Association, where the product continues to show value 
in other recent disaster response and recovery scenarios.

Understanding what areas of Puerto Rico were still experiencing power outages can 
help decision makers monitor the long-term recovery efforts across Puerto Rico. This 
understanding helps responders to identify locations that need additional resources, 
have compromised logistical infrastructure leading to lack of fuel and supplies, are 
more at risk from cascading effects such as food insecurity, and are vulnerable to 
impacts from compounding hazards, such as earthquakes or additional hurricanes.

This figure shows the estimated number of days without power 
for the entire island of Puerto Rico, with some rural communities 
experiencing more than 120 days (four months) without power.9,10 0 60 180120

Days without power

Baseline

September 27-28Los Muñoz
 Marín Airport

San Pablo
Hospital

Nighttime lights

MoreLess

The images show the sharp reduction in nighttime lights across the island 
on September 27-28 after the landfall of Hurricane Maria. Rural areas across 
the island were hit hardest by power outages and experienced more long-
duration power failures than urban areas.9,10
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AUSTRALIA FIRES: SMOKE PLUME DATA ENDNOTES
On December 16, 2019, NASA’s Terra satellite flew over the eastern coast of Australia, 
capturing the height of smoke plumes emanating from the fires with its Multi-angle 
Imaging Spectroradiometer (MISR) instrument. The original 2D raster showed 
heights up to 4.5 km above Earth’s surface, but the structure of the plumes was 
difficult to visualize. 

For the first time, MISR data were converted to 3D and visualized in an interactive 
web application by extracting point values from the 2D raster into a comma-
separated values (CSV) file and plotting the point data in 3D. This conversion 
allowed users to view the plumes from many different angles to see how they varied 
in structure.

These Earth-observing satellite data provide researchers and disaster management 
agencies with the “big picture” of the location and intensity of fires in the region and 
give an idea of where the smoke is being transported. The data can also be used to 
initialize air-quality and chemical transport models. In particular, plume elevation 
data from MISR can greatly improve the accuracy of models in predicting where the 
smoke will go and what regions may be affected downwind.  

While the data were visualized after the event, the Australian Bureau of Meteorology 
(BOM) is incorporating MISR data and other NASA data sources into its air-quality 
models to improve accuracy for future forecasts.

The plume heights in this image are represented as spheres, with progressively lighter colors for higher ele-
vation. The height has been visually exaggerated 20 times to better see the details in the data. The 2D raster 
is shown on the ground for comparison. In addition, “hot-spot” data from the Terra satellite’s MODIS instru-
ment are shown as red spheres on the ground, indicating areas of active fires. The base layer of natural-color 
imagery is from MISR's nadir-viewing camera.
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Image captured from video made during blue catfish drone survey. The green rectangles 
represent individual catfish recognized by the full-motion video (FMV) software in processing.

By William Shuart, Virginia Commonwealth University; and Rohit Singh, Lain Graham, and Gerald Kinn, Esri.

The blue catfish is an invasive species that is wreaking havoc in the Chesapeake Bay. Scientists are using drone imagery, artificial 
intelligence (AI), and GIS as they probe to understand the full scope of the problem.

ENVIRONMENTAL MONITORING
WITH DRONES AND GEOAI  
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The application of small unmanned aerial vehicles (UAVS; also known as drones)to 
geospatial investigations has exploded in just a few years’ time. The new ability to 
place a camera several hundred feed above the surface is much less costly th,mman 
using traditional aircraft and delivers data in extraordinarily high resolution. Drones 
are highly maneuverable and can carry a wide variety of imaging sensors. Thus, they 
return accurate and actionable information and can solve time-sensitive problems 
that require high resolution.  

This is a story about blue catfish and how to count them using drones. A notorious 
invader to the Chesapeake Bay region, the species has had an outsized impact on 
that watershed’s ecosystem. In the context of this chapter, we will go “back to the 
future,” introducing geospatial data collected via drones. These extremely large 
datasets are big data, and distilling them requires machine learning, artificial 
intelligence, and GIS software. 

In this example, instead of attempting to collect and count fish from a boat in real 
time or even take low-angle photos to count from later, researchers achieved a 

WHY AI AND DRONES? INTRODUCED SPECIES
literal birds-eye view using drones. Specifically, drones view and capture data that 
researchers can process and review back in a lab for accuracy. Gathering these data 
has become a simple and repeatable process, but the sheer volume of data presents 
a new issue. But the ease in gathering so much data so often also requires new 
methods for reviewing it all. Fortunately, automated intelligence—specifically the 
fusion of GIS, AI, and GeoAI—unlocks these massive datasets for review, resulting 
in deeper understanding.

The term GeoAI is used to describe the use of artificial (and automated) intelligence 
to solve a geospatial problem. This chapter discusses the problem of catfish as 
an invasive species outside of their native watershed. To address this geospatial 
problem, researchers examined the size of a catfish population in place and time. 

This emerging application of drone-based imagery has a new name: computer vision. 
It leverages images and video to train computers to see what the human eye can see, 
with the goal of achieving higher-level understanding.

The blue catfish (Ictalurus furcatus) is the largest species of North American catfish. The 
fish is considered an invasive pest in some areas, particularly the Chesapeake Bay. Because 
blue catfish tolerate brackish waters, it can colonize inland waterways in coastal regions. 

Species migration and colonization of new habitats through natural dispersion or 
movement processes have allowed species to expand their range and colonize new 
ecosystems for millions of years. The ability for plant seeds to be dispersed, fish to 
tolerate flooding and salinity changes, and birds to fly thousands of miles enables 
species to limit competition for resources and increase populations. However, 
during the past 200 years, humans have accelerated this process—sometimes 
purposely transporting species from one location to another. Examples include 
introducing an animal for harvesting (nutria), birds and frogs for controlling bugs 
(European starling and cane toad), plants for adorning gardens (kudzu), and fish for 
sport fishing and food (blue catfish). 

When a species is moved or is found outside of its normal range, it is referred to 
as introduced. Species that are introduced into a new location or environment 
may have the ability to outcompete native species or possess abilities to change or 
modify that new habitat or environment. This is referred to as an invasive species. 
Species introductions sometimes can be unintentional, or passive, such as when 

ships take on ballast water for buoyancy in one location, travel to another location, 
and then deposit that water (and everything in it) with potentially new and invasive 
organisms into a new location and environment. This process and mechanism are 
how zebra mussels (Dreissena polymorpha) were introduced into the Great Lakes 
and have dramatically changed the Great Lakes ecosystem in many negative ways. 
The introduction of non-native (and usually invasive) species is sometimes referred 
to as biological pollution. The US map of non-native species highlights the extent of 
that distribution showing the number of occurrences in each county of introduced 
species.

However, humans have also performed strategic introductions of species into new 
environments, for example to control other species—some that are even introduced 
themselves. For example, grass carp (Ctenopharyngodon idella) were introduced 
in the 1960s in New Zealand to control invasive aquatic vegetation and have since 
been used in 45 of the 50 US states. We also introduce species for food sources 
through aquaculture processes and for recreational purposes.

Definite and unsurprising 
patterns emerge when
invasive species are mapped 
across the contiguous 
United States.
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Blue catfish are native to the Mississippi, Missouri, and Ohio River basins of the 
central and southern United States, where it supports both recreational and 
commercial fisheries (see catfish range map). Beginning in 1974, the Virginia 
Department of Game and Inland Fisheries introduced more than 300,000 juvenile 
blue catfish into coastal rivers of Virginia to establish self-sustaining recreational 
and commercial fisheries, starting with the James and Rappahannock rivers, and 
ending in 1985 with introductions into the York River system. Because blue catfish 
can live longer than 20 years, weigh more than 100 pounds, grow longer than four 
feet, and have a unique taste, they have been introduced into many rivers, lakes, and 
estuaries throughout the United States.

Blue catfish have a vast salinity tolerance of almost half seawater (15 parts per 
trillions for 72 hours) enabling them to survive and reproduce in freshwater riverine 
and estuarine systems. They are opportunistic predators, and familiar prey include 
macroinvertebrates, blue crabs, and many other fish species. Studies have shown 
that blue catfish have taken the apex predator spot, feeding higher on the food 
chain than striped bass and other predators in the Chesapeake Bay since their 
introduction.
 

The introduction of blue catfish into the Chesapeake Bay brought thousands of fish 
native to the Mississippi River into the Rappahannock and James Rivers. But the 
nutrient-rich habitat was too good for the blue catfish. They became abundant and 
navigated into waters where they had never been recorded before. 

The term, trophic position, refers to the position an organism occupies in the food 
web. Blue catfish eat almost anything—including blue crabs, insects, plants crabs, 
that native fish need to survive, and they also eat other fish. For these and other 
reasons, their relatively high trophic position in the Chesapeake Bay watershed 
threatens the ecology and economy of the highly valued waters. The Maryland 
Biological Stream Survey and the Virginia Healthy Waters Program have identified 
and mapped these waters and the threats to the ecosystem brought on by the 
explosion of blue catfish populations.

INVA SIVE CATFISH THRE ATENING NATIVE SPECIES
Blue catfish also support important recreational fisheries, including a nationally 
recognized trophy fishery in the James River, Virginia, where one-third of total 
recreational fishing effort for freshwater species is directed at catfish. The species 
represents a large support base for recreational fishing and income for the agencies 
managing the fishery stocks. Blue catfish mature at about two-feet long or about 
three years of age. They have a high reproduction rate and continue to grow in 
length and weight as long as they live. 

Recreational fishing license sales increased in Virginia, and commercial harvests 
also increased dramatically since the 1970s. However, the introduction of the 
species significantly altered the ecosystems of the estuaries and lower Chesapeake 
Bay rivers.

All the reasons why blue catfish were originally stocked in Virginia are also the 
reasons why the species has become invasive in the Chesapeake Bay ecosystem. 
Since the introduction of blue (and flathead) catfish, an additional trophic layer was 
added, because these introduced predators feed off several different groups.

 
Invasive species threaten healthy ecosystems. 
This map shows the high-valued aquatic 
ecosystems in Maryland and Virginia and the 
current extent of blue catfish. 

The intentional introduction of the blue catfish 
for sport fishing in the 1970s has degraded the 
Chesapeake Bay marine ecosystem by greatly 
reducing the presence of many native species. 
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Catfish are demersal—they live near the bottom—and collecting data on catfish 
involves several different kinds of equipment and methods. Trawling involves 
dragging a net behind a boat at a certain depth, bringing the net up, and then 
sorting the different species and counting the individual catfish. While this method 
works, you can’t target just one or two species of interest. You must bring up all the 
fish, including potentially threatened and rare species.

This method stresses all fish and takes time to sort out the species. A newer method 
is called low-frequency electrofishing, which despite the name is harmless to fish. 
With specialized equipment and a special power generator on board, a boat crew 
can place low-frequency and low-voltage current in the water. Because catfish live 
on the bottom, they respond to the electric current by swimming off the bottom to 
the surface. Scientists then use nets to pull fish onto the boat. Electrofishing allows 
scientists to target only catfish rather than other types of fish species, limiting 
interactions with other potentially threatened and endangered species.

Commercial and recreational fisheries
A current effort in Virgina allows low-frequency electrofishing to harvest blue 
catfish. This effort has proved very effective and profitable while not harming other 
species. Commercial landings of blue catfish throughout the past 30 years have 
increased.

Because blue catfish are now the apex predators in the Chesapeake Bay estuary, they 
are also susceptible to environmental contamination and biomagnification. Several 
harmful environmental disasters have occurred in the James River that released 
polychlorinated biphenyl (PCBs), Kepone (an insecticide), and other chemicals 
that biomagnify— increase in concentration—as the trophic level increases. Blue 
catfish have shown increased levels of these and other contaminants. The Virginia 
Department of Health has set a limit on how much blue catfish an individual can 
consume: fewer than two servings per month, and in some areas they recommend 
not eating them at all. However, many recreational fishers consume blue catfish as 
part of their sustenance. “Catfish Fry” gatherings are an enduring regional tradition.
  

Population size, age, and weight
After collecting the fish, researchers record the length and weight of each fish and 
create “growth curves” for individual species. If researchers collect enough data, 
they can estimate the health of specific fish populations. Each species has a unique 
curve, which can change depending on location, diet, and stress. For example, blue 
catfish can weigh upward of 90 pounds (the Virginia record is 143.3 pounds), but 
they are not very long fish. Fish weighing 50 to 80 pounds are not uncommon.

To determine the age of a fish, researchers can also count annulus rings on either the 
spine or the inner ear bone (called an otolith). This method uses the same principles 
as counting the rings to age trees. The data collection is labor-intensive. Every 
fish must be examined. Historically this method has been the only way to collect 
the data required to make informed decisions about fish stocks. Compounding 
the collection problem, researchers cannot achieve accurate results because it is 
difficult to catch, measure, and weigh a certain individual fish species in an area of 
interest. Electrofishing causes catfish to rise to the surface over a wide area, but the 
boat can cover just a small portion of that area.

Enter the drone.

A drone flying at low altitude can capture images of surfacing catfish with relative 
ease, technically speaking. The challenge is to convert that raw imagery into 
quantifiable data. 

For this groundbreaking effort, a proof of concept used two different UAV 
platforms—the 3DR Solo equipped with a GoPro Hero camera and a DJI Mavic Pro 
2 with a built-in camera—to obtain videos that can be multiplexed with the plug-in 
ArcGIS Full Motion Video. Multiplexing in this context is the process of combining 
the two files containing the video and metadata files to, in effect, georeference the 
video frames.

Videos of commercial electrofishing and fish collection were formatted and then 
multiplexed to insert the timestamp, location, and orientation into the videos. 
Researchers can then read, play, and digitize the multiplexed movies in ArcGIS Pro. 
Researchers can count, measure, and do other kinds of things frame by frame and 
save those edits to a geodatabase. But thousands of fish are seen every second in 
the video, so they had to come up with a different way to analyze them: filtering. To 
borrow from Esri’s latest campaign, “see what others can’t” also implies only seeing 
what you want or need from a dataset. In this case, researchers were interested in 
catfish, not birds or waves or the boat.

But even the process of counting and measuring each fish manually on a computer 
took too much time to be efficient. Fortunately, AI and machine learning have made 
rapid progress in recent years. Computer vision—the ability for computers to see—
is now real, cost effective, and viable. Researchers can use deep convolutional neural 
networks (deep learning) to automate the task of detecting catfish from the drone 
videos and provide estimates of their size, and hence their age and growth statistics.
In computer vision, this process is known as object detection. Deep-learning-based, 

TRADITIONAL DATA COLLECTION INTEGRATING DRONES IN FIELD SCIENCE

Growth curve of the blue catfish.

Blue catfish grow rapidly. The specimen on the right is approximately 12 months old.

Electrofishing research vessel in operation.

Collecting and formatting the video and flight metatdata are two important steps to ... ?

Low-frequency 
emitter

object-detection models can detect objects of interest in imagery and report their 
location in terms of bounding boxes. Researchers can use bounding boxes to  
estimate the size of each fish, and the number of boxes represents their population. 
Since the video is geospatially enabled with the flight log, sensor dynamics, and field 
of view (FOV) information, researchers can translate these measurements from 
image space to map space, thereby enabling analysis within the correct geographical 
context.

Deep learning “learns” by looking at multiple examples of objects that it needs to 
recognize. The team used ArcGIS Pro to mark the location and size of each catfish 
in several frames of the georeferenced video. This process served to train the deep 
learning model.

However, these data cannot be directly fed into the deep learning model. Training 
deep convolutional neural networks with millions of parameters is computationally 
expensive and is typically performed on GPUs that have limited memory capacity. 
So the training data are fed into the models and processed on the GPUs in small 
batches, consisting of sub-images, also known as image chips, along with their 
labels, that is the attribute about the objects contained within those chips and their 
bounding box locations.

The team used the Export Training Data For Deep Learning tool in ArcGIS Pro 
to export training samples in the PASCAL_VOC_rectangles (Pattern Analysis, 
Statistical Modeling, and Computational Learning, Visual Object Classes) format. 
This PASCAL VOC dataset is a standardized image dataset for object class 
recognition. The label files are XML files and contain information about image 
name, class value, and bounding boxes.
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TRAINING THE CATFISH DE TECTOR DE TECTING CATFISH
In the next step, researchers used Jupyter Notebooks and the arcgis.learn module 
in the ArcGIS API for Python to train the catfish detection model. The arcgis.learn 
module (not to be confused with the teaching site ArcGIS Learn) is built on top 
of fast.ai and PyTorch and enables the training of highly accurate models with a 
few lines of code. The type of model trained here was the SingleShotDetector, so-
called because of its ability to find all objects in an image (chip) in one pass of the 
convolutional neural network through the image. We customized the model by 
having it use a ResNet101 backbone, as opposed to a standard ResNet34 backbone. 
This convolutional neural network is more powerful, consisting of 101 layers that 
allowed the team to train a more accurate model.

Additional scripting applied data augmentation techniques, such as randomly 
zooming, rotating, and flipping the images, which enabled the training of a model 
with limited data and thus better generalizing over unseen images.

Deep learning models must be initialized with a learning rate. Researchers must set 
the value of this important hyperparameter before the learning process begins. The 
learning rate determined how the researchers adjusted weights for their network 
concerning loss gradient. The ArcGIS.learn module leverages fast.ai’s learning rate 
finder to find an optimal learning rate for training models. They trained the model 
over 300 epochs (or passes through the entire training dataset), using the suggested 
learning rate. The trained model could then detect catfish fairly well, as seen in the 
side-by-side visualized results.

Researchers used the trained model to detect catfish in georeferenced video frames 
using the Detect Objects Using Deep Learning tool in ArcGIS Pro. Python API  
additionally can apply the trained model to a video and save the detected features as 
Video Moving Target Indicator (VMTI) graphics in the multiplexed full-motion video 
(FMV). This enabled the team to visualize the detected catfish in their geographical 
Additionally, a CSV file containing the location and size of the detected catfish in 
each frame of the video was created, enabling the performance of downstream 
analysis tasks, such as estimating the catfish population and inferring their age and 
growth statistics.
 

Time and resources
Once the drone video is multiplexed and brought into ArcGIS Pro, users can perform 
many functions, such as measuring and adding points to a geodatabase. From this 
video at 30 frames per second and a length of 8 minutes, a researcher would have 
to examine 14,400 frames to count and measure individual fish. The GeoAI process 
provides a method that gives results in a few hours compared to several people 
spending potentially weeks on the same video. Now, the actual science process can 
keep up with data acquisition as opposed to videos sitting in storage and not being 
maximized.

Visualizing results of catfish detector. The “ground” truth is shown on the left, and 
the model's predictions on the right. In some cases, the model has detected catfish 
that were inadvertently missed while labeling them.

Going back to the future
The population estimates for fisheries species are only as good as the data 
that researchers and managers are able to produce. Researchers at Virginia 
Commonwealth University have studied blue catfish populations and their impacts 
on the Chesapeake Bay ecosystem for more than 30 years. The studies found declines 
in native fish species and replacement by other species, bioaccumulation of heavy 
metals in blue catfish, and other impacts, yet recreational and commercial fishing 
thrives. The challenge has always been to produce an accurate estimate of the size 
and age of catfish populations in order to provide baseline data on which to base 
management decisions.

Drones now serve as a tool to supplement the current work of accurately detecting, 
counting, and sizing of catfish. Using a combination of accurate hands-on work 
with the latest technologies, researchers can use data developed from the GeoAI 
process to determine the abundance and growth of blue catfish in the ecosystem.

Fish counts extracted from video imagery as seen in ArcGIS Pro interface. The detector picks up most of the fish in each frame of the video (30fps) and detects nearly 
all fish that come in contact with the surface. 

Three distinct technologies—electrofishing, machine learning, and UAVs—
combine to turn chaotic video into quantifiable blue catfish population data.
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ENDNOTES

Federal and state 
government ggencies

Non-governmental organizations

Commercial fisheries

Seafood industry

Recreational fisheries

Researchers

Natural resource (fisheries) biologists, 
managers, and planners 

Environmental education and awareness, 
citizen science, environmental advocacy

Commercial fishers, regulating agencies, 
related economic interests

Seafood processors, marketers, distributors

Fishing guides; licensed recreational 
fishers; ecotourism and non-consumptive 
users; related economic interests

Academic and agency 
biologists, ecologists, and 
environmental managers

Information: effects of invasive predators 
(e.g., blue and flathead catfish) and fishery 
policies on Chesapeake Bay living resources.

Information: Statistics on fishery effort; catch, 
harvest, recruitment, and population growth; 
ecological benefits from invasive species.

Information: blue catfish seasonal and geographic 
distribution; relative abundance; gear efficiency 
and bycatch; effect of regulations on profitability 
and sustainability; effect of invasive species on 
commercially important native fisheries.

Information: basic biology and ecology; 
invasive species biology;  interactions 
with native species; and restoration 
potential of invasive species removal by 
commercial harvest.

Information: avoiding user conflict 
with commercial fishers; population 
growth and size structure; effect of 
fishing regulations; effect of invasive 
species on native fishes.

Information: potential demand; product 
quality and sustainability; marketing as an 
environmentally friendly product.
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PART 4 
TECHNOLOGY SHOWCASE
This book has already shown how science goes hand in hand with technology (engineering). One of the 
most exciting trends of the modern age is how science leverages the exponential power and assistance 
of artificial intelligence (AI) to help address the unprecedented challenges facing humanity and the planet, 
including climate change, water scarcity, global health crises, food security, and loss of biodiversity. GIS 
technology is no different; it extends our minds by abstracting our world into knowledge objects that 
we can create, replicate, and maintain. These knowledge objects include data, imagery, and models that 
explain process and workflows, as well as maps that communicate and persist in apps. Enjoy this section 
of vignettes on GIS technologies that help create new systematic frameworks for scientific understanding.

The world according to Spilhaus. Currents derived from maps.com 
 “Major Ocean Currents” source feature layer Living Atlas.  
Basemap from NASA Visible earth bathymetry and natural earth land features.
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To see the oceans, slice up the land
Most maps portray Earth’s surface so that the edge of the map slices some features. Because maps commonly focus on the land and 
its features, they often portray oceans on the edges and split them. For example, pseudocylindrical world maps centered on the 
Greenwich Prime Meridian divide the Pacific Ocean into two parts, depicted along the left and right edges. Oceanographer Athelstan F. 
Spilhaus wanted exactly the opposite, with all the oceans in the middle, sharing a global coastline. To accomplish his goal, projection 
interruptions must occur over land. For the suitable edge, Spilhaus delineated half of a great circle starting in South China at 115°E and 
30°N, ending in Argentina at 65°W and 30°S, and passing near the Bering Strait (which Spilhaus considered to be “so shallow and narrow 
that it constitutes no real oceanic connection.”). These start and end points represent the “poles” projected into the diagonally opposite 
corners of the projection square and absorbing much of the areal distortion. This edge also interrupts waters in the Sea of Okhotsk, the 
Bohai Sea, the Gulf of Mexico, near the Gulf of Panama, and along the Peru–Chile Trench. Hence, these areas are repeated at the ocean’s 
perimeter when they are crafted into the Spilhaus World Ocean Map.

An oblique aspect of the Adams Projection of the World in a Square II
Spilhaus never published exact projection equations for his map, unfortunately. To implement it in GIS software, forward and inverse 
equations are needed, not only for spherical Earth models, but also for ellipsoidal models, such as World Geodetic System (WGS) 1984. 
Spilhaus created his World Ocean Map using an oblique aspect of the Adams Projection of the World in a Square II. Oscar S. Adams 
introduced this projection in 1929, which has remarkable similarities to the Spilhaus map. Both are conformal and portray the world in 
a square, and both greatly distort areas near the two diagonally opposite corners. Distortions in the other two corners are smaller. Just 
like the Spilhaus map, the Adams projection can also be mosaicked into an infinitely continuous map of the world.

The Adams projection can be used to reverse-engineer Spilhaus’s exact configuration by setting the edge of the map near the Bering 
Strait. Adams derived the equations for his projection first by conceptually shrinking the world into a hemisphere while maintaining 
conformality. Then he applied elliptic functions previously used by Charles S. Peirce and Émile Guyou to project the curved surface 
onto a plane. Adams presented the forward equations for spherical Earth models only (and also only in an equatorial orientation). 
However, most of today’s geospatial data is defined based on ellipsoidal models, such as WGS 1984 or Geodetic Reference System (GRS)  
1980. In modern GIS, one also needs the ability to convert projected data back to geographic coordinates, requiring inverse equations. 
The forward and inverse equations for ellipsoidal Earth models can be achieved by converting geodetic coordinates to a conformal 
sphere, conformally shrinking the model to a hemisphere, and resolving a complex elliptic integral of the first kind. Esri developed these 
equations for the Adams Square II projection, available in the latest version of ArcGIS.

The Spilhaus projected coordinate system and the map
The Spilhaus World Ocean Map in a Square or “Spilhaus projection” is also available in the latest ArcGIS software as the WGS 1984 
Spilhaus Ocean Map in Square projected coordinate system. Its well-known ID is 54099. The projection parameters are derived from the 
edge of the map passing through the same three points used by Spilhaus, starting in South China, passing across the Bering Strait, and 
ending in Argentina. The only difference is that the edge does not represent a great circle on a sphere but rather a carefully crafted curve 
on the surface of the WGS 1984 ellipsoid passing exactly through all three points of the edge.

Creating a continuous world ocean map
The WGS 1984 Spilhaus Ocean Map in a Square projected coordinate system cannot repeat areas, so a single instance of the map will 
appear to be clipped along the edge of the Gulf of Mexico and the Bering Strait. A visually pleasing layout without apparent clipped 
edges can be crafted in ArcGIS in three steps. First, duplicate an already-styled map four times within a layout and position them at each 
of the four edges of the center map. Second, rotate each of the four perimeter maps such that its coastal edge aligns with its neighbor. 
The repeated portions of water along the edge provide a sense of continuity. Finally, and optionally, overlay a visual graphic to occlude 
the overly redundant areas in the layout, or simply position the underlying layout to clip the perimeter maps to your preference. The 
result is an uninterrupted world ocean map. Understanding its areal distortion, and therefore limitations for thematic mapping, the 
unique perspective of the Spilhaus World Ocean Map in a Square justifies its use for important, highly visual messages about the largest 
ecosystem of our planet.

The Spilhaus world ocean map in a square presents Earth's 
oceans as a singular, uninterrupted body of water—which they 
truly are. This unique, ocean-centric perspective of our world 
was first published in November 1979 by Athelstan F. Spilhaus, 
a South African-American geophysicist and oceanographer, 
in collaboration with Robert Hanson and Erwin Schmid, two 
geodesists of the former US Coast and Geodetic Survey.

THE SPILHAUS WORLD OCEAN MAP A MAP THAT DEPICTS THE OCE ANS A S ONE CONTINUOUS BODY OF WATER
Bojan Šavric, John Nelson, and David Burrows, Esri



In December 2019, an outbreak of a pneumonia-like disease was reported in Wuhan City, 
China.The virus was named COVID-19. By the time the virus was properly identified by the 
World Health Organization (WHO) and Centers for Disease Control (CDC), coronavirus cases 
were reported in other regions of China and beyond.
 
In early February 2020, Lauren Gardner, director of the Center for Systems Science and 
Engineering and a civil engineering professor at Johns Hopkins University ( JHU), led a team to create a 
dashboard showing the coronavirus outbreak. Its objective was to use the dashboard to help monitor and 
visualize reported cases on a global scale.

The JHU Coronavirus COVID-19 Global Cases Dashboard reports case locations and key performance indicators, such as 
confirmed cases, deaths, and recoveries. Confirmed cases can be filtered by country, and, in the United States, further filtered by 
state. Serial charts show data trends over time.

By early March, many other countries began reporting COVID-19 cases. Several hundred different dashboards have been created 
to help monitor the outbreaks. Some are designed for country-specific or, in the United States, state-level data. Variations of the 
dashboards have also been created to support viewing on mobile devices..

Additional publishers of public COVID-19 dashboards include WHO; United Nations World Food Programme–Division of Emergencies; 
Philippines Department of Public Health; Singapore Ministry of Public Health; Thailand Ministry of Public Health; the United Kingdom 
Department of Public Health; the Government of Hong Kong; JAG Japan Corp (an Esri partner); and Esri offices in Germany, Korea, Hong 
Kong, Portugal, Spain, and Turkey.

To learn more about ArcGIS Dashboards and visit the live apps mentioned above, visit:

						      GISforScience.com

Dashboard and map, coronavirus outbreak, March 9, 2020, by Johns Hopkins University, Center for Systems Science and Engineering.

COVID-19 DASHBOARDS
MONITORING A PANDEMIC
Derek Lawi, Esri



When harmful red tides form off the coast of Florida, the state's Fish and Wildlife 
Research Institute (FWRI) is there to collect data and document the phenomenon.  
A red tide, or harmful algal bloom (HAB), occurs when colonies of algae grow 
in abnormally high concentrations and produce toxins that can harm marine 
ecosystems and public health. In Florida and the Gulf of Mexico, the species that 
causes most HAB events is Karenia brevis, which in high concentrations discolors 
water a reddish-brown hue, hence the name red tide. By understanding the spatial 
and temporal dimensions of the red tide observations, the FWRI can implement 
targeted monitoring research strategies to reduce the cost and improve the 
efficiency of sampling efforts.

Understanding red tide data spatially
Identifying areas of high values (hot spots) and low values (cold spots) using the 
ArcGIS Hot Spot Analysis® tool is one of the most common ways to start exploring 
and analyzing data spatially. Using the Getis-Ord Gi* statistic can identify 
statistically significant clusters of high and low red tide observations. Applied to the 
FWRI red tide data, this technique found a statistically stronger presence of HAB 
along the southwestern Florida coast extending all the way to the embayment area 
in the northwest.  

Visualizing the red tide data temporally
The duration of algal blooms varies based on physical and climatic conditions. We 
can leverage the data clock temporal chart to understand these patterns and the 
data in time. A data clock visually summarizes temporal data into 2D and reveals 
seasonal or cyclical patterns and trends over time. The temporal distribution of red 
tide in this chart reveals a higher frequency of red tide observations in the months 
of fall. The blooms mostly occur from September to November. In some years, the 
bloom’s  stay was short-lived, but in most years the red tide continued into the 
winter months.

Mapping  the red tide data in space and time
Powerful 2D and 3D visualization techniques and integrated trend analysis help 
us visualize and analyze the presence of blooms simultaneously in space and time. 
The Create Space Time Cube. By Aggregating Points tool in ArcGIS Pro summarizes 
a set of points into a netCDF data structure that can be thought of as a 3D cube 
made up of space-time bins. A common way to aggregate points spatially is to 
aggregate them to a regularly shaped grid (either a fishnet or hexagon shape). 
 

 

A space-time cube was created by annual aggregation of red tide observations to 
hexagon bins with a spatial extent of 10 square kilometers. Any missing data, which 
is common in monitoring and sampling data, were filled with the average value of 
space-time neighbors. The map shows a 3D visualization of the space-time cube in 
which each bin represents the number of red tide observations in a year for each 
location. ArcGIS Pro includes many display options, all with preset symbology 
and range and time sliders that make the exploration of the space-time cube and 
analysis results intuitive.

To quantify and understand the patterns in these thousands of stacked bins, we can 
visualize the cube in 2D and calculate trend analysis. Trends analysis in the Visualize 
Space Time Cube In 2D tool shows where the red tide observations have increased 
or decreased over time using the Mann-Kendall statistic. The dark-green locations 
show a downward trend in the observations. The locations in dark purple have an 
upward trend of red tide observations with 99 percent statistical confidence. The 
results are consistent with the spatial analysis using the Hot Spot Analysis tool. The 
areas in southwestern Florida near Tampa Bay mostly show an upward trend. The 
embayment areas behind the barrier islands such as the Apalachicola Bay and St. 
George Sound, where the tributaries drain nutrient-rich water, also show an upward 
trend. 

Using visualizations and analysis in space, time, and space-time helps us better 
understand the patterns of red tide in Florida's coastal waters. These visualizations 
are just a subset of many methods you can use to explore and analyze space-time 
data in ArcGIS Pro.

Up trend—99% confidence
Up trend—95% confidence
Up trend—90% confidence
No significant trend
Down trend—90% confidence
Down trend—95% confidence
Down trend—99% confidence

Space-time cube analysis
Areas near Apalachicola Bay, St. 
George Sound, and Tampa Bay 
show an upward trend in red tide 
observations over time. 

Hot spot analysis
Areas along Florida's west coast 
show statistically significant 
clusters of high and low red tide 
observations. 

Apalachicola Bay and 
St. George Sound

Tampa Bay

Cold spot—99% confidence
Cold spot—95% confidence
Cold spot—90% confidence
Not significant
Hot spot—90% confidence
Hot spot—95% confidence
Hot spot—99% confidence

3D map (detail) of red tide observations over time along Florida’s western coast.

In this map, hot spot analysis shows where red tide observations are high (hot spots) and low (cold spots).

In this map, trend analysis shows where red tide observations have increased or decreased over time.

This data clock shows higher 
frequencies of red tide observations 
along Florida's coasts in September 
and November.

Ankita Bakshi, Esri

EXPLORING SPATIO-TEMPORAL PATTERNS
MAPPING HARMFUL RED TIDE DATA
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Link analysis played a strong role in tracking the person-to-person transmission of 
the Ebola virus in Sierra Leone in 2014–2015. Link analysis uses graph theory for 
evaluating connections or relationships between nodes, where nodes can represent 
people, places, objects, and events. You can visualize the results of link analysis 
using an association matrix, or more typically, a link chart to evaluate the patterns 
of interest. Geographically, flow maps are used to show the movement of objects 
from one location to another. 

Link analysis
Several different measures of topological centrality are possible with link analysis, 
each of which seeks to answer a slightly different question. The degree of nodes 
shows the measure of centrality, and normalized centrality measures adjust for 
network size.

Degree centrality allows you to see what is f﻿lowing through the network and identify 
the most influential nodes. The important nodes are identified as those having the 
most connections. Degree centrality can have directionality so that nodes with 
higher out-degree values are more central, or nodes with higher in-degree are more 
important. Degree centrality is a local measure that considers a node’s importance 
within its locality, but not any indirect relationships.

Betweenness centrality measures the extent to which a node lies on paths between 
other nodes. Nodes with high betweenness are likely to have an important influence 
within a network by virtue of their control over information passing between other 
nodes. Removal of nodes with high betweenness from the network will have the 
greatest disruption on communications or flow across that network as they lie on 
the largest number of paths.

Closeness centrality is based on the average of the shortest network path distance 
between nodes and identifies nodes as being more central if they are closer to most 
of the nodes in the network. Closeness centrality is used to determine which nodes 
are most closely associated to the other nodes in the network.

Eigenvector centrality depends on the number of neighbors and the quality of its 
connections, with the most central nodes being important nodes that are connected 
to other important nodes. Eigenvector centrality is of value to determine the nodes 
that are part of a cluster of influence.

Link analysis together with spatial data analysis offer enormous value for 
epidemiological analysis of distributions, patterns, and determinants of health 
and disease conditions within populations. Understanding the development 

of epidemics caused by infectious diseases and 
the impact of interventions, together with an 
understanding of the geography of at-risk populations 
and potential transmission pathways, can help ensure 
effective responses in the future.

Pathways of transmission 
Infectious disease epidemiology can use link analysis 
to show connectivity of individuals or places. 
The measure of centrality allows the isolation or 
accessibility to be measured. If a link directly connects 
two nodes, these nodes can be evaluated as transmission 
events from individual to individual or place to place. These 
relationships indicate potential transmission pathways for 
infections between individuals or through populations.

Interactions between micro-organisms such as bacteria and 
viruses cause infectious diseases. Zoonotic diseases are infectious 
diseases of animals that can cause disease when transmitted to humans.

A transmission network can be created using individual data of infected people 
linked to those from whom they caught the infection and to any others they 
infected. This network will show all the links through which infection spread 
in the outbreak; however, it will not show interactions that led to infection 
transmission. Because nodes represent places at a population level, the nodes 
represent locations of high connectivity of infected cases, which together with 
population data can help define those areas where population interactions were 
highest.

West Africa, Ebola outbreak 2014–2015
Data from the World Health Organization shows Ebola cases in Sierra Leone 
from the 2014–15 Ebola outbreak in West Africa. Ebola, a zoonotic disease, 
spreads in the human population through human-to-human transmission. 
Home, infection, and death locations for known cases show the geographic 
spread, with the node sizes showing the degree centrality value of those locations.  

Research shows that during the 2014–2015 West Africa outbreak, the majority of 
transmission events occurred between family members. The link chart shows the 
relationships to known contacts with people diagnosed with Ebola. Understanding 
traditional practices and Ebola transmissions pathways ultimately led to changes in 
behaviors related to mourning and the adoption of safe burial practices.

MODELING RELATIONSHIPS 
USING LINK ANALYSIS
EBOL A OUTBRE AK , SIERRA LEONE 2014–2015
Linda Beale, Esri
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ArcGIS® Arcade is a simple scripting language for data in your maps.  Arcade frees 
you to explore anyone's published data, no download required, saving valuable 
hours of time. The expressions created in Arcade run on the fly, meaning you do 
not have to own the layer to calculate what you need for your map style, pop-up, or 
label. 

Smart mapping is built into ArcGIS Online as a simple workflow for exploring your 
data, trying various styles of maps that might suit your data, and polishing the map's 
final appearance.  Smart mapping takes the guesswork out of making great thematic 
maps by using data-driven styling and intelligent defaults. But how do these two 
capabilities in ArcGIS change how you understand and map your data? 
 
Arcade lets you explore and even extend the data without having to own it on a 
hard drive. Working with the data, you begin to see what you need for your map's 
symbols, pop-ups, and labels. 

Arcade expressions can be as simple as calculating a percentage, or converting a 
year from a string to a number. Other expressions use if-then logic to look at several 
attribute fields in each record and return an evaluation of that record's data. Many 
of the map styles available in smart mapping are rooted in Arcade expressions that 
find relationships and patterns hidden among the columns of attribute data. 

Crafting good maps traditionally requires authors to make dozens of inter-related 
decisions: what renderers, scales, basemaps, and colors to use; how many labels to 
use; how to classify the data; and whether the map needs boundaries, and if so, how 
to draw them. 

Smart mapping taps into that desire for an easier but also useful pathway. Once 
you choose one or more attributes or Arcade expressions to map, smart mapping 
examines the types of attributes you chose (text, numbers, date) and suggests map 
styles for you to use. It doesn't force you to use these settings. You can override the 
settings as needed. 
 
Iteration and exploration are founding principles of geographic visualization. Why? 
Because data are complex and no single depiction of the data can answer every 
question. Sometimes we start a project thinking we know what kind of map or 
treatment we need, only to find, after some exploration, there are more productive 
avenues to explore. Using Arcade makes it easier to uncover new patterns and share 
hidden insights within your data.

After settling on a map style, you then bring your expertise or research into play. 
The best maps use some kind of standard of comparison to communicate what's 
"normal" and what's not. You change the default colors and sizes to emphasize 
what's important and de-emphasize what is less important—just as a roadmap 
clearly distinguishes major highways from residential streets and filters out dirt 
roads altogether.  

Let's consider some real examples. Say you are a climate scientist and want to 
compare average air temperatures for two different years for a bunch of cities. 
You could make one map for each year and scan back and forth to try and spot 
differences. But Arcade allows you to calculate the difference in temperature 
between two years—on the fly—and makes it easy to see which cities are getting 
warmer or colder. The ability to derive new data from the raw data using Arcade 
expressions is the the real magic in cartographic analysis. 

Flexible data manipulation tools joined with flexible map visualization tools allow 
us to work at a pace unheard of in the past. You can say "show me only events 
that happened on Mondays" or "remove areas larger than 100 sq km and re-run" or 
"proportionally increase the symbol size of stores based on % year over year sales 
growth, because we need to see regional sales growth trends."
 
Arcade can also help connect people to your maps by changing data into information 
and insight. You can easily format facts in map pop-ups so they are easier to 
digest. Earlier map-making technology often required users to read pop-ups with 
capitalized field names that seemed to shout at the reader ("AVGTMP02: 65.66"). 
But testing shows people learn and recall better if that information is presented 
in the same way that we speak ("In July 2002, the average temperature in London 
was 65.7°F").  But why stop there? Facts are far more meaningful when they're 
contextualized. Arcade allows us to automatically derive context and significance 
for our information: "In July 2002, the average temperature in London was 65.7°F, 
while in 2019, it was 68.9°F (3.1 degrees higher)." Explaining information this way 
allows readers to uncover insights without having to do all the busywork. 

The old pattern was to dump the data onscreen and let readers sort it out, if possible. 
Useful pop-ups verbally reinforce the map patterns that smart mapping reveals. The 
goal of all useful and engaging maps—whether they're made for an audience of one 
or one million—is to turn data into insights and understanding.

Temperature departure in 24 hours

Red crosses are increases in temperature. 
The higher the increase, the more they lean 
to the right. Blue crosses indicate cooling 
temperatures; the more they lean to the left, 
the bigger the cooling trend.

< -20 > 200

+ ++ + + + + + +

Data provided by Accuweather.

SMART MAPPING AND ARCADE
TRANSFORM YOUR THEMATIC THINKING
Mark Harrower and Jim Herries, Esri
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Wildfires can spread quickly and destroy thousands of acres of land. In California, 
where many urban areas infringe on shrublands, these fires often threaten homes and 
and lives. The 2018 Woolsey Fire—a notably fierce and fast-moving blaze—killed three 
people, destroyed more than 1,600 structures, forced nearly 300,000 residents from 
their homes, and burned in total nearly 100,000 acres. 

During a disaster, time is essential for response and recovery efforts. Slow response 
times can result from the lack of timely data and manual interpretation of this data. In 
these situations, first responders must quickly and accurately identify urban structures 
fires have destroyed or otherwise spared. This information is vital to first responders, 
government agencies, and insurance adjusters. The use of drone imagery and Esri’s 
deep learning tools efficiently processes and analyzes imagery for timely decision 
support.
 
As firefighters extinguished flames, drones flew over the burned areas to assess 
damage. DataWing Global, an aerial data services company and Esri partner, captured 
40 gigabytes of on-demand, high-resolution imagery over the Woolsey area. To manage 
this vast amount of data, a mosaic dataset was created, which allowed responders to 
display, analyze, and share a collection of images. 

Once the data is managed within a mosaic dataset, users can perform deep learning 
analysis. Deep learning is a subset of machine learning, in which learning is based 
on an algorithm known as an artificial neural network. Artificial neural networks 
are computing systems that recognize and learn patterns. Training and deploying a 
deep learning model involves three steps: creating training samples, training the deep 
learning model, and running the model inference, which yields a classified map of 
features.

First, training samples must be created to categorize the damaged and undamaged 
structures. Building footprints from the Los Angeles County GIS Data Portal were 
draped over the orthorectified, high-resolution drone imagery, and a new “ClassValue” 
field was added to the building footprint feature class. Firefighters used this field to 
identify label buildings as "damaged" or "undamaged." These categorized features 
were exported using the Export Training Data For Deep Learning tool in ArcGIS® Pro. 
Training a deep learning model in ArcGIS Pro requires users to set up the Python 
environment with the necessary deep learning libraries, including PyTorch, Fastai, and 
library dependencies.
 
The Train Deep Learning Model tool in ArcGIS Pro used the labeled training samples 
to train a building damage classification model. The model type is preconfigured 
as “Feature Classifier” based on the metadata format of the training samples. This 
geoprocessing tool calls the third-party deep learning application programming 
interfaces (APIs)—like PyTorch or Fastai—to perform the model training tasks. This 
tool provides optimal model training parameters for training the damage classification 
model. The model was trained using a ResNet architecture to classify all buildings in 
the imagery as either damaged or undamaged.  During the model training process, 
messages regarding training loss, validation loss, and accuracy are generated after 
each training step. This process allows users to monitor the training progress. 

Once the training was complete, the manually assigned ground-truth labels were 
compared to the model classification results to assess model performance. The results 
show that the accuracy rate of identifying damaged and undamaged structures was 
more than 99 percent. The saved model includes the model binary file and the Esri 
model definition (.emd) file, which can be used to perform model inference in ArcGIS 
Pro. A zipped deep learning model package (DLPK) file can be shared on the ArcGIS 
Portal and deployed in ArcGIS Enterprise.  Raster analytics (RA) tools can use a DLPK, 
an item type on Portal for ArcGIS. A DLPK is a compressed file, portable, and easy to 
use and share.

The Classify Objects Using Deep Learning tool in ArcGIS Pro was used to perform 
model inference and classify the buildings. Both post-disaster imagery and the 
building footprint feature class were used as inputs. The result is an updated feature 
class of the building footprints, with a new ClassLabel field to assign each building as 
either damaged or undamaged. By running inferencing inside ArcGIS Enterprise using 
the model and classify objects function in ArcGIS API for Python arcgis.learn module, 
inferencing can be scaled for large projects by leveraging the RA capability on ArcGIS 
Image Server.
 
More than 9,000 buildings were automatically classified. Of those, more than 1,300 
buildings were deemed as damaged or destroyed by the fire. The resulting map shows 
the damaged buildings as red and the undamaged buildings as green. With a 99 percent 
accuracy rate, the deep learning model is as accurate as a trained adjuster and much 
faster. What usually takes a week was performed in a few hours. 

Using the ArcGIS Infographics Add-In, first responders combined analysis with 
demographic data to further identify at-risk populations, such as children and the 
elderly. The Infographics report can be generated to quickly provide statistics and other 
information to assess the magnitude of the situation and help deploy the proper help. 

2018 Woolsey Fire
Fire perimeter
Damaged building
Undamaged building

Imagery by DataWing Global.

The 2018 Woolsey Fire burned in Los Angeles and Ventura Counties, California. Responders used deep learning with 
GIS to quickly perform feature extraction from imagery to identify  damaged and undamaged buildings. This analysis 
enabled first responders to find damaged and destroyed structures and deploy the appropriate help and resources.

This report was created with the ArcGIS Infographics Add-In.

2018 Woolsey Fire
Property damage and demographics

DEEP LEARNING IN DISASTER MANAGEMENT Ling Tang and Simon Woo, Esri

IMAGERY FE ATURE E X TRACTION TO IDENTIF Y DAMAGED STRUCTURES
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The method of modeling annual and seasonal trends
Many Earth science variables exhibit periodicity. For example, temperatures are high 
in summer and low in winter each year. You can use a linear regression to model 
the general trends of recurring phenomenon, but linear regression is not suitable to 
describe the seasonality of the variables. Scientists use a method called harmonic 
regression, which tends to exhibit periodic rhythms, to model annual long-term trends 
and seasonal changes over time. 

The Generate Trend Raster tool in ArcGIS® integrates statistical regression methods 
into the multidimensional raster data model. The multidimensional raster contains 
multiple rasters along representing data at different time (or other dimensions). The 
tool computes a regression model using the harmonic algorithm for each pixel array 
along time and output a trend raster that contains the regression models of each time 
series.  The regression model coefficients and the statistical terms such as root mean 
square error (RMSE), p-value, and R-squared are stored as bands in the output trend 

raster which can be used to visualize seasonal trend, map the annual trend, evaluate 
model performance, and predict future data. The Generate Trend Raster tool and 
Predict Using Trend Raster tool built based on harmonic regression will be used in 
analyzing sea-surface temperature.

Data preparation
The data used in this analysis are from NOAA’s daily SST data (1981–2019) with a 
spatial resolution of 0.25 x 0.25 degrees. The data consist of 39 Network Common Data 
Form (NetCDF) files (one file per year) and represent 13,931 images. First, a mosaic 
dataset is created from the NetCDF files. Next, the mosaic dataset is converted to a 
multidimensional cloud raster format (CRF), which stores multidimensional rasters 
for optimal time-series image analysis and multidimensional raster computing. Next, 
daily SST data was  aggregated into monthly SST data by averaging the pixel values of 
each month. Finally, analysts built a transpose for the multidimensional CRF to speed 
up the across-time dimension computing.

The sea-surface temperature trend map
The team created a trend raster using the Generate Trend Raster tool. In the output 
trend raster, the band named Slope is used to map the long-term trend as shown, 
where positive (purple) indicates sea-surface  temperature increases annually with 
time while negative value indicates a decrease (green).

The trend map shows that the sea-surface temperature changes dynamically in 
the different parts of the ocean. While most of the domain exhibits an increase 
trend, the increase varies spatially. The darker purple indicates a greater increase 
rate. For example, some regions of the North Atlantic show greater increases 
than in the North Pacific. The long-term annual trend at a location of the North 
Atlantic Ocean has a slope of 0.00008, and the seasonal trend at that location 
is also clearly modeled by the harmonic regression. The ocean in the Southern 
Hemisphere also shows temperature increase in general except the decrease trend 
in the East Pacific Ocean off the coast of South America, where the occurrences 
of El Niño and La Niña cause the temperature to change dramatically and cause 
a negative slope in the harmonic model. Analysis of the model’s accuracy using 
the R-squared band of the trend raster shows that this regression model fits well 
overall except in some areas close to the equator or polar regions, where sea-
surface temperature does not have obvious seasonal effect. 

Finally, a layer was generated from the R-squared band using raster function to 
select and mask out pixels with less model accuracy (R-squared < 0.6). The Predict 
tool was used to generate a predicted SST of the next 30 years from the trend 
raster. Calculated from the predicted SST, the average SST will increase from 31.57 
in 2019 to 32.01 by 2050.

SEA-SURFACE TEMPERATURE TREND MAPPING

Hong Xu, Esri
More than 70 percent of Earth’s surface is ocean, so sea-surface temperature play a 
major role in regulating Earth’s climate system and serves as an important indicator 
of climate change.  The ocean absorbs vast quantities of heat from greenhouse gas 
emissions, leading to rising ocean temperatures and changing ocean circulation 
patterns that transport warm and cold water around the globe. The National Oceanic 
and Atmospheric Administration (NOAA) reports that the average global sea-surface 
temperature has increased by approximately 0.13 degrees Celsius (32.23 degrees 
Fahrenheit) per decade during the past 100 years. Increasing sea-surface temperatures 
will substantially affect climate, marine species, and ecosystems. Researchers 
predict that rising temperatures are already contributing to species extinctions and 
extirpations, rising seas, and flooded ecosystems, for example.

Modern remote sensing technology and high-resolution time-series data help scientists 
study changing sea-surface temperatures. They use geographic information systems 
(GIS) and statistical regression methods to better understand spatial variations in sea 
temperature change over time. 

Map of predicted sea-surface temperature (SST) by 2050.

Sea-surface temperature trend raster map (1981–2019).

Predicted monthly SST, 2050 

Masked pixels

LowestHighest

Annual SST change over time
(1981–2019)

DecreaseIncrease

Data source: NOAA/OAR/ESRL PSD, www.esrl.noaa.gov/psd.

ANALYZING TIME-SERIES DATA
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From massive wildfires that darken the skies over a 
continent to volcanic eruptions that leave big cities 
coated in ash, we regularly hear about—and sometimes 
experience—major pollution events. However, it’s 
not always easy to evaluate whether the pollution 
from these events is actually worse than anywhere 
else. The news media may over-report the news in a 
particular region and largely ignore what happens in 
another. Or a singular event may leave the impression 
that an area is heavily polluted when in reality, it may 
have clean air most of the time. What we do know is 
that pollution is harmful to human health. Pollution 
often contains microscopic particulate matter PM2.5, 
inhalable particles 2.5 micrometers or smaller in size, 
or about 30 times smaller than the width of a strand of 
human hair. Elevated levels of PM2.5 have been linked 
with increased infant mortality, and cardiovascular 
and pulmonary diseases such as asthma, lung fibrosis, 
and hardening of the arteries. Aside from the human 
costs, these and other pollution impacts from PM2.5 
have an estimated financial impact of $225 billion per 
year globally in lost labor.

To get a clearer picture of pollution events, we can 
use data from Earth observation satellites to measure 
atmospheric and surface phenomena. One of those 
measurements is called aerosol optical depth (AOD), 
where the absorption or scattering of light in the 
atmosphere serves as a proxy for the presence and 
quantity of PM2.5. Van Donnkelaar et al. (2018) 
collected the annual AOD from three Earth observation 
satellites from 1998 to 2016. The researchers combined 
and refined the data using a chemical transport model 
and geographically weighted regression (GWR) with 
ground-based PM2.5 observations. 

The global time series of annual PM2.5 pollution data 
across 19 years is a perfect candidate for space-time 
pattern mining using ArcGIS® Pro, which applies 
rigorous statistical tests to space and time data to 
find statistically significant patterns. The basis of 
the space-time pattern mining analysis is the space-
time cube data structure—a method of representing 
temporal data as a multidimensional array appropriate 
for analysis.  

With the PM2.5 pollution data in a space-time cube, 
researchers can apply the space-time pattern mining 

New hot spot
Consecutive hot spot
Intensifying hot spot
Persistent hot spot
Diminishing hot spot
Sporadic hot spot
Oscillating hot spot
Historical hot spot
New cold spot
Consecutive cold spot
Intensifying cold spot
Persistent cold spot
Diminishing cold spot
Sporadic cold spot
Oscillating cold spot
Historical cold spot
No pattern detected

SPACE-TIME PATTERN MINING
Lynne Buie, Esri

EMERGING HOT SPOT ANALYSIS OF POLLUTION DATA
technique called emerging hot spot analysis. This 
analysis allows researchers to objectively assess 
areas of high and low pollution by finding hot and 
cold spots in the global pollution data. A hot (or 
cold) spot is an area with high (or low) values 
of pollution and surrounded by other areas of 
high (or low) values. Researchers assess each 
location in each time slice independently 
using the Getis-Ord Gi* statistic to 
determine whether the time slices are 
statistically significant hot or cold spots. 
To incorporate the temporal component, 
researchers then apply the Mann-
Kendall trend test to each location to 
assess the trend of hot or cold spots. 
This test results in nine different types 
of hot and cold spots, depending on the 
pattern of each location through time.

The results of applying emerging hot spot 
analysis show that when compared to 
the rest of the world, much of Southeast 
Asia and Sub-saharan Africa are hot spots 
of pollution (shown in shades of red). Cold 
spots (shown in blue) are found in North 
Africa, Australia, some coastal parts of South 
America, and many of the most northern 
latitudes. The map legend shows the nine 
different types of hot and cold spots. Persistent 
hot spots, seen for much of Asia and Africa, have 
been a statistically significant hotspot for 90 percent 
of the time-step intervals, with no discernible trend 
indicating an increase or decrease in the intensity of 
clustering over time. New hot spots, seen in limited 
areas of Asia, Africa, and South America, are locations 
that have statistically significant hot spots for the 
final year in  2016 and have never been a statistically 
significant hot spot before. 

Sporadic cold spots, seen in large areas of Alaska 
and northeastern Russia but also in small quantities 
worldwide, are locations that are on-again, off-
again cold spots. Diminishing cold spots, again seen 
worldwide but particularly in South America and 
Australia, are locations that have been a statistically 
significant cold spot for 90 percent of the time-step 
intervals, including the final year. In addition, the 
intensity of clustering of low counts in each time step 

is decreasing overall, and that decrease is statistically 
significant for diminishing cold spots. These four types 
of hot and cold spots, and all the others seen in the 
legend, help us understand differences in the global 
pollution patterns through time. Applying emerging 
hot spot analysis is an effective way to objectively 
understand space-time patterns in scientific data. 

Using this analysis, we can better understand whether regions that experience extreme pollution events, such as the wildfires that 
raged across Australia starting in late 2019, have worse pollution than regions that may receive less attention and analysis for one 
reason or another. 

Reference: van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR 
and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998–2016. Palisades, New York: NASA.; Data sources: NASA Socioeconomic Data and Applications, Center Global Annual PM2.5 
Grids from MODIS, MISR, and SeaWiFS Aerosol Optical Depth (AOD) with GWR, v1 (1998–2016).
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Time-series clusters 
show counties with similar 
patterns of population growth or 
decline from 1969 to 2018. Three distinct 
patterns emerge. The areas shown in red 
include the Great Plains and Mississippi Delta, where 
declining populations result partly from the transition from small, 
family-based farms to large, mechanized agrobusiness. These areas also 
include parts of Appalachia, where the decline of the coal industry and low 
birth rates contribute to net migration loss. The areas shown in green include a 
majority of counties where population has steadily increased. In the areas shown in 
beige, the population has remained stable throughout the period. A small number 
of counties shown in gray either had significant changes in their boundaries or were 
missing data and thus excluded from the analysis.

Highly dynamic Earth changes on temporal scales range from minutes in the case of earthquakes to decades in the 
case of deforestation. To fully understand our planet, scientists must discern patterns across space—a powerful 
capability of GIS—and across time. Modern geographical information systems increasingly integrate new methods 
and techniques for analyzing temporal data. One important aspect of analyzing temporal data is detecting and 
quantifying patterns. Do different locations have similar patterns of an observed or modeled variable across time? 
One method for exploring patterns across time is time-series clustering.

Time-series clustering
Time-series clustering partitions a collection of time series based on the similarity of time-series characteristics. In 
the context of GIS, the collection of time series comes from individual time series at different locations in space. Time 
series can be clustered so they have similar values in time or similar behaviors or profiles across time (increase or 
decrease at the same points in time). The ArcGIS® Time Series Clustering tool identifies locations that are most similar 
and partitions them into distinct clusters, where members of each cluster have similar time-series characteristics.

The goal of clustering is to partition the locations into groups where the time series within each group are more 
similar to each other than they are to the time series outside the group. However, time series are composed of many 
numbers or values across time, so it is not completely clear what it means for two time series to be similar. For 
individual numbers, a useful measure of similarity is the absolute difference in their value. For example, the difference 
between 10 and 13 is 3. You can say that 10 is more similar to 13 than it is to 17 because the absolute difference in 
their values is smaller. For time series, however, the similarity is less obvious. For example, is the time series (5, 8, 11, 
7, 6) more similar to (4, 9, 13, 4, 9) than it is to (5, 11, 6, 7, 6)? To answer this question, you must measure how similar 
or different two time series are. Each of the several ways to measure similarity depends on which characteristics of 
the time series you consider important. You can cluster time series based on the raw values of the time series, the 
correlation between time series, or the shapes of cyclical patterns in the time series.

Increasing similarity
When you cluster based on raw values, the similarity between time series is quantified by the sum of the squared 
differences in value across time (Euclidean distance in data-space). When you cluster based on correlation, time 
series are considered similar if they tend to stay in consistent proportion with each other and increase and decrease 
in value at the same time. To cluster time series that have similar smooth, periodic patterns in their values across 
time, the time series are decomposed into basis functions from the Fourier family and are represented by oscillating 
sine and cosine functions with varying periods; these periods are sometimes called cycles or seasons. Time series 
are considered similar if the periods of their dominant basis functions are similar. All three methods return a single 
number that measures the difference between two time series. This difference is calculated for every pair of locations 
in the study area and is summarized as a dissimilarity matrix. This matrix is then clustered using the k-medoids 
algorithm. This algorithm finds clusters within the matrix in which members of the clusters are more similar than 
members of other clusters. This algorithm is random in nature, and it works by choosing random locations to serve 
as representatives of each cluster. These representatives are called medoids, which are analogous to the median of a 
univariate dataset. Initial clusters are created by assigning every other location to the cluster whose medoid is most 
similar. The algorithm then swaps medoids within each cluster and reevaluates the similarity within the new clusters. 
If the new clusters are more similar than the initial clusters, the medoids are swapped, and the process repeats until 
there are no swaps that will increase the similarity of the clusters.

TIME IN SPATIAL SCIENTIFIC WORKFLOWS TIME-SERIES CLUSTERING OF POPUL ATION 
GROW TH AND DECLINE



200  GIS for Science

The practice of science has changed. Scientists increasingly acquire data instead of just 
directly measuring or observing the data. While independent field observations continue 
to be important, the familiar leather-bound field notebook has given way to massive central 
repositories of scientific data often remotely sensed by satellites, automated cameras, 
autonomous buoys, and drones. The availability of these massive repositories has impacted 
the spatial scale at which scientists work.  These changes in the practice of science are 
particularly noticeable in the domains of the atmospheric, ocean, and solid earth sciences.  

OPeNDAP and THREDDS
Open-source Project for a Network Data Access Protocol (OPeNDAP) makes data stored 
on a remote  server accessible to you locally, in the format you need, regardless of its 
format on the remote server.  Many authoritative data providers, such as The National 
Oceanic and Atmospheric Administration (NOAA) and NASA, provide their data product 
through OPeNDAP data servers. A key value of the OPeNDAP approach is its ability to pull 
data subsets from the server to get only the data that is relevant to you.  ArcGIS® provides 
support for OPeNDAP through the Make OPeNDAP Raster Layer tool.

The University Corporation for Atmospheric Research (UCAR) has created and freely 
distributes a web server specifically designed for the dissemination of scientific data. The 
Thematic Realtime Environmental Distributed Data Services (THREDDS) Data Server 
(TDS) is a web server that provides metadata, web-based catalogs of data and data access 
protocols for scientific datasets. In addition to OPeNDAP, THREDDS can deliver data as 
OGC WMS and WCS services, HTTP, and other remote data access protocols. 

Storing data in NetCDF
Conceptually, Network Common Data Form (NetCDF) stores the data as multidimensional 
arrays. Intuitive arrays of data enable efficient access to data along different dimensions. 
For example, using the same dataset, you may want to draw a 2D map of temperature at a 
particular altitude and time or create a line graph of temperature values through time at a 
single location for a specific altitude. In the netCDF file, the data would be represented as  
a 4D array: temperature (x, y, altitude, time). 

The Open Geospatial Consortium (OGC) has adopted NetCDF as a core encoding standard. 
You can store any type of spatial data in a netCDF file, including atmospheric and oceanic 
sciences data. The netCDF has the major benefit of containing metadata information and 
a standard way to describe what each variable represents, its measurement units, and the 
spatial and temporal properties of the data.  

ArcGIS Pro provides a set of tools to represent observations and models as data tables, 
points, raster fields, or multidimensional raster layers. These tools read netCDF files and 
format their contents into the corresponding GIS structures, including animations and 
time-series analysis.

.

This map shows the long-term monthly mean soil 
moisture for January.  The data used to model this 
phenomenon is from NOAA’s OPeNDAP server. Soil 
moisture estimates play an important role in long-range 
temperature forecasts and hydrological studies.

Mean soil moisture for January

Low High

ACCESSING SCIENTIFIC
DATA IN THE CLOUD

Kevin Butler, Esri

MODELING GLOBAL SOIL MOISTURE
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Do you need to capture high-quality, time-sensitive data? Every researcher we 
know would say, "Of course!" To meet the data and analysis needs required for 
research, scientists are harnessing the power of drone technology and everyday 
citizen scientists. In this case, researchers and citizen scientists collected drone 
imagery using ArcGIS Drone2Map®, to convert drone data into images while in the 
field, together with Site Scan, 3DR’s unmanned aerial systems flight planning and 
processing software. Collaborative geospatial technologies allow people who don’t 
own drones to participate in the project, share their time and local knowledge, and 
support the research. 

A team from Citizen Science GIS, an international research organization at  University 
of Central Florida, has worked with citizens in Belize to support data collection and 
use in various communities. The team uses spatial thinking, interdisciplinary and 
community-based approaches, Esri products, and drone technologies2 to 1) make 
science more accessible and 2) ensure that society not only informs science and also 
benefits from scientific discoveries.  

Drone imagery collection
The use of drones has made remote sensing available as a personal technology. 
Esri technology allows users to collect, process, analyze, and share drone imagery. 
Drone imagery provides current, high-resolution basemaps and can support change 
detection, feature identification, classification, and analysis. Since 2016, the Citizen 
Science GIS team and community partners have captured drone imagery of Hopkins 
Village annually, extending the flight plans each year to collect data in areas of local 
interest.   

As more people undertake training and get certified as drone pilots, the quality of 
the data is increasingly reliable. In-field processing tools within ArcGIS Drone2Map 
ensure quality data capture, including verification that the area coverage and desired 
accuracy have been achieved. The last thing a project leader wants is to return to 
the office from the field hundreds or thousands of miles away and learn that the 
data is not adequate.  In this case, while in Belize, a 2D orthomosaic was created 
from the drone images and shared with citizens. Community members provided 
valuable feedback during the review process, suggesting that the drone imagery 
collection add additional areas outside the original flight plan, which are important 
for context and the village’s ecosystem. After reviewing the high-resolution drone 
imagery, participants recommended additional analysis that previously had not 
been considered.

Citizen scientist participation
Now that drone imagery has been captured, how does the community use the data? 
Hopkins Village answered this question easily now that it had the data: address 
flooding concerns. Hopkins Village residents answered this question easily using 
accurate digital data to supplement community perception data in addressing 
known flooding concerns. Storm surge, sea-level rise, and development contribute 
to the flood risk that threatens Hopkins Village, which is located between the 
Caribbean Sea on the east and a lagoon on the west. So the community needed to 
better understand its flooding risk and vulnerability with additional data based on 
the drone-imagery. Prior to drone-imagery data collection, the village did not have a 
current and reliable GIS dataset of the coastal area, community structures, and road 
networks. The drone imagery provided a base to create feature datasets. Citizen 
scientists and students received training to capture data about each structure 
digitized from the accurate drone imagery, including building material, roof type, use 
of structure, number of floors, and elevation. They used structure data to calculate 
vulnerability for each building as described in the journal article, “Integrating sketch 
mapping and hot spots analysis to enhance capacity for community-level flood and 
disaster risk management” and depicted here. 
 
The involvement of community members helped them  better understand the data 
and use the information to support decision making. In the spirit of open science, 
the public, community leaders, and researchers can access the open data portal, 
which includes drone imagery and basic data about culverts and drainage, flooding, 
and street networks hosted on ArcGIS Online. These datasets differ from most of the 
larger proprietary or government-controlled datasets in that the local community 
helped create them. The annual collection of drone imagery resulted in more 
efficient citizen-led projects such as coastal debris cleanup. Additional research 
projects include analyzing coastal change over time. The primary advantage of 
community-based research is that citizen scientists have an invested interest in 
the future viability of their communities. Once they analyze the collected data and 
the public sees the results, volunteers are more likely to continue providing useful 
location-based temporal data, working together to improve the success of scientific 
and community-based endeavors.

Drone mission 
plan for Hopkins 

Village, Belize
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DRONES AND CITIZEN SCIENCE
THE ADVANTAGE OF COMMUNIT Y-BA SED RESE ARCH
Charmel Menzel and Lain Graham, Esri; and Timothy L. Hawthorne, PhD,  University of Central Florida
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Munisteri, C., & Visaggi, C. “Integrating sketch mapping and hot spot analysis to 
enhance capacity for community‐level flood and disaster risk management.” The 
Geographical Journal, 10, 2019.



TNO, an independent Dutch research agency, shares massive 3D 
datasets freely online. The data shown here represent TNO’s GeoTOP, a 
detailed 3D model of the top 30 meters of soils beneath the surface of 
the Netherlands. This scene was created with ArcGIS Pro. The data are 
displayed aboveground at 50 times vertical exaggeration. 
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Geologists, geophysicists, petroleum explorers, and mining experts have known 
something for years that we have more recently acknowledged in the GIS world. 
To understand the real world at high accuracy, you must experience and explore it 
in 3D. Our oceans, atmosphere, and the planet underneath us are rich with diverse 
volumetric data such as rock or soil types, chemical composition, pollutants, 
noise, aquifers, and even the distribution of life. Oceanographers, climatologists, 
and geologists collected data using remote sensing techniques that enabled 
reconstruction of complex 3D models of real-world systems. Historically, these 
datasets have often been limited to the purview of scientists or highly technical 
professions with specialist software tooling to allow them to explore these data.
  
With the explosion of interest in and capability for 3D in GIS, users have asked for 
better capability to view volumetric data in their everyday GIS tools. Our users know 
that access to volumetric data about the world around them can provide higher-
accuracy analysis and better understanding of conditions that they can’t physically 
experience. Access to 3D data in a GIS allows users to easily communicate with 
non-specialist stakeholders and even enables new types of analyses and workflows 
that they cannot with traditional 2D GIS. Using 3D in GIS eliminates the need to 
use complicated recipes and multiple tools to migrate data from the geophysical, 
marine, or atmospheric world in GIS experiences or to be used with other GIS 
content.

Many of the data sources and collection techniques for volumetric data are discrete 
or discontinuous, resulting in data that may be sparsely distributed throughout a 
physical space. Techniques exist for filling in, or interpolating, gaps in the volume 
to enable scientists and engineers to infer the characteristics of any 3D point within  
the  volume. ArcGIS® includes a geoprocessing tool for one such technique, called 
3D empirical Bayesian kriging.
  
In 2D, a cell in a grid of raster data is referred to as a pixel. In 3D, we can group 
interpolated regions into a 3D raster grid. We refer to the cells in this grid as 
volumetric elements, or voxels. Voxelization techniques can generate extremely large 
datasets that are difficult or impossible to view in traditional GIS applications. 
Academic institutions, petroleum exploration companies, and scientific 
organizations typically use highly specialized software and hardware systems to 
view massive voxel datasets.  Groups with casual interest in the content, and even 
less-specialized stakeholders in the same company or organization, often cannot 
use these expert applications.

ArcGIS can consume volumetric content derived from scientific analysis and remote 
sensing  technology and allow users to  display that content alongside any other 
GIS data. In the ArcGIS workflow, users can read specific types of georeferenced 
volumetric information, and ArcGIS Pro will convert that data into a "voxel layer" 

that they can view in a standard ArcGIS Pro 3D scene. Voxels often have a pixelated 
or step-like appearance, but users can symbolize them  to appear as more analog 
volumes or continuous gradients.
  
By  consuming  voxel  data  in  a  GIS,  users  can  combine  voxel layers with  
other  standard  GIS  data  types  for  visualization,  exploration,  and  analysis. 
Innumerable examples illustrate the use of volumetric information. Engineers 
and architects see the potential to have rich volumetric information for soils and 
rocks in the subsurface under existing or proposed construction. Cities can use 
volumetric information to examine subsurface information and above ground 
conditions such as airflow, the effects of heat islands, noise propagation, and aerial 
pollutants. Marine scientists work in an inherently 3D volumetric space and need 
better visualization and analysis tools to explore ocean temperature and salinity, 
freshwater mixing, and the propagation of life throughout the oceans. Even tiny 
creatures such as plankton occupy massive volumes of water, and ocean currents 
control their dispersion and aggregation, driven by convection, lunar gravity, and 
other forces operating on a global scale.

Users should be aware that access to volumetric data can still be inconsistent.  In 
some cases, data simply haven’t been collected or created. In other cases, such as in 
competitive extractive industries, data may be proprietary or protected. However, 
many government and academic agencies have started sharing volumetric data 
that may become increasingly useful as more users consume them along with other 
geospatial content.
  
NASA, for example, shares large amounts of atmospheric data from satellite 
studies of Earth. The Dutch independent research organization, TNO (Netherlands 
Organization   for   Applied   Scientific   Research), aggregates and shares massive 
amounts of subsurface information for use by academia and industry throughout 
the Netherlands. TNO has been instrumental in working with Esri to help push the 
limits of what can be done in GIS software.

ArcGIS applications and data types are being used for more comprehensive 
visualization, exploration, and analysis of 3D content of all types. ArcGIS can 
combine point clouds, 3D building models, engineering data, and more traditional 
GIS content. Volumetric data are becoming increasingly relevant in GIS-focused 
industries. The engineering and construction market is demanding more accurate 
context for future development to sustain human population growth and to protect 
the environment. Scientific agencies require more accurate 3D maps of the oceans 
and atmosphere to combat climate change. Mineral and energy companies use 
GIS and 3D data to improve target exploration with less environmental impact. 
Voxel data layers and interactive tools introduce more dynamic, immersive 3D 
experiences for users to explore, interact with, and analyze the world around them.

STEPPING UP WITH VOXELS
MODELING SOIL S BENE ATH THE NE THERL ANDS IN 3D
Chris Andrews, Esri
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GIS for Science: Volume 2 brings to life a continuing collection of real-world examples of scientists using geographic information 
systems (GIS) and spatial data science to expand our understand of the world. They are part of a global effort to find ways 
to sustain a livable environment for all life on the planet. At Esri, we called The Science of Where, a concept that merges 
our impulse to dream, discover, and understand with the rigor and discipline of the scientific method and the foundation of 
geography. As such, GIS provides a framework for applying science to almost every human endeavor as we aspire to transform 
the world through mapping analytics.

The stories in this book are written for professional scientists, the swelling ranks of citizen scientists, and anyone interested 
in science and geography. The contributors represent a cross section of scientists who employ data gathered from satellites, 
aircraft, ships, drones, and myriad other remote-sensing and on-site technologies. This data is brought to life with GIS and 
the broader realm of spatial data science to study a range of issues relevant to our understanding of planet Earth and beyond. 
Scientists are documenting an array of geographically oriented issues ranging from climate change, natural disasters, and the 
loss of biodiversity to political strife, disease outbreaks, and resource shortages.

The examples in this collection show how ArcGIS® software and the ArcGIS Online® cloud-based system work as a comprehensive 
geospatial platform to support research, collaboration, spatial analysis, and science communication across many settings and 
communities. In these chapters, you’ll learn about sustainable precision agriculture, predicting geological processes below the 
surface of the earth, leveraging GIS near-realtime disaster response, recovery, resilience and reporting, the latest innovations 
in monitoring air quality and much more. These stories, along with the supplementary resources online, present GIS ideas and 
inspiration that users can apply across many disciplines, making this volume relevant to diverse scientific audiences.

A B O U T  T H E  E D I TO R S
Dawn J. Wright is a geographer, an oceanographer, and the chief scientist of Esri.
Christian Harder is an author and editor of books about GIS, including The ArcGIS Book and Understanding GIS.

See this book come alive at

GISforScience.com

“GIS has become THE foundational tool for all things 
environmental—from conservation to climate change to 
environmental justice. This astonishing book beautifully 
displays GIS in all its scientific, artistic, and creative splendor.” 

—Peter Kareiva, Director, UCLA Institute of the 
Environment and Sustainability 

“This is a geoscience book for the 21st century! Cutting 
edge research examples and gloriously illustrated 
state of the art GIS-enabled techniques come together 
to show us how to understand our planet in ways not 
possible even a few years ago.” 

—Margaret Leinen, Director of Scripps  
Institution of Oceanography 

Applying Mapping and Spatial Analytics
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