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PRAISE FOR G/S FOR SCIENCE VOLUMES 1 AND 2

“GIS for Science illustrates with stunning graphics, colorful imagery, and accessible text how the “Science of Where” can be used
to visualize and study our planet, to ultimately conserve and protect it. Accompanied by a web-based resource of tools and apps,
professional and community scientists alike can explore Planet Earth, from the poles to the ocean, in 2D to 3D, and discover rich
data layers integrated in space and stunningly displayed. The perfect balance of theoretical explanation and practical applications,
from modeling bird migration to unearthing archeological sites, this book is a must-have resource for understanding our planet and
its response to a changing climate.”

—Shannon Bennett, chief of science, California Academy of Sciences

“An amazing book with spectacular images of land and sea—maps that communicate how our planet is structured and changes.
Examples are drawn from volcanoes, glaciers, tsunami, climate, rivers, landscapes and oceans, and the state-of-the-art survey
methods summarised. Recommended reading for those interested in the environment and its geography.”

—Mark Costello, Institute of Marine Science, University of Auckland
A beautifully illustrated and informative book that will appeal to the ex#oert and lay person alike. By exploiting modern technologies,
the reader not only understands the role GIS plays in modern scientitic research, but also experiences it through the online story

maps that give a window on the world for everyone.”

—Helen Glaves, senior data scientist, EGU McHarg Medalist, British Geological Survey

"GIS for Science provides beautifully described and illustrated case studies showing the myriad scientific fields fueled by "high-tech’
mapping information. This book takes us far from the imaginary maps stating ‘Here be dragons’ to clear-cut, modern geographical
information systems that can be used to combat climate change and other real-world issues through open science and citizen
engagement.”

—Laurie Goodman, co-editor-in-chief, GigaScience
“Stunning visuals and accessible graphics make this book a ‘must have’ for GIS users, spatial planners, managers and anyone in-
terested in Earth science. The case studies are real eye-openers, showing the power of new spatial visualisation technologies with
applications to the real world.”

—Peter Harris, managing director, GRID-Arendal

“What an amazing book! This work explores one of the great frontiers of twenty-first century science — the use of spatial data and
analytical tools to understand our changing planet. In this volume, we see the cutting edge of this exciting field, and the scientists
and engineers creating these emerging tools. This book will inspire another generation of scientists.”

—Jon Foley, executive director, Project Drawdown
“Life in the Anthropocene will require everyone to have a greater understanding of their environment and how they can adapt
to ongoing change. This visually compelling book from Wright, Harder, and colleagues beautifully illustrates how geography and

spatial analysis will be central and necessary to this new understanding.”

—Mark Parsons, director, Data Science Operations, Tetherless World Constellation, Renssalaer Polytechnic University

“This gorgeous book is a joy to read, explore, and also experience online. Perfect to connect the curious minds of all ages with
exciting scientific concepts and research that is very approachable.”

—Shelley Stall, director of data programs, American Geophysical Union

“As humans we are equiped with a natural ability to extract meaning from visual analysis and GIS has been paving a technological

way in this direction. This book gives a great overview of the power of visualisation paired with spatial analysis to give us new

insights into complex processes in a spatial context. The examples in the book are carefully chosen to illustrate the principles of this
approach.”

—Jens Klump, geoscience analytics team leader,

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

"GIS for Science takes the reader through stunning examples of scientific discovery and revelation. From the examination of natural
features to understanding the human impact on diverse environments—in our past, and for our future—this book is a wonderful
visual and intellectual primer. A ‘must-read’ for anyone seeking to understand the power and promise of GIS.”

—Roberta Marinelli, dean, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University

“This book powerfully illustrates the myriad ways in which GIS provides insights into the world around us. With compelling case
studies and striking images, GIS for Science will be a source of inspiration for readers of all backgrounds.”

—Mike Mascia, senior vice president, Moore Center for Science, Conservation International

“This volume, GIS for Science: Applying Mapping and Spatial Analysis, edited by Dawn Wright and Christian Harder, provides a
much needed addition to the GIS literature. It represents a fascinating blending of clearly-explained, critical biophysical and human-
social processes—from mapping human settlements to understanding polar ice loss--with current geospatial and visualization tools.
The volume, which includes many of the major geospatial research projects of global significance, can be used as an enhancement
to both basic Gl Science or geography courses. Once started, it is hard to put this terrific volume down.”

—Robert McMaster, acting executive vice president and provost, professor of geography, University of Minnesota

“One of the greatest challenges of modern science is to integrate immense quantities of data in order to create rich meaning from
raw information. The rigor, artistry, and inspired vision make GIS for Science: Applying Mapping and Spatial Analytics a joy to ex-
plore. Page after gorgeous page introduces experts and newcomers alike to delicious new ways of truly seeing the world around
us.”

—Liz Neeley, executive director, The Story Collider

“When you combine maps, powerful images, and science, you combine a sense of adventure, a desire to explore, and a pursuit of
knowledge. Wright and Harder have done just that, forging all these things to help us see, and imagine, our world and universe...
and more.”

—Brooke Smith, director, public engagement, Kavli Foundation

"GIS for Science is precisely what we need right now. As the world changes at an increasingly rapid rate, mapping and spatial
analytics significantly increase our ability to ask key questions and design new solutions. Dawn Wright and Christian Harder remind

us of how powerful these tools are and challenge us to do even more.”

—Daniela Raik, senior vice president, Americas Field Division, Conservation International
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GIS FOR SCIENCE: A FRAMEWORK AND A PROCESS

by Jack Dangermond, Founder and President, Esri
and Dawn J. Wright, Chief Scientist, Esri

Science—that wonderful endeavor in which someone investigates a question or a
problem using reliable, verifiable methods and then broadly shares the result, has
always been about increasing our understanding of the world. In the beginning,
we applied geographic information systems (GIS) to science—to biology, ecology,
economics, or any of the other social sciences. It wasn't until around 1993, when
Professor Michael Goodchild coined the term GiScience, that the world began to
realize that GIS is a science in its own right. Today, we call this The Science of Where".
GIS incorporates sciences such as geology, data science, computer science, statistics,
humanities, medicine, decision-support science, and much more. It integrates all these
disciplines into a kind of metascience, providing a framework for applying science to
almost everything, merging the rigor of the scientific method with the technologies of
GIS. The study of where things happen, it turns out, has great relevance.

In 2020, we confronted a global pandemic, the likes of which we have not seen in our
lifetimes. (learn about the early and near real-time response of the GIS community
to this world crisis in these next pages).

Welive in a world that faces more and more challenges. We also continue to see, hear,
andread about such issues as growing population (some would say overpopulation),
climate change, loss of nature, loss of biodiversity, social conflicts, urbanization,
natural disasters, pollution, and political polarization. We also confront the realities
of food, water, and energy shortages, and general overconsumption of resources.
Although the pandemic took center stage and an unprecedented response as it
spread worldwide starting in early 2020, these other concerns are not trivial for
the individuals and organizations working in these fields. We must do everything
we can to better understand these crucial issues and form better collaborations to
address the challenges.

Our world at the same time is undergoing a massive digital transformation. Science
always has been about increasing our understanding of the world. But it is also
about using that understanding to enable innovation and transformation. It is
about what we can measure, how we analyze things, what predictions we make,
how we plan, how we design, how we evaluate, and ultimately, how we weave it all
together in a kind of fabric across the planet.

What GIS provides is a language to help us understand and manage inside, between,
and among organizations, to positively affect the future of the planet. It is also
a framework in which we can compile and organize maps, data, and applications.
We can visualize and analyze the relationships and patterns among our datasets,
perform predictive analytics, design and plan with the data, and ultimately transform
our thinking into action to create a more sustainable future. This technology also
delivers a new way to empower people to easily use spatial information. As Richard
Saul Wurman has said, “Understanding precedes action.” Esri is driven by the idea
that GIS as a technology is the best way to address the immense challenges of today
and the future.

Science itself is driven by the organic human instinct
to dream, to discover, to understand, to create and to
help each other in times of great need.

This book is full of examples that show how GIS advan,ces rigorous scientific
research. It shows how many science-based organizations use ArcGIS as a
comprehensive geospatial platform to support spatial analysis and visualization,
open data distribution, and communication. In some cases, we use this research to
preserve and restore iconic pieces of nature—revered and sacred places worthy of
being set aside for future generations. These places belong to nature, and they also
belong to science.

As scientists, the discipline of the scientific process is the central organizing
principle of our work. But science itself is also driven by the organic human instinct
to dream, to discover, to understand, to create, and to help each other in times of
great need. The Science of Where is a concept that brings these impulses together as
we seek to support and transform the world through maps and analytics, connecting
everyone, everywhere, every day through science. At Esri, we are encouraged and
frankly humbled by the often heoric work of the GIS community.

INTRODUCTION BY THE EDITORS

This book is about science and the scientists who use GIS technology in their work.
This contributed volume is for professional scientists, the swelling ranks of citizen
scientists, and anyone interested in science and geography. Our world, now two
decades into the twenty-first century, seems to be entering a crucial time in history
in which humanity still can create a sustainable future and a livable environment for
all life on the planet. But if we look critically at the facts, no informed observer can
refute the reality that the current downward trajectory does not bode well.

As work on the book was well under way, we saw a great shift as the GIS community
pivoted almost overnight in response to the outbreak of a new coronavirus. The
stories we present remain just as relevant, but we also wanted to provide some
context about the initial response of the GIS community to this global crisis. Our
first objective in assembling volume 2 of this work was to select relevant and
interesting stories about the state of the planet in 2020. We looked for a cross section
of sciences and scientists studying a wide range of problems.

GIS has found its way into virtually all the sciences, but the reader will notice that
earth and atmospheric sciences are especially well represented. Web GIS patterns
and a simultaneous explosion of earth-observation sensors fuel this growth.
Between all the satellites, aircraft, drones, and myriad ground-based and tracking
sensors, the science community is now awash in data. Well-integrated GIS solutions
integrate all this big data into a common operating platform—a digital, high-
resolution, multiscale, multispectral model of our world.

Despite all these advances, science is under attack on many fronts. From fake news
to political pressure, science is too often used as a political tool at a time when level-
headed, objective scientific thinking is needed. We are convinced that GIS offers a
unique platform for scientists to elevate their work above the fray. We invite you to
read these stories in any order; the common thread is that all this work happens
at the intersection of GIS and science. As you read through these stories, you'll see
that GIS is a cross-cutting, enabling technology, whose use is limited only by our
imaginations.

In some cases, like the fascinating work of the Virginia Commonwealth University
using drones and artificial intelligence to count fish, GIS and spatial analysis are
at the core of the science. These innovations in science could only happen in the
context of an advanced GIS. In other cases, like the story of the NASA Disasters team
and their mission to publish the astonishing volume of imagery, GIS embeds itself
in the science but is still mission-critical in terms of how the team turns data into
information products for public use. GIS also serves as a vital storytelling platform
that brings critical research to stakeholders in their communities.

How the book and website work together

It’s impossible to describe the full breadth and scope of what GIS means for science
and scientists without showing digital examples. So we have created a companion
and complement to this book online. You can access it here:

GISforScience.com

This unique website, comprising collections of ArcGIS® StoryMaps™ stories, apps,
and digital maps, brings the real-world examples to life and demonstrates the
storytelling power of the ArcGIS® platform. The website also includes links to
learning pathways from the Learn ArcGIS site (Learn.ArcGIS.com) and blogs related
to the practical use of ArcGIS in each of the case studies.

GIS for Science

Applying Mapping and Spatial Analytics

VOLUME 2
Azplyiey Mapping
Sl Aridyict

GlScience Response to the COVID-12 Outbreak The Geography of Islands

Esri Staff Roger Sayre et al, US Geological Survey; Nick Holmes, The Nature

Conservancy; Osgur McDormott Long, Lauren Waatherdon, UNEP World
Caonservation Monitaring C r: Dona Spatz, Pacific Rim Conservation;
Kaith VanGraafeiland, Esri; and David Will, lsland Conservation

The Geography of Ocean Plastics

Unlocking Ocean Intelligence

Lisa €. Wickliffe ot al, NOAA; Seth J. Thauerkauf, The Nature Conserancy; Orhun Aydin and Shaun Walbridge, Esri
and Christine M. Taylor, Bureau of Ocean Energy Management

The companion website for this book is in many ways the most important component
of the project. Visit GISforScience.com to access more than 100 interactive web maps,
apps, story maps, videos, and other digital resources described in the text.
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RESPONSE T0
THE COVID-13 OUTBREAK

At the dawn of 2020, news began trickling out of Wuhan, China, about a new and rapidly spreading coronavirus disease
that came to be known as COVID-19. By early Spring, a pandemic gripped the entire world. This section highlights some
of the early responses by the global GIS community. Disease and epidemiology are uniquely rooted in place, so spatial
analysis and mapping were a natural toolset to deploy.
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CHRONOLOGY OF A PANDEMIC

To most of the world, the mystery illness seemed far away when the Chinese
government reported a new virus to the World Health Organization on the last day
of 2019. But by late winter of 2020, the previously unknown virus had swept across
the planet, touching the lives of millions of people, causing historic impacts to the
world economy, and requiring monumental changes in the way that humans relate to
each other. The SARS-CoV-2 virus has presented challenges unlike any humanity has
experienced or seen in our lifetime. The world has witnessed or personally experienced

heartbreakingscenes of griefand sometimes despair, frustration, uncertainty and crisis
fatigue. But its also witnessed inspiring and emotional scenes of hope and resilience
from people around the world: Italians singing together from their balconies, children
scrawling messages on sidewalks, teachers holding drive-by car parades to cheer up
students quarantined in their communities, doctors in scrubs and masks waving and
smiling from their emergency rooms, and police officers bringing words of cheer and
sometimes even dance routines to the people they serve.

As the crisis unfolded, governments at every level stepped up and began responding,.
Thousands of organizations, institutions, private businesses, scientists, and
researchers began gathering data, attempting to organize the incredible stream
of information coming from every country on the planet. As the health providers
expanded medical treatment, and public agencies began mandating stay-at-home
orders, quarantines, and social distancing protocols, a small army of mapmaking
professionals and location-savvy data scientists began feeding data into spatial

Organized geographically in /ayers, raw data can be analyzed in context against
other layers and transformed into powerful visualizations. As the outbreak grew,
thousands of GIS-powered applications, dashboards, and maps tracked the spread
of the virus and informed frontline efforts to fight the disease. One GIS map in
particular appeared online early in the crisis. Next, you'll learn how a small team
of researchers at the Johns Hopkins University Center for Systems Science and

Engineering created the most viral map in history.
databases through the technology of geographic information systems (GIS).

December 31: Chinese
authorities inform the world
about a mysterious surge in confirm their second

pneumonia cases with no COVID-19 cases.
known cause in Wuhan City, ®
Hubei province.

January 24: Japan and
the United States each

February 27: Brazil confirms its
first case of COVID-19, marking
the first case in South America.

Cases of the virus have now
been confirmed on every
continent except Antarctica.

March 15: The United States
officially becomes the country
hardest hit by the pandemic,
with more than 80,000
confirmed infections and
more than 1,000 deaths.

April 2: The US Labor
Department reports
that 6.6 million
people applied for
unemployment benefits
in the last week of March.

June 16: After a 24-day
span with no infections,
New Zealand records
new cases.

July 1: The United
States reports 55,000
COVID-19 cases in a

single day, the highest

May 2: Russia records
a one-day record
for the country with
9,623 new coronavirus A A

infections. The mayor ® single-day Fcfta| in
of Moscow says 2% of May 27: Four months the pandemic’s short

the city’s population after the first confirmed June 28: Global history.

April 29: COVID-19
February 2: The first had killed more

July 7: President Jair
January 9: China reports

COVID-19 death outside February 29: First March 11: WHO March.24: The Tokyo than 200,000 people has coronavirus. case, the United States reported deaths exceed Bolsonaro of Brazil
first death linked to the new China is reported in the death in the declared a world OIympmsI are delayed worldwide. had recorded more than a half million, with disclosed that he had
coronavirus. Philippines. United States. pandemic. until 2021. 100'032)3;95:[?; from total confirmed cases been infected with

surpassing 10 million. the virus.

December January

February
2019 2020

July

M

A total of 175 people test positive in early February
for COVID-19 on the Diamond Princess cruise ship,
quarantined in Japan.

January 24 photo shows rapid construction site of a new o
hospital in China to treat patients infected by a new virus.
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As cancellations of major public events like concerts,
theater productions, and festivals continued into the
summer, Major League Baseball in the United States
grappled with the spectre of opening its season
without fans in the seats.

Residents in Wuhan, China, line up to buy masks in January. After Italy sees a surge of cases in February, residents find

ways to bring cheer to each other; here, performers play the
ltalian national anthem from an apartment window.

Panic buying in response to the pandemic stripped store
shelves nearly bare in Lufkin, Texas.

Travel industry slows to a near halt; several
major airlines announced new guidelines for
passengers and flight attendants on wearing
face masks. R o
As summer temperatures arrived in California, civic leaders took
sometimes controversial measures to enforce social distancing.
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THE STORY BEHIND THE JHU COVID-19 DASHBOARD

An Interview with Dr, Lauren Gardner

In late January, 2020, as the world began to fathom the magnitude of the public
health crisis looming from Wuhan, China, a well-designed map began circulating on
social media and then quickly found its way onto mainstream media and traditional
news sites. The map was actually more of an information dashboard with statistics
and charts surrounding the map itself. It drew attention with its dramatic red circles,
scaled by size, that indicated the total number of COVID-19 cases and deaths.
Perhaps even more important, the daily updates satisfied the desperate need for
current and accurate information from a worldwide audience. At the time, the dark-
themed application created by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University seemed to be the most comprehensive and
reliable source of information about the spread. Innumerable dashboards to track
the virus have since been created (many of which used the underlying JHU data),
but the now-famous “JHU dashboard” remains the leading source of consolidated
COVID-19 data as of this writing, ultimately generating hundreds of billions of total
views.

Snapshot of the JHU COVID-19 dashboard on January 22, a day after its initial launch.

So what is the back story behind the world’s most vira/ map in history? Puns
aside, the map came about because of an interesting confluence of people at the
university who had an idea, a California mapping software company that provided
the technology, and the pressing need to fill an urgent information vacuum. When
traffic to the dashboard grew exponentially almost overnight, the company, Esri, in
Redlands, California, stepped in to help scale it up and handle the extreme traffic
as this single app became one of the most viewed maps of the twenty-first century.

The editors of this book and ArcGIS Living Atlas of the World Program Manager
Sean Breyer met with Lauren Gardner, associate professor in the Department of
Civil and Systems Engineering at Johns Hopkins Whiting School of Engineering,
who co-created the application, to hear the inside story of the dashboard (the
interview has been edited for clarity).

Lets start at the beginning. You were living your normal life and doing epidemiological
modeling research at the JHU Department of Engineering when you heard about a new
disease outbreak in China, right? So when did this journey actually start?

LG: In early January, I was at one of our normal weekly lab meetings with our PhD
students. Ensheng Dong, who goes by Frank, is a first year PhD student, and his
family is in China. We were talking that day about measles and Zika and flu and
everything that’s not COVID. And then he brought up this new thing in China. He

was particularly interested in the outbreak that was happening. This was beginning
to be big news in China at that time. It wasn't even called COVID yet; it was just a
few hundred cases around Wuhan. My initial reaction was to say that were way too
busy to follow this new thing, but then pretty quickly, I was like, “okay, this is actually
pretty interesting.” This was in the middle of January. Frank was personally really
interested in it because of his family, and there was also a lot of uncertainty on the
ground in China about what was happening. But it turns out there was some data
available in China: daily case data linked to location. So that day we grabbed the
data and decided to start collecting it regularly and make it publicly available. The
idea was to aggregate all the data, organize it, and share it out. But we also decided
we would map it as well. After all, what more of a geographically oriented subject
could there be than spread of a transmissible disease?

Frank, who actually interned at Esri for a little while and is really skilled in GIS and
spatial modeling, built the first dashboard that night to show the data in a map-
focused way, and then we shared it publicly the next morning, on January 21, to be
exact. On that first map, I think there was one case in South Korea and one in the
US, and it was pretty much just a few hundred cases in China.

I was motivated by the idea of collecting and sharing data for an infectious disease,
a novel, new emerging disease, in realtime, and sharing it because this is a very
data-poor field of epidemiology that tries to understand transmission and risk
and spread, and doing that in real time is hard because usually that data just isn't
available. I thought, building out a dataset like this that wed just do as a daily release
would be something that, not knowing where it was going to go, may or may not be
useful for us and for the community. It took just a week for that thing to take off. So
yes, it was good to help the infectious disease research community.

Was there a particular media link or coverage that created the first spike in usage?

LG: Well, I tweeted it on the 22nd, that morning, and that got retweeted and
recirculated quite a bit. I could see it was being pretty heavily viewed and retweeted
on Twitter because it was trackable, but I'm pretty sure it was circulating on lots of
other social media platforms as well; I just wasn't following them because we were
busy. But then, all of a sudden, we started to notice the increased traffic. It just
kind of snowballed. We actually realized something was happening because Julia
Holtzclaw and Sean Breyer from Esri reached out at the end of January and were
saying this looks big and important, and you probably need our help to scale it up if
the traffic keeps going like this. I was like, “Hi. Yes please,” so Esri jumped in and has
been supporting this ever since.

We are tracking the 2019-nCoV spread in real-time. Cases and locations
can be viewed here; data available for download. #nCoV2019
@JHUSystems gisanddata.maps.arcgis.com/appsfopsdashbo...

@ Lauren Gardner § @TexasDownUnder - Jan 22 ~

Lauren Gardner’s
January 22 tweet
about the launch of

the dashboard.
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Sean Breyer: So initially when we contacted them, really within the first week, we
were seeing some growth, nothing large at that point, but we were starting to see
growth, and it was actually set up under a student account; it wasn't even running on
adedicated account of the center (CSSE). It was, “Hey, there’sa COVID-19 dashboard
app set up by a student, and it’s starting to get a lot of hits.” [ read Lauren’s blog that
was referenced in the dashboard, and as I was reading through it my first thought
was, ‘T think they're actually updating this thing manually, like once a day, to try and
keep up with the numbers. We should probably talk to them and see if we can help.’

LG: We were manually doing a daily update of a few different regions, which was not
particularly problematic. But then it quickly scaled from a few to dozens to hundreds
of reporting sites. And it was in every country, and the number of countries afflicted
was growing; yes, it quickly overran our manual processes. Sean, when was the first
time we had some infrastructure issues because of demand on the service?

SB: : It was mid- to late February when we were starting to see the numbers climb
beyond even what ArcGIS Online did on a normal day—just for this one dashboard.
So, we took on the challenge of where to host it while Laurens team focused on
the data and map design within the dashboard. Most of the infrastructure changes
going on behind the scenes were in our web operations area. We began by isolating
their work from everyone else’s because most AGOL content is in shared pool
environments. So we started to separate it more and more. At the same time, we
started automating a lot of the process. So rather than going to a manual scraping,
we helped automate the scraping of the pages that they were using so that they
could continue to do daily updates. This worked pretty well until they encountered
some of the challenges that come up when youTre scraping data from websites
rather than receiving structured and validated data. Even one change in the design
of a website can mess up everyone who is scraping that data.

How has the workflow evolved over the ensuing months?

LG: It's gone through three phases. There was the first one that was almost fully
manual, and that was mostly just me and Frank. And then there was this middle
one that lasted for a while where it was our CSSE team and Sean’s team working
together to semi-automate data collection from one Chinese website that was kind
of the premier site for data at the time. We were getting good Chinese data from
there, and then they also started reporting data on other countries.

So we used that as our source, but as time went on, the country data for outside
of China was experiencing delays, so we were seeing other websites popping up to
provide more updated, timely information. So we started trying to do US, Australia,
and Canada at the city level from the start, so those were all manual the whole time.
And it was starting to be nearly impossible to update every country daily. So that
was when we started making this big shift to the third phase, and we expanded the
team to include multiple software developers from the JHU Applied Physics Lab. We
rearranged tasks and took over all the data curation on the JHU side, and since then
have expanded the automation to include dozens of sources that cover countries
all over the world, states, cities, counties, so weTe just scraping from all sorts of
levels. And it’s aggregated now to subnational data, and we'e still adding sources
and building that out all the time. But the first two versions were like that manual
one and then the one with Sean’s team and us that lasted for a long time. That’s
really where the dashboard grew out of and got popular, and now it just works a lot
better. And Sean’s team’s got to spend their time and efforts doing the infrastructure
management, which is also improved massively, but I don't have any idea what

Ensheng (Frank) Dong, left, and Dr. Lauren Gardner.

magic they've done! At this point, we've gotten to focus on the data curation, quality,
robustness, and anomaly detection, and build out that pipeline. So, it’s definitely
gotten more stable and smoother, but it’s been a daily commitment from around
twenty people that are still trying to tweak this thing on a regular basis.

What were some of the design challenges?

LG: Frank has a good design eye, and he would make the initial choices as far as
colors and symbol sizes and overall arrangement of the dashboard elements. And
then I would come in and be picky and regularly make him sit down with me every
time we wanted to make changes and try a million different things and resize things.
Sean got a lot of emails from us to implement some of these changes. We regularly
had to reassess our design choices because the reporting was changing everywhere.
For example, we were always having to manually scale the red bubbles into these
discrete categories. And that was challenging from the start, because clearly, this is
a highly nonlinear phenomenon.

So Lauren, this book is about how scientists use our technology to optimize their science,

but the flipside that we often do not hear about is how the science helps Esri to improve

our technology and push the boundaries of what we are trying to make in terms of
software and services. So, your description here of the challenges of trying to capture a

nonlinear event is a very good thing because it's helping us, Esri, to improve.

LG: 1 do want to highlight that the software is awesome. The software has been
amazing, and the support has been great. We were in a unique position where we
were dealing with something live, and we had all these ideas and features and layers
wed like to include, but every time we had to have this conversation about adding
things, we were constrained because of how popular this thing was. Under normal
circumstances, you would just add all these features and layers and keep changing
things.

SB: If there were a couple thousand viewers it would have been no big deal at all—
no one would have noticed. I wanted to mention, too, that what’s unique about
our platform, one of the big values that we discovered, is not just the dashboard; it
was the underlying hosted service that they built. This service was published as a
standalone resource, freely available to anyone who wanted to use it. It ended up
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being reused by thousands of organizations. So a change in data structure would
have messed up thousands of people who were connecting to it to make their own
versions of the dashboard that focused on the area of interest, or they were running
it to do analysis, so the dashboard became a visual hub for the public, but behind
the scenes, the hosted service that was there became the tool, the disaster response
and health community’s reason to make decisions. So those two were actually being
driven by one set of services.

LG: That’s a good point. From the start, this whole thing was about open data and
open science. So the whole service was open; people could pull the feature layers,
and we also deposited all the data that went into the dashboard into GitHub, and
that was available. We have to be careful about the data structure because we have
all these files there that if we want to add variables or ever change the structure
of these files, it affects people all over the world who are pulling those data on a
daily basis and utilizing them in their own modeling tools and visualizations. And
any time we change anything, it does the same thing to their scripts. So it has to
be justifiable to make these structural changes. We can't be selfish about making
our own dashboard because every time we want to do something, we have to think
about how it affects everybody else that’s using it.

That is such a fantastic point. We are learning so much now about culture change and
science in terms of opening up our data and our methodologies and our workflows. It
used to be when you were a student, youd do something, and it wouldn't go beyond your
professor and maybe eventually a published academic paper. But today, we are getting
used to the fact that thousands of people may be depending on our data and workflow,
and this is such an apropos example of that.

LG: It’s true. I don't think we do any work in my group anymore where you could
publish unless all the data you use in your work can be published alongside of it.
Today we share out everything, everything’s open. I think that’s the only way to
do science now. So now you actually have trust issues if you dont make the data
available. This COVID dashboard is such a great example of that. A major research
interest of mine, something I was doing before this all came about, is about issues
of misinformation and disinformation and the growing lack of trust in science and
empirical understandings of how the world works. So a lot of this is just about
being a transparent source of information to the public, so that they can see what's
happening, but also for scientists to have open access to the data as well, so that
they can build models that are also transparent in terms of where the data’s coming
from.

Many people have been surprised to learn that this dashboard that has become the
defacto ‘authoritative” source of information about the pandemic would come from a
private university as opposed to a government agency. What about that?

LG: 1 think there’s value in it coming from a university. And it's been great that our
university has been so supportive and that we didn’t have to fight for the right to
continue. I was conscious from day 1 of where I would accept funding and support
for this to make sure it didn't get branded with any organizations that would take
trust away from it. And this was a delicate issue with the federal government
because of how politicized this pandemic was from the start and the way they were
censoring the CDC and some of the science. So I think that whether or not it should
have been done by the government is kind of a separate question, but I do think
the fact that it came out of Johns Hopkins, a highly respected institution in public
health and medicine, has been a huge benefit. But I will note that it is not in the
public health school or the school of medicine; it’s in the engineering school, which
is also really great!

SB: So that does bring up an interesting question that you and I have talked about a
few times as the number of cases grew in the US and we started to collect information.
In trying to get it down to the county level, there were a lot of challenges because
all the sources were not just recording stuff differently but using different software
products, and the ability to access the underlying data was a challenge. Can you talk
a little about that?

LG: Yes, it's been a huge challenge because the reporting criteria and guidelines
and structure and the types of things being reported are still constantly changing,
but yes, I think maybe what youre getting at, and maybe something that’s been an
interest from the start, is that we need more systematic and strategic guidelines
and processes for reporting, moving forward, that counties and states can follow
that all align into a system where it’s available in a timely manner. There are, of
course, privacy issues, and things have to be aggregated and anonymized when they
scale up. But here we were trying to collect data, and there’s some three thousand
plus counties in the United States, and all the counties report data differently, the
counties in a state might report differently than their state, and there are all these
inconsistencies at all levels.

And then you have not only this issue of cases and deaths, but also you might get
probable cases and probable deaths, and then there’s the issue of testing, and so
many little things around this that were (and still are) are a challenge. We'll see
a city or a county in one state that’s reporting something, and the state doesn't
even report that. And the state says something different about that county than
the county says about itself. When we started this, there wasn't a single COVID-
dedicated website by anyone, by any government at the state, national, city, or
county level. And now almost all of them have it, and were going through those and
trying to go straight to those as our sources to pull data directly into this dashboard.
This is, in itself, amazing and one of the remarkable outcomes of all this. I can say
with some confidence that people in the world of epidemiology and health science
reporting will be much better equipped for the next pandemic.

Itis crystal clear that there needs to be a system in place so that when the next thing
happens, not five months into it but weeks into it, everyone’s already put up their
county dashboard, and here’s how we report the data, and this data is pulled from
this dashboard into this centralized state dashboard, and the state dashboard data
can be pulled directly into a centralized US dashboard. And everyone, every county,
is reporting the same variables, at the same time period, and things like that. It's
complicated, but it can be done. We did it, you know? We have built it, and we're just
some engineering professors and students.

What should the GIS community be doing differently in the next pandemic?

LG: GIS people should have the systems in place and connected, and the data
provided in some kind of consistent format, so that they can be pulled together into
some centralized system that is open and public and accessible and usable. The
CDC collects data from states and counties, and they don't share it, which is useless
to us. So the public can't see it, so they don't trust it, researchers can't get access to
it, so they can't even use it, so I mean from day 1, the stuff we've been doing, even in
January, people were using this to help policymakers in China understand what was
going on, and it’s been used since then for every country as it got hit.

This has been a fascinating conversation. Thanks so much Lauren for talking with us.

LG: Youre welcome. Thanks to you and thanks to Esri for being so responsive and
supportive during this time.

‘:ﬁiﬁ COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)
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IMPORTANCE OF LOCATION

Esri Chief Medical Officer Este Geraghty

Location information has proven critical to decision-making associated with large
outbreaks, and COVID-19 is no different. The CDC considers place to be a basic
tenet of a field investigation: Both the who and the when of disease are relative to
and often dependent on the where. Epidemiologists quickly turned to GIS science,
systems, software (collectively known as GIS), and methods as a needed perspective
to understand and track the spread of the virus. The healthcare community has used
maps to understand the spread of disease for a long time, most famously in 1854
when Dr. John Snow connected location and illness with his history-making map
of a London cholera outbreak. From disease atlases of the early twentieth century
to more recent web mapping of Ebola and Zika infections, healthcare professionals
have long considered mapping, and more recently GIS, a critical tool in tracking and
combating contagion.

GIS is critical to answering many infectious disease questions:

«  How quickly is the infection spreading, and where is it going?
« Do we have schools in socially vulnerable areas?

« Which neighborhoods are distant from a testing site?

« Do we have communities at a greater risk?

« Which facilities and staff are in harm’'s way?

What does surveillance data on the number of hospitalizations and deaths suggest
regarding :

. Distribution of hospital supplies and hospital beds on a regional basis?
«  How quickly local and regional hospital resources are being depleted?
« Whether data helps predict where and how fast the pandemic will spread?

The need for location intelligence is acute when an outbreak like COVID-19 quickly
spreads from a small geographic location to widespread areas. Public health officials
face a major challenge, never before undertaken at this scale, of containing the
outbreak through contact tracing and quarantine, which proved to be successful
after the new coronavirus was identified in the city of Wuhan, China, in December
2019. For most of the world, however, health officials must evaluate and implement
a series of community-level interventions to slow the spread of the illness. Health
officials can use location-based information to support multiple, specific community
interventions and activities. Common and helpful GIS applications include mapping
and data collection apps to track cases, spread, vulnerable populations and places,
and the capacity of our systems (like health care) to respond; dashboards for real-
time situational awareness; web apps for keeping the public informed. Health
officials may overlay outbreak data with other location-based information, such
as public gathering places, schools, health facilities and services, transportation
centers and local population demographics. GIS-supported interventions led to the
implementation of many public safeguards, and GIS continues to help monitor their
impact in many ways:

«  Canceling public events, meetings, and gatherings

«  Closing schools, public places, and office buildings

«  Restricting use of public transportation systems

«  Identifying potential group quarantine and isolation facilities
«  Enforcing community or personal quarantines

«  Screening airline passengers and assessing airline routes

Five steps to COVID-19 response

As global communities and businesses seek to respond to the COVID-19 pandernic, you
cantaka these five proactive steps to create an instant picture of your organization’s risk

araas and response capacity
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Early in the crisis, public health officials began screening international airline
passengers who completed a standardized health status questionnaire and had
their temperatures checked for fever. Passengers stated origin and destination
addresses. Subsequently, when a disease cluster was reported in another country,
public health officials could better identify how many people traveled from or had
visited that same location. Using GIS, public health officials applied the information
collected in the questionnaire to estimate exposures and prioritize investigations.
A digital solution to capture questionnaire data, including a standardized method
to geographically reference each passenger’s place of origin and travel destination,
can help save the public health community valuable time in understanding the
transmission dynamics and potentially lessen the spread of the disease.

GIS also plays akeyrole in supplementing traditional contact tracing. Geographically
referencing contact information allows hospitals to perform location analysis
to identify places in the community at higher risk of transmission and potential
points of incidental infection (when the contact is unknown). GIS can help the
public health community rapidly capture standardized and geocoded addresses for
confirmed cases and case contacts in an effort called Community Contact Tracing,
The effort provides essential support for attempts to slow the spread of disease
throughout the community by breaking those disease transmission links among
people and places.

Addressing this pandemic is part of Esri's common mission in bringing geographic
science, GIS technology, and geographic thinking to every organization globally
during these difficult and challenging times. ArcGIS applications such as Survey
123, Storymaps, ArcGIS Pro, HUB, Tracker, Dashboard, and dozens of solutions
templates are helping people understand and tell their stories in real time. GIS
application builders around the world have embraced the platform in the ongoing
battle against COVID-19.

We have much more to do. Our way of living has changed, and we now need to think
about what's next. How do we get back to the office in a physically distanced word?
How can we make our communities more resilient (event planning, elections, etc.),
How do we make these important decisions around economic and public health
balance? These are all inherently location-based problems in which GIS will play a
crucial role.

REOPENING THE WORKPLACE WITH

Faced with reopening facilities, leaders at organizations of all sizes must
address multiple, complex challenges and decisions. The White House recently
released guidelines for states to reopen and employers and individuals
to return to the workplace in a phased approach while recovering from
coronavirus disease (COVID-19). However, these guidelines are still evolving.

The ArcGIS® platform helps those tasked with providing a safe environment while
adjusting to the evolving guidelines. Social distancing requirements, for example,
necessitate a new normal within facilities. Employers must rethink floor plans,
especially if their facilities utilize an open floor plan concept. They may also need
to designate routes that minimize interactions or avoid contaminated areas.
Additionally, employers will need to provide clear communications with staff.
This will be especially relevant when or if an employee has been in contact with
someone who tested positive for COVID-19 or has been to a contaminated location.
Employees can reasonably expect to get a clear understanding of what spaces
are off-limits, which areas have been sanitized, and the sanitization schedule for
contaminated areas.

On April 16, 2020, the White House released its guidelines for states, employers,
and individuals throughout each phase of recovery from the novel Coronavirus
(COVID-19). As states begin meeting criteria to move into the next phase of recovery,
employers are planning how to resume business operations.

Employers with large workforces and complex campuses are particularly interested
in how to re-open facilities in compliance with federal state and local guidelines
without jeopardizing employee health or wellness. With more people spread across
more buildings, it can be onerous to find and eliminate areas of high contact and
ensure those areas are sanitized to safeguard everyone’s health.

One guideline instrumental to the wellbeing of employees and the successful
recovery of their community proves challenging: “develop and implement policies
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and procedures for workforce contact tracing following employee COVID+ test.”
Tracing can be as simple as asking the infected person who they came in contact
with. In a small facility that question is simple, but in large buildings that can be a
very difficult task.

Many solutions are capable of revealing movement of personnel outdoors, but fewer
are capable of tracing movement indoors. Even fewer can account for the walls and
floors within buildings to accurately represent the contact between two employees.
To support employers planning and implementing procedures for employee tracing,
Esri offers indoor and outdoor contact tracing solutions for your enterprise.

Protecting the workforce

As an employer, the health and wellness of your employees and surrounding
community is vital to the global recovery process and maintaining continuity
of business. Until a vaccine is released, the workforce will consist of people who
had the virus, people who had the virus but don't know (because they were either
asymptomatic or didn't have severe enough symptoms to receive treatment), and
people who have not yet had the virus. As aresult, at least two thirds of the workforce
will be reluctant to return to work unless proper procedures are put in place.

Using a passive contact tracing solution provides employees with the peace of
mind that interactions are being monitored and that high contact areas are being
routinely sanitized. Employers can see where traffic is greatest and can automate
alerts to cleaning crews after a certain threshold of people have passed through.
Maintenance crews can be monitored against cleaning goals to ensure adequate
staffing levels are in place to keep facilities clean.

With the ability to trace movement both indoors and outdoors, public health and
corporate security missions can both be met. This solution has the ability to scale
to support thousands of employees across multiple sites to safely advance through
each phase of recovery, and to enhance

Lvel selacter| | [} = safety far into the future.
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w2 Understand Proximity Tracing

ArcGIS Indoors allows employers to
deploy tracing apps for both iOS and
Android devices. This gives employers
the ability to provide tools for any
device in order to aggregate movements
of their workforce in real-time and
log contacts for historical analysis.
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Performing spatial analysis on historical
employee movement data not only
enables employers to determine high
traffic areas for sanitation, but also detect
proximity between employees across
space and time. If an infected employee
gets past safeguards, having the ability to
quickly analyze who they have come in
contact with can help quell the spread.
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MODELING THE CURVE

Esri Spatial Statistician Lynne Buie

Epidemiologists watched with growing concern early this year as the number of
people around the globe diagnosed with novel coronavirus 2019 (COVID-19)
continued increasing. As the epidemic became a pandemic, anticipation of
shortages of hospital beds, supplies, devices, and medical personnel grew. Ahead of
inquiries from concerned leaders, scientists began creating analytical models that
could quantify and predict the surge in COVID-19 cases and help understand what
interventions would be necessary to flatten the curve.

From that effort, a number of powerful models emerged as useful tools for
hospitalization planning. Penn Medicine’s Predictive Healthcare Team adapted
the Susceptible, Infected, and Recovered (SIR) epidemiological model, to create a
new model it calls CHIME (COVID-19 Hospital Impact Model for Epidemics). The
US Centers for Disease Control and Prevention (CDC) created another new tool
called COVID-19Surge, which uses a similar epidemiological model that takes into
account more stages of the disease. This explosion of domain experts working on
creating essential modeling tools has helped us better understand the potential
impact of the pandemic. And yet, these web and spreadsheet-based tools can make
further progress in modeling complex COVID-19 phenomena by incorporating
an important factor: geography. The GIS community is well placed to integrate
spatial data into COVID-19 models; for example: metrics of social distancing and
hospital capacity vary locally and have an important effect on the local outcome.
Domain experts must visualize the model results geographically, and communicate
actionable information in intuitive applications and information products that

are designed for hospital administrators, public health administrators, emergency
operations centers, and first responders. To help the community to take advantage of
these models and bring location into the workflow, Esri’s spatial statistics software
development team integrated these two models into an ArcGIS Pro toolbox.

The two tools in the COVID-19 Modeling toolbox—CHIME Model and COVID-
19Surge (CDC)—estimate how many patients will need hospitalization for COVID-19,
and of that number how many will need ICU beds and ventilators. The models can
account for interventions such as social distancing and mandatory face mask policies
currently in place, or even simulate the impact of strengthening or relaxing these
measures. By bringing these tools into a spatial analysis environment, it's possible
to run the models for multiple hospital catchments or counties simulaneously, and
adapt the model to specific disease patterns or policy decisions at each location.
Using inputs such as total population, active cases, and currently hospitalized cases
for each location, the tools produce spatial data showing anticipated hospitalizations,
ICU hospitalizations, and ventilated patients for each day of the modeled period,
a curve that helps hospital administrators plan ahead to meet forecasted spikes in
demand. The tool produces charts that visualize the modeled curve, estimating when
hospitalizations, ICU admissions, and ventilator needs will reach their projected
peaks. These charts can be configured to show how single or multiple interventions
can help lower these peaks, helping informing policy makers on the impacts of
proposed interventions.
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A single epidemiological model is not enough to model the complex phenomena
of COVID-19: where one model suffers, another may excel. On the surface, the
CHIME Model and COVID-19Surge (CDC) appear to do the same thing—estimate
hospitalizations—using similar types of epidemiological models. However, the
critical figures that drive these tools are very different. The results of the CHIME
Model tool are driven predominantly by the number of hospitalized COVID-19
patients and the amount of time it takes the disease to double in the population.
The COVID-19Surge (CDC) tool is instead driven by the number of cases and the
number of new infections that have been observed per case. These seem like subtle
differences, but the differentinputs for each model, along with the slight differencesin
the type of compartmental epidemiological models used, can lead to big differences
in the results of each tool. The data for one tool may be also easier to obtain—or less
reliant on external factors such as testing—than the other. Therefore, it is important
not to consider a single model in isolation. Models are only a simulation, and these
simulations depend on the modeling techniques and data inputs. The more models
we consider, the more certain we can be of our results.

Analysis and predictive modeling are most effective when policy makers receive
actionable information on complex problems in an visually understandable format.
To this end, the Capacity Analysis configurable app provides a way to consume
the information from the CHIME Model and COVID-19Surge (CDC) tools in an
interactive application in ArcGIS Online or ArcGIS Enterprise. The app focuses on
comparisons across models: for example, an analyst may compare the results of the
two tools for the same inputs, or focus on investigating different parameters using
a single tool. The second approach allows analysts to investigate how proposed
interventions, such as physical distancing, may impact modeled hospitalizations.
By comparing the outcomes across different intervention scenarios, the CHIME
Model tool, the COVID-19Surge (CDC) tool, and the Capacity Analysis app combine
to make an effective tool for the decision maker. ArcGIS Pro tools and configurable
applications together help domain experts research and model the COVID-19 curve.
The software also informs policy makers as they try to flatten the curve so that sick
people don't overwhelm the capacity of our health care system.

Fictional COVID-19 Simulations for the State of Tennessee (Test Data - Not for Policy or Decisions)
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Analysts can put interactive results into the hands of nontechnical decision makers using the Capacity Analysis configurable app, designed to work seamlessly with the results of the

COVID-19 tools. (Test data—not for policy or decisions.)
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THE RISE OF DASHBOARDS AND HUBS

In response to the pandemic, public health agencies and governments at all
jurisdictional levels worldwide encountered intense demands for good data. As
GIS professionals from across these myriad organizations scrambled to deploy
useful and timely data-reporting tools, Esri globally began to put up resources and
guidance about how best to leverage its ArcGIS technology. ArcGIS, an umbrella
name that includes the full suite of Esri geospatial softare tools. These off-the-shelf
tools uniquely enabled users to geographically organize, tabulate, visualize, and
share COVID-19 data with the public.

First, Esri released the Coronavirus Response Solution, a package of two dashboard
configurations—the Community Impact Dashboard and the Coronavirus Case
Dashboard. This synchronization of data enabled people to easily deploy localized

Health, Racial & Economic
Equity Data Group

dashboards for their countries, states, and local provinces. The Community Impact
Dashboard is designed to help public health agencies share basic COVID-19 testing
and case metrics along with other key community information such as school
closings and meal distribution sites. The Coronavirus Case Dashboard is designed
to allow public health agencies to share more detailed COVID-19 testing and case
metrics with the public. Additionally, the Coronavirus Response solution includes
mobile versions of both dashboards.

At about the same time, Esri put up its COVID-19 GIS Hub as a central repository
of maps, datasets, applications, templates, and other GIS resources for creating and
offering coronavirus-related resources (https://coronavirus-resources.esri.com).
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The COVID-19 GIS Hub remains an
essential site for accessing current
information and new applications for

delivering virus data and is one of the
largest GIS communities globally.

A NEW ERA OF GIS

Esri Director of Products Clint Brown

In 2020, a new era of GIS exploded onto the global scene. Organizations everywhere
banded together to form GIS communities aligned to focus on the world’s great
challenges. Just six months earlier, it would have been hard to imagine the power
and reach of these ArcGIS communities; today their good work is everywhere to be
seen.

By January, 2020, ArcGIS Online had already grown into a massive, shared-cloud
GIS for the planet, containing more than 30 million spatially referenced information
items covering literally every nation and corner of the world. What is most
surprising—and what gives ArcGIS Online such a huge impact—is that more than
50% of that content is shared with other system users, forming an interconnecting
web of content, projects, and efforts addressing every aspect of human activity.
Public and private organizations have increasingly adopted and applied GIS as an
integrating tool for understanding and action. This acceleration has long been a
vision of leaders in the GIS world.

Historically, builders of GIS systems never felt like they had enough data, computing
capacity, or bandwidth to fully realize the vision. Each GIS organization historically
relied on data from other GIS users and organizations. Over time, computing and
data sharing networks continued to expand. Today, we see an environment where
GIS organizations have created formal and informal alliances among themselves
(based on shared geographies, shared topics, or both) to deliver their analyses and
applications. As the cloud computing phenomenon exploded onto the information
scene, more and more GIS organizations began to share their information and make
it publicly accessible, so that more organizations could discover and link to this
shared information and put it to work.

Everything happens somewhere. GIS is built on this premise; its organizing and
interconnecting principle is location. GIS application builders use the rich location
data that is a core part of every GIS as a foundation to integrate their independent
information layers. These sharing efforts have transformed GIS into a kind of magic
tool for integrating content from multiple organizations. For decades now, many GIS
organizations have collected and compiled these critical information layers, which
now can be easily combined and brought together. The result is a 180-degree shift:
whereas the normal behavior was to silo data, today’s progressive GIS organizations
openly share, and the result is a quantum boost in the impact of their efforts.

A case in point emerged this year after the COVID-19 outbreak. A small engineering
team at Johns Hopkins University (JHU) began to assemble their now widely-
recognized global COVID-19 dashboard. Early on, Dr. Lauren Gardner and the team
made their dashboard (and the underlying data) public to support other scientists
and medical professionals—following the same ethics and open data principals that
most GIS practitioner would follow.

As the JHU team shared this dashboard, the news media picked up the web address,
and the site began to immediately promote the JHU work. Gardner and her team
followed some common data-sharing practices and ethics from the global geospatial
community.

As of mid-summer, 2020, the JHU COVID-19 dashboard had hundreds of billions of
visits, the equivalent of dozens of views from every citizen on the planet. Just six
months ago, it would have been hard to imagine the power and reach of the GIS
tools and the good work provided by the JHU teams. The map became so ubiquitous
that it is hard to imagine where the world would have been collectively if this
application had not been built to access some sort of truth about the COVID-19

status worldwide. So why was this particular GIS application destined to become so
accepted as the universally trusted tool used worldwide? A few thoughts come to
mind. First, the small engineering team at Johns Hopkins that originally created the
dashboard had the right philosophy:

« Make their site about sharing open information to provide the best
available and up-to-date statistics.

« Respond intelligently. Pay attention to ongoing feedback about the
information, and make verified corrections and updates as soon as possible.
Build a cadence to maintain these updates and corrections.

« Instead of being defensive, acknowledge information errors and issues, and
follow up.

« Learn how to be responsive. Continue to grow and evolve the solution
strategically over time.

« Regardless of criticism and cyber-attacks, stay focused and remain open
to feedback. Don't give up or give in.

« Continue to evolve and expand your offerings (e.g., the incredible work
on US state and county maps and the dashboard’s collection of county-
based infographics (https://coronavirus.jhu.edu/us-map).

- Share your work and practice as a pattern so that others can emulate your
results and set clear principles to follow.

«  Maintain your commitment to support and sustain your information offerings.

At Esri, we see how this modern GIS experience ties back to all of the efforts and
investments that GIS organizations have made for many years. It's useful to realize
that your solution incorporates a synthesis of content that is delivered as high-level
information items from multiple sources—the whole is significantly greater than
the sum of the parts. If you are a GIS practitioner, this spirit and ethos is in your
blood.

GIS used to be almost entirely a back-office phenomenon, with highly-trained
professionals quietly laboring away using software and techniques only vaguely
understood by the rest of us. The insights gained from their work benefited decision-
makers within organizations but only occasionally reached larger audiences, and
even then only as abstruse, static reports and posters. Suddenly, GIS is as much
about communication as it is analysis. ArcGIS StoryMaps, ArcGIS Online, ArcGIS
Dashboard, and Survey123 have turned GIS workers into communicators. GIS has
burst out of the back office and has become accessible and actively used throughout
organizations—and beyond.

Meanwhile, the COVID-19 pandemic has elevated the awareness regarding the
role of GIS as a global tool for effective and sustainable community engagement.
All this progress was made possible because of the best practices and ethics laid
down by the earliest users of Esri’s ArcInfo and ArcView (now ArcGIS and AGOL)
communities.

GIS holds the promise of being a central component of a global network that can
sense threats, map their extent, and help implement solutions. Climate change,
environmental sustainability, and reduced biodiversity are three such global,
existential threats. The great silver lining of the COVID-19 crisis is the possibility
that we can apply the lessons weTe learning even more broadly, with the ultimate
and essential goal of achieving a sustainable and peaceful future.
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WHY GEOGRAPRY STILL MATTERS

by Jared Diamond

Is geography increasingly irrelevant in the globalized world? Now that the internet,
smartphones, and jet planes connect everyone to everyone else, has geography
become unimportant, whether you live in Silicon Valley or the Central African
Republic?

No, of course not. Just this year, millions of people—many for the first time—came
to depend on maps and near real-time dashboards to stay abreast of a pandemic,
not only to gain a sense of the global situation but to see how the new coronavirus
affected their communities, even their neighborhoods. But geography is relevant in
other ways, too. For example, you need money to afford a computer, smartphone,
or airline ticket. Wealth is distributed unevenly around the world. Proportionately
far more people in Silicon Valley than in the Central Africa Republic can afford a
computer, smartphone, or airline ticket. First World countries on average are 32
times wealthier per capita than poor countries, and the richest countries, like
Luxembourg, are 200 times wealthier than the Central African Republic.

But the effects of geography on national wealth hardly exhaust the importance
of geography: they are just a first answer. What else can you think of that varies
geographically, besides wealth? Climate change, of course. On average, the world
is getting hotter, drier, and less productive agriculturally, and more at risk of fires.
But some areas are getting cooler, wetter, and more productive, and less at risk of
fires. (For example, compare California with Alabama within the United States or
Australia with England in the larger world context.)

Resource problems also vary with geography—especially competition for seafood,
timber, topsoil, and fresh water. For example, differences between China and Europe
with respect to their peninsulas, islands, river configurations, and mountains shaped
different political structures and technological innovation in China compared with
Europe in the past, and they continue to do so today.

For now, let’s look more closely at why geography is such a big reason for the
differences in national wealth. If you have any doubts, you can easily see for yourself
by doing this simple homework assignment: print out a map of Africa showing
national boundaries. Look up online a set of numbers for the wealth of each country
in Africa. You can use any of the usual measures of wealth that you prefer, many of
them tabulated by the World Bank: average income per person, GDP per person, or
GDP per person, corrected for purchasing power parity (i.e., differences in cost of
living). Write those numbers for the national wealth of each country over the name
of each country on your map. Compare the numbers at a glance.

Two conclusions will leap out at you. First, as far as the geography of wealth is
concerned, Africa is a sandwich, with a thick core between two thin slices of bread.
The core is the big tropical center of Africa, consisting of 38 countries. The two
thin slices of bread are Africa’s north temperate zone lying on the Mediterranean,
consisting of five countries (Egypt, Libya, Tunisia, Algeria, and Morocco), and
Africa’s south temperate zone at the southern tip of Africa, consisting also of five
countries (South Africa, Namibia, Botswana, Lesotho, and Swaziland). Compare the
wealth of the 10 countries in those two temperate zones with the 38 countries in the
tropical core. It will be obvious that most of the countries in those two temperate
zones are wealthier than almost all of the countries in the tropical core. (A nominal
exception is Equatorial Guinea, which has an apparently high average income
per person, because the president has an income of billions of dollars, while most

other people in the small population have incomes of a few hundred dollars, so the
average income looks high).

Evidently, living in the tropics comes with huge economic disadvantages compared
to living in the temperate zone. One disadvantage of the tropics is low agricultural
productivity, resulting from thin infertile soils and abundant insect pests and
parasites that destroy crops. A second disadvantage is that chronic tropical diseases
hurt the economy. People have shorter average lifespans, need more sick days, and
stay home more often to care for their young, in part because families tend to
compensate for the higher infant mortality rate by having more children. Finally,
machinery is constantly breaking down in the heat. You can see this economic
disadvantage of the tropics even in countries that span a wide range of latitudes
from the tropics to the temperate zones, including Brazil and formerly the United
States before air conditioning became widespread.

Another conclusion about geography leaps out at you from your map of Africa. Of
Africa’s 48 countries, 33 are along coastlines or on navigable rivers, but 15 are land-
locked—either they have no coastline or cataracts block their rivers. Transport by
boat is seven times cheaper than transport by air or by land. You will see that land-
locked countries, regardless of location, are on the average about 40 percent poorer
than countries with water transport.

If you still aren't convinced about this role of geography, and if you think that it
represents a peculiarity of Africa, put the corresponding numbers for national wealth
on a map of South America, which is simpler because there are only 12 countries to
compare. You will see that the three richest countries of South America—Argentina,
Chile, and Uruguay—are in the south temperate zone. Also just as in Africa, South
America’s poorest country—Bolivia— is its only landlocked country.

Of course, other factors besides geography affect national wealth. Those factors
include corrupt institutions (although they too are ultimately influenced by
geography and history), the so-called curse of natural resources (which paradoxically
causes countries dependent on valuable natural resources to become poor rather
than rich), the so-called reversal of fortune associated with colonial history (which
has resulted in colonies that were formerly rich becoming predominantly poor
today), and environmental degradation. Yes, these other factors are significant. But
geography is one of the most important determinants of national wealth. Despite
the internet, smartphones, and airline flights, geography still has a big effect on your
pocketbook.

Do these maps mean that geography condemns tropical countries to a hopeless
fate and that citizens of tropical countries should resign themselves to inevitably
remaining poor forever? No, of course not. Just as a doctor’s diagnosis can help
you overcome illness through medical treatment or lifestyle change, geographers’
diagnoses have also provided some tropical countries with recipes for achieving
wealth. For example, if your country is in the tropics, don't base your economy on
agricultural exports—leave them to temperate-zone countries like the Netherlands,
United States, Canada, Netherlands, and Argentina. If you are the president of a
tropical country, invest heavily in public health. These lessons have enabled tropical
countries such as Singapore, Malaysia, Thailand, Costa Rica, and Trinidad and
Tobago in recent decades to climb out of poverty, and in some cases, achieve First-
World wealth.

So what if tropical countries are poor? That’s unfortunate for them, but is it a
problem for citizens of wealthy temperate-zone countries? Sixty years ago, the
answer to that question would have been “no.” Today, because of globalization, the
answer is “yes” for at least three reasons.

One reason is the spread of tropical diseases from poor countries with low public
health budgets to rich temperate countries via airline travel. Examples include the
spread of AIDS, Ebola, Marburg, Dengue fever, cholera, and Chikungunya around
the world on airliners. Climate change creates the added risk of establishing those
tropical diseases in temperate countries.

Tropical disease spread isn't the only way in which globalization brings the
problems of poor tropical countries to rich temperate countries. A second way is
that poverty creates support for international terrorism among desperately poor
populations. A third way is that globalization has made immigration a permanent

reality as citizens from poor countries seek better opportunities in wealthier
countries. These citizens understand that their governments’ promises to create
wealth may take decades to materialize, if ever.

The power of these examples is that they put time and place and phenomena
together to enhance our understanding. And within the computerized world of GIS,
our comprehension and engagement with the world are further accelerated.

I trust by now that these examples—and there are many more—show that
geography is as relevant as ever, if not more-so, in our globalized world. It remains
the foundation of our understanding through science, and through GIS for that
science. Geography still matters—a lot.

Jared Diamond, professor of geography at UCLA, is the Pulitzer-Prize-winning author
of Guns, Germs, and Steel; as well as Collapse, The Third Chimpanzee, The World
Until Yesterday, Upheaval, and other best-selling books.
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Equal Earth Political Map, a world map for everyone. The equal-earth projection presents countries and continents at their true sizes relative to each other. Africa appears 14 times

larger than Greenland, as it actually is. www.equal-earth.com
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Tahanea is an atoll of the Tuamotu Archipelago in French Polynesia, a
semi-autonomous state composed of 118 islands and atolls geographically
dispersed over an expanse of more than 2,000 kilometers (1,200 miles) in

the South Pacific Ocean.




ALL LANDS ARE ISLANDS

'The word island is one of the more evocative words in any language. The word may bring
to mind a tropical Caribbean paradise or suggest a remote polar mass of rock and ice.
It may evoke a sense of place associated with home or a memory of a past visit across
the waters. Some will think of island peoples and their cultures, while others may be
drawn to thoughts of wonderful, rare, and sometimes endangered island animals and
plants. When asked, “What is an island?”, a typical response might be, "A small area of
land surrounded by the ocean, with palm trees and sand.” In reality, however, islands
come in all shapes and sizes and types, from tiny islets no larger than rocky outcrops to
enormous landmasses the size of the continents.

Alllandmasses on Earth, no matter how big, are surrounded by oceans and are therefore
islands. That means we are all islanders. It is not a case of islanders versus mainlanders.
We all live on islands, whether we see or feel that reality on a daily basis. For all of us,
then, islands are our homes, so we must know them well and take care of them.

Surprisingly, given that islands are our collective homes, we are still seeking answers to
basic questions like, “How many islands are there on Earth, where are theylocated, and
what are they like?” Despite many attempts to map and characterize islands across
history, we stilllack a definitive characterization. The true number of islands distributed
in the planet’s seas and oceans remains elusive. We still don't know exactly how much
of the Earth’s surface is made up of islands. However, thanks to the abundance of
satellite imagery and the sophistication of geographic information systems (GIS), the
answers to those questions are ever closer.

This chapter describes a recent partnership to map the islands of planet Earth. This
characterization stemmed from a fruitful collaboration among government, private
sector, academic, and nongovernmental organizations. The team used sophisticated
geospatial analysis technologies to elaborate a new map of global islands at a 30-meter
spatial resolution. What follows is a description of the work to merge two authoritative
global island databases (GID) into one. This effort involved compiling island data from

Australia, the fifth-largest landmass on Earth.
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multiple sources, and reconciling and making the data available in the public domain
as a free and open access resource. There is a solid realization that the planet’s island
systems—as the home to a great number of threatened and endangered species—have
significant importance from a conservation perspective. High-quality and high-spatial
resolution maps of the distributions of global islands are important for a variety of
science applications, including analyses of species rarity and vulnerability, exotic
species invasions, conservation priority, ecosystem value, sea level rise, and other
investigations.

Matureivavao, the largest atoll within the
Acteon Group, administratively part of
the commune of the Gambier Islands.

Robben Island—approximately é kilometers off the coast of Cape Town, South
Africa—a location best known for more than 400 years as a prison that held Nelson
Mandela among other political prisoners. Today it is a UNESCO Cultural Heritage site.

GLOBAL ISLAND GEOGRAPHY IN ANTIQUITY

Early attempts at mapping global islands

Islands are shown on the earliest flat-Earth maps of antiquity, on the maps from
the golden age of seafaring and exploration in the fifteenth and sixteenth centuries,
and on the maps of the modern era. Imaginary islands often peppered early maps,

a cartographic tradition stemming from what has been called Aorror vacui in Latin,
an aversion to empty spaces on maps.
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This map is an inverted
Tabula Rogeriana flat-

Earth depiction by Al-

Idrisi, drawn in 1154.
Al-Idrisi was a technically
competent cartographer,
and developed this map in
what is known as a south-
up orientation, possibly

in an attempt to focus
attention on the centrality
and importance of Arabia.
The Al-Idrisi map is often
displayed in an inverted
fashion, as here, to show
the landmasses in the

more common and familiar
north-up orientation. While
this map contains many
depictions of real islands,
recognizable by their shape,
size, and location in spite of
cartographic exaggerations,
it also contains a number of
imagined islands.
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This map is the circa 1300 conic projection World Map by Ptolemy. The British Isles
are depicted, as well as certain islands of the Mediterranean Sea, and what is likely Sri
Lanka. This map was well respected and well used in its time.

This Martellus World Map of 1489 drew significantly from Ptolemy’s World Map but
added many imaginary islands. Martellus’ World Map appeared in his book, Insularium
lllustratum (lllustrated Book of Islands), which contains detailed and rich maps of
several Mediterranean islands.

The Geography of Islands



Over time, and with increasing maps and knowledge from the accounts of the
explorers, cartographers refined their depictions of the islands of the world.
Meanwhile, geography rapidly evolved as a scientific discipline, with the emergence
of sophisticated models of Earth as an irregular spheroid and numerous projections
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for representing its features on two-dimensional (2D) maps. By 1800, the general
locations, sizes, and shapes of the world’s islands, the larger ones anyway, were well
documented, as the next map shows.
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This map is an astonishingly detailed world map from 1794 by Samuel Dunn, with the very comprehensive (and not at all mundane) title of A General Map of the World, or
Terraqueous Globe with All the New Discoveries and Marginal Delineations, Containing the Most Interesting Particulars in the Solar, Starry and Mundane System.
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Early knowledge about the location, shapes, and sizes of islands came from direct
exploration and careful recording of observations while seafaring. While today's
maps rely on sophisticated, satellite-supported, digital locational technologies like
GPS, earlier maps were drawn using precision-machined hand tools such as sextants,
astrolabes, and magnetic compasses. These machines would be considered
somewhat primitive by today's standards, but were quite sophisticated for their
time. Well before these simple tools saw widespread use in the Middle Ages, early
Austronesians were navigating their seas using far simpler technologies like the
Marshallese stick chart pictured here. These early maps captured local knowledge
of island features and swell characteristics, and were also instrumental in the capture
and recording of oral traditions related to seafaring.

INITIAL MODERN COMPENDIA OF GLOBAL ISLANDS

With centuries worth of accumulated cartographic representations of global islands
available and not much in the way of terra incognita remaining to be discovered,
modern geographers have turned their attention to detailed inventory and mapping
of islands of increasingly smaller sizes. Prior to the ubiquity of GIS as a cartographic
and analytical tool, geographers undertook global island inventories as compilations
of existing information into standardized lists of islands, often sorted by size. Two
pioneers of this kind of compendium development work were Dr. Arthur Dahl of
the United Nations Environment Programme (UNEP) and Dr. Christian Depraetere
of the French Research Institute for Development (IRD; formerly ORSTOM). They
collaborated frequently to produce groundbreaking work on tabular databases and
early GIS data layers on global islands. They developed rich attribute information on
island names, physical geography, human geography, ecology, and special features.
During the 1980s and 1990s, these resources were considered definitive compendia,
and the UNEP Islands Directory® was available online in the early days of the web.
In fact, it is still available at http://islands.unep.ch (note—the resource still exists
online but has not been maintained since 2006).

GSHHS: The Global Self-Consistent Hierarchical High-Resolution
Shorelines Map

In 1996, Paul Wessel and Walter Smith published the Global Self-Consistent
Hierarchical High-Resolution Shorelines (GSHHS) database,? a game changer in the
continuing effort to map global islands in a standardized manner. They used a digital
coastlines dataset called the World Vector Shorelines (WVS) resource, digitized by
the National Geospatial Agency (NGA) from nautical navigational charts. After
considerable editing of the WVS to clean up aberrations in the vector linework and
fill in missing coastline segments, they applied polygon topology to the shorelines
to create a global islands GIS database. They used GSHHS data to delineate 180,500

islands, several orders of magnitude greater than the numbers of islands included
in the Dahl and Depraetere inventories (~1000-2000). For many years, this database
has been considered both the original and definitive GIS data layer of global islands,
with a large number of users.

IBPoW: The Island Biodiversity Program of Work

In 2006, the Convention on Biological Diversity at its eighth Conference of the Parties
announced the first Island Biodiversity Program of Work (IBPoW) and associated
Global Islands Partnership network. Dahl and Depraetere, in collaboration with
UNEP’s World Conservation Monitoring Center (WCMC), then developed a Global
Island Database (GID v. 1.0) to be used as the IBPoW-endorsed reference layer. The
GID is a merger of earlier island data produced by Dahl and Depraetere with the
GSHHS.

Open Street Map® islands

During this time, the Open Street Map (OSM) resource became available. OSM is
a remarkable crowdsoucing effort to provide detailed geographic information on a
variety of features in an open source platform in the public domain. Local users can
use this resource to modify existing information or add new information. Although
users are most familiar with OSM street/transportation networks features, OSM
also provides global shorelines and islands features. The OSM shoreline data were
derived from a piecemeal interpretation of Landsat imagery conducted over several
years beginning in 2006. A coastline extraction algorithm was used, and global
coverage was ultimately achieved. Accuracy of the vector, called the Prototype
Global Shoreline, (PGS) [https://wiki.openstreetmap.org/wiki/Prototype_Global _
Shoreline] is reported by OSM as variable and in need of improvement in many
areas. The OSM user community is encouraged to improve the PGS, and guidance is
provided for that crowdsourcing exercise.

The Geography of Islands
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PROGRESSIVE IMPROVEMENTS IN ACCURACY

The WCMC Global Island Database v. 1.0

As the creator and official steward for the GID v. 1.0, WCMC maintained and
distributed the resource, which was composed of some 180,000 GSHHS-derived
polygons with a minimum island size of 0.1 kilometer®. With increasing discovery
and application of the new geodata resource, users identified certain inaccuracies.
These were mostly related to a sometimes poor fit of the GSHHS polygon to the
shoreline of an island when the GSHHS polygons were displayed on top of satellite
imagery. This type of issue is demonstrated with the data drawn over the satellite
imagery from Gaya Island, Malaysia.

The graphic shows the fit of the GID v. 1.0 (IBPoW) island shorelines (in yellow)
to these islands. Importantly, these shorelines were derived from nautical charts,
not satellite imagery. The inaccuracies in location, size, and shape of the GSHHS
island shorelines suggested that an image-derived global islands map might
represent a considerable improvement in accuracy.

The WCMC Global Island Database v. 2.0

Given the availability of the new OSM satellite-image-derived global islands resource,
WCMC initiated the development of a new version of the GID, GID v. 2.0, replacing
the polygons from the GSHHS with the new set of island polygons from the OSM
product. This effort increased the number of islands represented from ~180,000
to ~400,000. Many of the new islands that resulted in v. 2.0 were smaller than the
0.1 kilometer® minimum island size of v. 1.0.

This graphic shows the GID v. 2.0 islands from the same area as the above
graphic (Gaya Island, Malaysia), with island shoreline polygons represented
in red. Comparison of the two graphics reveals a striking improvement of

coastline “capture” in GID v. 2.0 over GID v. 1.0.

The USGS/Esri Global Islands Data Layer

In 2018, the US Geological Survey (USGS), in collaboration with Esri, produced
a new, standardized, high-spatial resolution (30-meter) map of global islands
interpreted from 2014 Landsat imagery.** The new data resource produced was in
effect a “byproduct” of an effort to make a new global shoreline vector (GSV) for use
in a global coastal ecosystem delineation and classification. The group did not set
out to produce a definitive global islands map. But in applying polygon topology to
the new GSV, the group recognized that a detailed new global islands map would

be an outcome. I " i " o 4 : g [ 1BigIslands ‘ i g 0-02 1—2 3—
¥ e : 7 aw L Small Islands Kilometers

Kilometers

This graphic shows the new USGS/Esri islands line work (in green) for Gaya
Island, Malaysia, to facilitate visual comparison with the previous graphics
depicting the WCMC GID v. 1.0 and v. 2.0 data layers.

The quality of the island polygon data is more easily evaluated when zoomed in to a fine spatial resolution, and with the polygons displayed on top of satellite imagery. For example, in this
graphic, the island of St. Thomas in the US Virgin Islands is shown with a green polygon outline surrounded by numerous smaller islets with red polygon outlines. A “gestalt” evaluation of the
quality of the GIS data is provided from a visual inspection of the fit of the island polygon data to the shoreline of the island, as seen in the imagery.



The USGS/Esri Global Islands Data layer

The USGS/Esri global islands data layer was developed with a minimum mapping
unit of 3,600 meters® (the size of four contiguous 30-by-30 meter Landsat pixels). The
product, developed directly from semi-automated satellite-image interpretation,
has few attributes. One important attribute is size class, with all islands identified
as either Small Islands (< 1 km?), Big Islands (> 1 km?), or one of the five Continental
Mainlands (North America, South America, Africa, Eurasia, and Australia). Names
were added for all islands greater than 1 km® by a combined automated (intersection
of polygons with the GeoNames geographic place names data) and manual (analyst-

based search for names using online mapping resources) approach. Full details of

the methodology and results from the USGS/Esri global island data development
effort are found in Sayre, et al.**

Basic characteristics of the USGS/Esri island polygons are found in the following
table (reproduced from Sayre, et al.)®

Landmass type Number of polygons Area (km?)  Length of coastline (km)
Continental mainlands 5 125,129,046 813,467
Big Islands (> 1 km?) 21,818 9,938,964 1,304,762
small Islands (< 1 km?) 318,868 20,589 321,774

Zoomed in, the sheer number
of islands in the northern
Baltic becomes clear.

I Continental Mainlands

[ Big Islands 0 1,250 2,500
B Small Islands

5,000 7,500 10,000

Kilometers

At the page format size of this
global islands map, the smallest
islands would not be discernable.
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Visualizing the USGS/Esri global islands data

To enable easy visualization and query of the USGS/Esri islands data by anyone
with internet access, the USGS and Esri developed an online tool called the Global
Islands Explorer (home page pictured at right). Accessible at https://rmgsc.cr.usgs.

gov/gie, this tool offers pan, zoom, and query functionality and allows the display of

island polygons over a number of different basemap backdrops, including satellite
imagery and topographic maps. The island data are served as raster image services
but are available for download in the tool in their original vector polygon format.

1275086062 AllGloballsland Data3.mpk
4148407870 EMUGlobalOcean.mpk
50063923 GME Klbinary.zip
104609455 GME_Klclasses.zip
729546 GME_K2binary.zip
1003640 GME_K2classes.zip

45254298 GME K3binary.zip

97636945 GME_K3classes.zip
85861617 Oceania_IslandsEcos2.mpk

1704075435 World Ecological 2015.zip
768610515 World ELU 2015.zip

1076869281 WorldEcosystemsGeographic.mpk

The global islands data have been placed into the public domain, accessible at:
https://doi.org/10.5066/P?C6XKLO. The free availability of the data to anyone with a
need or interest to use it is a testament to the open data philosophy that also resulted
in the decision to make all Landsat data openly and freely available.

x
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MERGING THE USGS/ESRI AND WCMC GLOBAL ISLANDS DATASETS

The arrival on the scene of the USGS/Esri product created an issue for seekers
and users of global island data. First, how do two (USGS/Esri and WCMC v. 2.0)
authoritative, spatially explicit, global islands resources available at similar
spatial resolutions differ? And second, which one is more suitable for a particular
application of interest? Wary of the burden this situation placed on users of global
islands data, USGS/Esri and WCMC decided to reconcile the two resources to
the extent possible into one. They agreed to merge the two resources to obtain an
improved product and then place that resource squarely in the public domain for the
greater good. This collaborative merging of resources is now complete. As is always
the case when trying to reconcile datasets of differing origins, spatial resolutions,
and intended uses, the merger was not perfectly straightforward and required use of
sophisticated geospatial processing.

The USGS/Esri global islands as the reference foundation

The first and one of the most important decisions when contemplating the merger
of the USGS/Esri and WCMC global island datasets was which one to use as a base
layer for providing the foundational linework for the final combined database.
Although the optimal approach would have been to examine corresponding polygon
pairs for all islands and then select the best one to keep in the merged dataset, the
enormity of that task given the number of islands on the Earth (more than 300,000)
precluded that analysis. We therefore needed to choose one data layer from the two
global island products as the initial source of island polygons to work from.

The team visually evaluated both resources on the basis of accuracy, consistency,
and level of detail in the linework when zoomed in to the spatial resolution at which
the island polygons were originally interpreted (30 meters). After much globally
comprehensive and rigorous visual inspection of the two resources, project leaders
determined that the USGS/Esri resource would serve as the reference foundation
and would be subsequently enriched using the WCMC data. That decision resulted
in part due to the emerging realization that the USGS/Esri island polygons were
more consistent globally, and because they had been produced in a documented
and reproducible manner. Moreover, in most comparisons, the USGS data were
more detailed in shoreline configuration. The WCMC linework (sourced from OSM)
varied in consistency and detail from place to place, not entirely unexpected given
the crowdsourced contribution for some of that linework. In some areas, the OSM-
sourced linework lacked sufficient detail, with geometric shapes like triangles and
paralellograms representing island perimeters. For all of these reasons, the USGS/
Esri island polygons became the starting point for the merged linework product.

Initial preparatory edits along the continental mainlands coastline

The first step removed polygons from the WCMC data that conflicted (intersected)
with any coastlines of the five continental mainlands in the USGS/Esri resource.
All of the USGS/Esri polygons, including the five large continental mainland
polygons, were mutually exclusive from a spatial perspective, with no overlap of
islands and continental mainlands. However, of the total initial number of WCMC
island polygons (448,036), 42,787 polygons overlapped (intersected) the USGS/
Esri continental mainland polygons and were therefore removed from the WCMC
resource. Many of these islands were found to be located in interior freshwater lakes.
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Use of the Near command to identify matching polygons inthe data layers

The next step in the merge process identifed the subset of polygons in the WCMC
data that matched (i.e., represented the same island) the corresponding polygons in
the USGS/Esri data layer. Given that the USGS/Esri global island data had limited
attribution (typically just name and size), the productiion team wanted to find
matching polygons in the WCMC data to extract useful attribute information from
the WCMC data and transfer it to the USGS/Esri polygons. We identified matched
polygons as a pair, one from each data source, which each corresponded to the
same island. This determination was made using the Near command in ArcGIS".
Near calculates distance and additional proximity information between the input
features and the closest feature in another layer or feature class. We used the Near
command to find the closest polygon in the WCMC dataset to the polygons in the
USGS/Esri dataset within a specified search distance.

When the Near command returned a value of zero, the polygons in the two datasets
overlapped, and an assumption was made that they matched. That assumption was
borne out after a considerable number of initial visual comparisons revealed that in
almost all cases the polygons were a matched pair. For the Near command, search
radius was set to 300 meters based on the rationale that if a WCMC polygon was
greater than 300 meters away from the USGS/Esri polygon, it may not represent a
corresponding polygon for the same island. When the Near command returned a
value of minus 1, it meant that no polygons were found in the search radius. For
all matched polygons, the attribute information from the WCMC polygon was
transferred to the USGS/Esri polygon.

The matched polygons

In all, 201,674 USGS/Esri islands directly matched to a WCMC island because their
polygons overlapped. The country and name attribute information of the WCMC
data was then joined to the corresponding USGS/Esri polygon. An additional
48,317 USGS/Esri island polygons were found to have a WCMC polygon in very
close proximity (within the 300-meter search radius). Those non-overlapping
polygon pairs were also assumed to be a match, with the displacement attributed to
differences related to projection dynamics, methodological differences, or errors in
data creation. The Near command therefore successfully identified a total of 249,991
matched pairs from which WCMC attribute information could be extracted and
transferred. A total of 90,690 USGS/Esri polygons did not have a WCMC polygon
in the 300-meter search radius, so these polygons are assumed to be “missing” a
WCMC counterpart, and thus lack additional attribution at this time.

Addition of WCMC polygons that were missing in the USGS/ESRI data

At this point in the process, the merger of the two resources added considerable
attribute information from the WCMC islands to the existing USGS/Esri islands.
Another powerful enrichment of the USGS/Esri islands data using the WCMC data
related toisland polygons in the WCMC data that did not exist in the USGS/Esri data.
To find these WCMC islands that were “missing” in the USGS/Esri data, we ran the
Near command in reverse, this time starting with a WCMC polygon and searching
in a 300-meter radius for the nearest USGS/Esri polygon. WCMC polygons that did
not have a match (Near analysis returned value of -1) were considered islands that
potentially needed to be added to the USGS/Esri dataset. A total of 36,197 WCMC
islands polygons had no match to the USGS/Esri data.

The team was only interested in adding those WCMC islands that did not exist in
the USGS/Esri database if, in fact, they were real islands that had not been captured
in the USGS/Esri image-based extraction. Because the WCMC metadata had a
disclaimer warning of the existence of “fake” islands, it became necessary to verify
that the polygons being merged into the USGS/Esri dataset actually represented
real islands. We did not find a suitable automated method for testing the veracity
of these WCMC polygons and determined that manual verification was the best
and surest evaluation approach. We therefore visually inspected each of the 36,197
WCMC polygons over satellite imagery and marked them for inclusion in the USGS/
Esri dataset if the analyst decided that the polygon represented an actual island.

While time and labor intensive, the process effectively identified anomalies and
errors in this set of WCMC polygons. Sometimes, deciding whether the polygon
was real was straightforward in that land, rock, sand (emerged), or vegetation was
discernible. Other times, the decision was quite difficult, as swirling waters and
whitecaps indicated the probable existence of rocks just below the surface of the
water. The decision was made more difficult when the polygon was not overtop a
land feature, but nearby (displaced). When the displacement was not considerable,
and the size and shape of the polygon approximated the size and shape of the land
feature seen in the imagery, the polygon was determined to be “real” (in other words,
it represented an island) and was subsequently added to the USGS/Esri resource.

The team added any WCMC polygons with Antarctica as a country attribute
to the USGS/Esri resource. This resource does not otherwise include Antarctic
islands because of the lack of imagery for that region during the satellite image
interpretation step. However, in the merged product, an Antarctic “mainland”
polygon is still lacking.

Most human-engineered structures, such as seawalls, were excluded from the USGS/
Esri dataset; however, certain artificial islands constructed to resemble islands, like
the Palm Islands off the coast of Dubai, UAE, were included in the dataset. Islands
that were created to be islands were included, while lands built to support coastal
infrastructure were not.

Phase One — Create the USGS/Esri Global Islands Datalayer
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Very small islands (less than 3,600 square meters)

Many islands from the WCMC resource that were added to the USGS/Esri islands
dataset were very small. Their small size explains why these islands were missing
from the USGS/Esri resource in the first place. The minimum mapping unit used
in the initial extraction of USGS/Esri island polygons from satellite imagery was
3,600 square meters, which is the area of four contiguous 30-meter-by-30-meter
Landsat pixels. These very small islands from the WCMC data often delineate
rocky outcrops or islets in the surf surrounding larger islands. Some many-to-one
and one-to-many errors were noted at this very fine level of resolution wherein
some single polygons actually represented a cluster of islets, or a cluster of island
polygons represented a single island feature. Moreover, the detail in the linework of
many of these small WCMC islands was generally less than the detail of the USGS/
Esri linework.

For these reasons, researchers had less confidence in the detail and accuracy of
the WCMC-sourced polygons than in the original USGS/Esri-sourced polygons, and
users were encouraged to verify the accuracy of any polygons of interest added from
the WCMC resource to the USGS/Esri resource. In general, users who want to use
the data at a localized scale should verify the accuracy of polygons in this class and
may want to make edits or adjustments to the linework as needed.

Characteristics of the merged database

During the transfer of matched-pair attribute information from the WCMC
resource to the USGS/Esri reference, 249,990 islands were updated. Subsequently,
an additional 28,727 islands from the missing island analysis were added from
the WCMC resource to the USGS/Esri reference, and 12 USGS/Esri islands were
removed. The new merged data layer now contains five Continental Mainlands,
22,471 Big Islands (larger than 1 km?), and 346,925 Small Islands (less than 1 km?).
The total number of islands in the merged resource at the time of this publication
is therefore 369,401, although this number may change slightly based on future
refinements to the resource.

Phase Two — Compare and Merge the USGS/Esri and WCMC
(v. 2.0) Global Islands Datalayers
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These workflows summarize the detailed methodological descriptions provided earlier. The diagrams depict A) the development of the USGS/Esri Global Islands Data Layer,
and B) the subsequent harvest of additional information from the WCMC global islands product into the USGS/Esri reference layer. The new data are available in the Esri Living
Atlas and also in the public domain at https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global. A digital object identifier (DOI) has also been assigned to the data:

https://doi.org/10.5066/P2C6XKLO.
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ISLANDS WITH THREATENED BIODIVERSITY—A CRITICAL CASE STUDY

Many practical analytical applications require good, useful data on the location of
islands, as well as their numbers, shapes, sizes, and features. These applications range
from analysis of sea-level change to assessments of economic and noneconomic
value of island ecosystem goods and services to identification of suitable areas
for watercraft navigation. One extremely important application requiring good
island distribution information is the study of island biodiversity. We now turn our
attention to a critical case study—threatened island biodiversity—and discuss how
GIS analysis supports the understanding of the conservation importance and status
of island biodiversity.

Island biodiversity and islands as epicenters for species extinctions

Islands total only a small fraction of our planet’s land area,® yet host extraordinary
concentrations of unique species and are home to a disproportionately higher
amount of the world’s biodiversity than continents.® For example, of the more than
10,000 bird species described in the literature, 17% occur only on islands.” Many
island species are found only on one island or island group and are thus considered
endemictothatlocation. Madagascar, one ofthelargest ofthe oceanicislands,ishome
to as many as 15,000 native species of vascular plants, with 85% of them endemic.
Endemism on remote oceanic islands results from the evolutionary adaptation of

founding populations of ancestral species that arrived from continents—via flight,
oceanic flotsam, or other natural circumstance.® In the Hawaiian Archipelago, the
establishment of a cardueline finch from the continent gave rise to nearly half of all
the Hawaiian landbirds known today as Hawaiian honeycreepers, with more than
50 species, each with a different bill morphology and tongue shape to exploit diverse
food sources—seeds, fruit, insects, and nectar. These birds provide an astonishing
narrative of evolution on islands.®

Sadly, islands have been and continue to be epicenters for extinctions. Of the 275
total vertebrate extinctions worldwide since the 1500s, 54% of amphibians, 81% of
reptiles, 95% of birds, and 54% of mammals were island species.® Extinctions are
not a thing of the distant past In 2012, the Christmas Island Pipistrelle (Pipistrellus
murrayi) was declared extinct. This small bat underwent a rapid decline from 1994-
2005, but conservation action was too late, and the last Pipistrelle call was detected
in 2009." Islands provide critical refuges for species at risk of extinction today. A
study of 2,919 terrestrial vertebrate species classified as Critically Endangered
(CR) or Endangered (EN) by the International Union for Conservation of Nature
(IUCN) Red List of Threatened Species, a global scorecard for species conservation,
found 1,189 (41%) breed on islands, highlighting the disproportionate number of
threatened island species compared to continents when considering land area.'
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Birds in danger

The Floreana mockingbird (Mimus trifasciatus) has been extirpated from the
majority of its original home range, the island of Floreana in the Galapagos. It
is likely that Darwin’s observations of this bird species, also called the Charles
mockingbird, strongly influenced his views on evolution and the origins of species.
The mockingbird now exists in very low numbers on a few nearby rocky outcrops.
Predation by dogs and cats eliminated the bird from Floreana. Sadly, this situation
is increasingly common. The numbers of the struggling Polynesian ground dove
(Pampusana erythroptera), a French Polynesian single island endemic, have been
reduced to only about 100 individuals because of feral cats and invasive rats.

The Floreana mockingbird (Mimus trifasciatus) is a critically endangered bird now found
on only a few offshore islets in the Galapagos Islands, having been eliminated from its
namesake island by invasive rodents and feral cats.

The critically endangered Polynesian ground dove is endemic to the Tuamotus Islands
of French Polynesia. It is found on just a few atolls and is now extirpated from several
islands where it formerly occurred. Predation by feral cats and invasive rats have
reduced its numbers to approximately 100 individuals.

Predator damage to an endangered

blug{{ted booby egg.

Invasive species and pomising
eradication efforts

Invasive species have been a major
driver of species losses, implicated
in 86% of island extinctions." Island
species often evolved in the absence
of native predators and herbivores,
leading to high vulnerability upon first
contact with humans, and ultimately
the extinction of many species. On
Midway Atoll in the Pacific, the smallest
invasive mammal, the house mouse
(Mus musculus), recently adapted to prey upon and kill the largest of seabirds, the
albatrosses. Incubating adults, ecologically naive to this threat, sit tight on their
nests and are attacked relentlessly by mice, often with fatal consequences.'

Nonetheless, islands offer hope that we can prevent extinctions and protect
biodiversity. The development of techniques in New Zealand to control or completely
eradicate invasive mammals from islands has led to remarkable conservation
success stories, and these techniques are now used around the world.” On Palmyra
Atoll in the South Pacific, eradicating invasive Pacific rats removed a non-native
herbivore and seed predator, allowing a 5,000% increase in native seedling growth,"
led to the extirpation of the Asian tiger mosquito (Aedes albopictus) by removing the
primary host,"” and created safe habitat that could host translocated populations of
rare birds elsewhere in the Pacific. Islands within islands have also been created—
for example, the development of predator-exclusion fences that keep invasive
mammals out of important habitats on larger inhabited islands. The establishment
of a predator-exclusion fence in Nihoku, on the island of Kauai, Hawaii, is supporting
conservation recovery efforts for endangered Hawaiian shorebirds. The application
of social attraction techniques, such as broadcasting albatross calls from a sound
system and deploying albatross decoys in breeding display, will further augment
population recovery in these invasive-free sites.”®

A predator-exclusion fence in Nihoku, Hawaii, constructed to safeguard important bird
foraging and breeding habitat.”
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APPLYING GIS AND DATA SCIENCE TO ENHANCE BIODIVERSITY

CONSERVATION ON [SLANDS

Spatial assessments of islands and island biodiversity are essential to prioritize
conservation planning and track conservation interventions. To realize these goals
first requires a globally consistent spatial dataset that uniquely identifies each of the
islands of the world. The World Conservation Monitoring Center (WCMC) Global
Island database (GID) v 1.0 and v 2.0, and now the merged USGS/Esri and WCMC
datasets, have provided a foundation to undertake these broad-scale conservation
science investigations, two of which include the development of the Threatened
Island Biodiversity Database and the database of Islands and Invasive Species
Eradications.

The Threatened Island Biodiversity Database

The Threatened Island Biodiversity (TIB) Database (http://tib.islandconservation.org),
created in partnership with Island Conservation, University of California at Santa
Cruz-Conservation Action Laboratory, BirdLife International, and the IUCN
Invasive Species Specialist Group, is the most comprehensive global review of
island species listed as threatened on the IUCN Red List and at risk from invasive

threatened
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A global dataset of threatened island
species at risk from invasive vertebrates
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The Threatened Island Biodiversity Database is the most comprehensive
global review of island species listed as threatened on the IUCN Red
List and at risk from invasive vertebrates.

vertebrates,'” and is considered a “gold standard” for filling biodiversity data gaps."®
The TIB documents the current and historical distributions of highly threatened
animals, representing 41% of all critically endangered (CE) and endangered (EN)
birds, mammals, reptiles, and amphibians on the planet.’’ These highly threatened
animals were breeding on just 1,288 islands, representing just 0.3% of the ~400,000
islands worldwide, and with 70% of species restricted to a single island, representing
hotspots for biodiversity conservation efforts.

The TIB was achieved by extensive literature review and consultation with more than
500 experts. The dataset was collated by first assessing all vertebrate taxa classified
as CR or EN from the IUCN Redlist for breeding populations on only islands, on both
islands and continents, or only on continents. For each island species, every unique
island that hosted a breeding population was identified, documenting the present
and historical breeding status for each population on each island, and linked to the
WCMC GID. For each of these breeding islands, the presence or absence of invasive
vertebrate species—primarily invasive mammals known to be highly damaging—
were collated. Combined, the data allow conservation planners to identify and
prioritize feasible conservation actions, such as prevention, control, and eradication
of invasive species, to save island species from extinction.
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The Database of Island Invasive Species Eradications (DIISE)

TheDatabase ofIsland Invasive Species Eradications (DIISE; openly available online at
http://diise.islandconservation.org), created in partnership with the UCSC-CCAL,
University of Auckland, IUCN ISSG, Landcare Research, and IC, compiles the
methods and outcomes of invasive vertebrate eradication projects on islands.”
To date, the database contains data on 1,400 efforts on 940 islands, of which 88%
successfully met planned objectives.. The database provides unique insight by
tracking the global application and success rate of a conservation tool and provides
important utility to conservation practitioners faced with managing the threats of
invasive species on islands.

Creation of the DIISE is primarily based on systematic review of published and gray
literature, and expert correspondence. Each eradication event described is linked to
an island on the WCMC GID with a unique island code. Eradications on different
islands were recorded as separate events, regardless of whether it was in the same
archipelago or treated concurrently. Eradications of different species on the same
island are treated as different events. Key parameters in the database include
method, target species, outcome, and data quality.”

With help from the Center for Integrated Spatial Research at UCSC, the TIB
database and the DIISE were published in 2012 and 2013 as publicly available web
applications allowing users to identify islands from a series of parameters. Since
their initial release, each database has undergone significant data updates. For
earlier versions of the TIB and DIISE, spatial inaccuracies, omissions, and false
islands in the GID v 1.0 required careful review of islands. Spatial representation
of islands relied primarily on island centroids rather than polygons. Core island
attributes, such as island area and degree of human habitation, were based on
literature and expert review. With the development of the GID v 2.0, an extensive
manual review process to ‘cross-walk” islands between the new and old datasets
was undertaken and then validated using publicly available satellite imagery to
correct island polygon size and location, resulting in more than 3,000 individual
island polygons with rich attribution and high spatial resolution.
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Cumulative number of successful invasive mammal eradication projects by
year since 1950. Data are restricted to whole island events, where data quality
is scored as good or satisfactory only, and excludes domestic animals and
reinvasion events.

Species Detans

Common Name Brown / Norway Rat
Scientific Name Rattus norvegicus

Type (Animal) Rodent

Year of Introduction =

Locarion Detans

Island Code 163703

Island Name Channel 4

Region Pacific Ocean - North East
Country United States

Archipelago Aleutian Islands (Adak Island (Bay of Islands-Channel Islands Group))
Latitude 51.8111058

Longitude -176.8189221

Area (sq km) 0.003743804

Human Population None

Erapication Detans

Data Quality Good

Eradication Start Date 2004

Eradication End Date 2004

Status (Eradication) Trial or Research only
Type (Eradication) Whole Island

Primary Eradication Method Toxicant

Secondary Eradication Method NA

Tertiary Eradication Method NA

Primary Baiting Method Bait Station
Secondary Baiting Method

Primary Toxicant Diphacinone

Secondary Toxicant NA

Conract Derans

Contact Name AMNWR

Contact Organization Alaska Maritime National Wildlife Refuge

Organization_Website http://alaskamaritime.fws.gov

REFERENCES

Grey literature

Durnlevy, P. and Spitler, L. 2008. Alaska Maritime NWR Invasive Rodent Program 2003-2005 field work report:
Rattus norvegicus: Initial surveys, feasibility studies and eradication methods development in the Bay of
Islands, Adak Island, Alaska. U.S. Fish and Wildl. Serv. Rep. AMNWR 08/06. Homer, Alas. 232 pp.

This graphic depicts the location and details documenting the Eradication
of the brown Norway rat (Rattus norvegicus) from Adak Island, a remote
part of the Aleutian Islands in the northeast Pacific Ocean.




Spatial data: An asset for conserving threatened island biodiversity

Island habitats are unique and inseparably linked to traditional island cultural
lifeways. There is a real urgency to protect habitats, many of which are among some
of the last true wild places on Earth. The USGS/Esri/WCMC GID, the TIB, and the
DIISE all provide insights about the biogeography of threatened island species,
the success rate of island conservation efforts, and the prioritization of actions
undertaken to prevent future extinctions. These databases have allowed for the
identification of some 30,000 islands, a small but very important subset of the 369,401
global islands, that are known to harbor endemic and threatened biodiversity and
merit increased conservation attention. Combined, these datasets and subsequent
analyses have been cited in more than 70 peer-reviewed publications and have
been integrated into national, regional, and global conservation funding and policy
decision making. Examples include identifying where globally threatened seabirds
are at risk from invasive species and sea level rise,”» where eradicating invasive
mammals will benefit highly threatened vertebrates,” and what conservation
outcomes have occurred following invasive mammal eradications.”® Data on the
number of eradications of invasive mammal on islands over time were also used
within the Biodiversity Indicator Partnership, contributing to measuring progress
toward Aichi Target 9 (tackling invasive species) within the Convention on Biological
Diversity.

Global indicators

An indicator can be defined as a “measure based on verifiable data that conveys
information about more than just itself” The United Nations Environment Program
World Conservation Monitoring Centre (UNEP-WCMC) hosts the Secretariat to
the Biodiversity Indicators Partnership (https://www.unep-wcmec.org/resources-
and-data/biodiversity-indicators-partnership-global), an interdisciplinary global
initiative to promote the development and delivery of biodiversity indicators.
The Biodiversity Indicators Partnership exists to support the development of
and reporting on indicators from a variety of intergovernmental protocols and
agreements related to biodiversity and sustainable development.
These protocols include the Convention on Biological Diversity (CBD;
www.cbd.int/sp/targets/), thelntergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES; https://
ipbes.net/), the Sustainable Development Goals (SDGs; https://
sustainabledevelopment.un.org/sdgs), and other conventions.
Indicators have also been found to be useful for regional, national,
and sub-national reporting related to sustainable development
and biodiversity conservation. Indicators are essential metrics
for monitoring and reporting progress toward the achievement
of national targets and are important in facilitating adaptive
management.

An accurate global islands dataset will be important for the
development of robust global indicators. Reliable and verifiable
data is fundamental for the creation and maintenance of successful
indicators. A high-resolution global islands dataset could be used
to improve the accuracy of reporting units where islands intersect
with terrestrial and marine environments, as for example, Aichi
Biodiversity Target 11: “By 2020, conserve at least 17 per cent of

On this particular atoll of the Palmyra Islands, an effort to
eradicate invasive species has met with considerable success.
Two manta rays are seen swimming near the island.
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terrestrial and inland water, and 10 per cent of coastal and marine areas...”. A
consistent and accurate islands dataset could help to standardize the reporting
geographies necessary for the global policy instruments like the CBD and the SDGs.

Data from the DIISE reporting the number of invasive vertebrate eradications on
islands—underpinned by a global dataset of islands—have been used to measure
progress toward Aichi Target 9: By 2020, invasive alien species and pathways are
identified and prioritized, priority species are controlled or eradicated and measures
are in place to manage pathways to prevent their introduction and establishment
(Convention on Biological Diversity, 2011). This indicator is currently being used by
the Biodiversity Indicator Partnership.

Conclusion

The mapping of islands from antiquity until today is an evolutionary tale of
increasing geographic knowledge coupled with technological sophistication. Today,
most of Earth’s islands are known and have been mapped, but authoritative and
high spatial resolution data on island distributions have been relatively lacking until
recently. A merger of the USGS/Esri global islands data and the WCMC v. 2.0 global
islands database has produced a new, detailed, and globally comprehensive islands
geodatabase with more than 400,000 islands included. Users can easily explore
these islands using a web-based visualization and query tool called Global Islands
Explorer, and they can find freely available island vector polygon data in the public
domain. An important subset (~30,000 islands) of the global islands harbor endemic
and threatened biodiversity and merit conservation attention.The Threatened Island
Biodiversity database and the database on Island Invasive Species Eradications are
two GIS-based resources supporting the global island biodiversity conservation
effort. Satellite imagery and geospatial technologies have enabled and facilitated
the development and analysis of global islands data in general, and threatened
island biodiversity in particular.
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UNLOCKING OCEAN
INTELLIGENCE

With a veritable deluge of new data sources for oceans coming online from satellites, shipboard surveys, i il _ L e, h . o " » . w .
and autonomous systems, transforming raw data into meaningful information has emerged as a crucial need - ‘ . ' ~ . Rl o — - S =
for marine industries and management across a broad spectrum of communities. The National Oceanic and = ‘ . 5 - z \
Atmospheric Administration and Bureau of Ocean Energy Management have successfully deployed an advanced
geographic information systems platform to unleash the power of spatial analytics to unlock ocean intelligence.

By Lisa C. Wickliffe, Seth J. Theuerkauf, Jonathan A. Jossart, Mark A. Finkbeiner, David N. Stein,
Christine M. Taylor, Kenneth L. Riley, and James A. Morris, Jr.
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THE OCEAN PLANNING CHALLENGE

With more than 11 million square kilometers of space, oceanic waters of the United
States represent one of the largest Exclusive Economic Zones in the world. ' To manage
ecosystem and industry planning decisions in such a vast area, coastal managers
increasingly rely on comprehensive geospatial data and information to guide decision
making.>*** The emergence of advanced data acquisition platforms such as satellite and
autonomous systems has increased the volume and availability of geospatial data to
inform these decisions. However, coastal managers still struggle to turn this data into
comprehensive information (i.e., information for decision support) for applications in
ocean planning and management.

The US Bureau for Ocean & Energy Management (BOEM) and the National Oceanic
and Atmospheric Administration (NOAA) partnered to address this challenge and
developed OceanReports, an automated geospatial tool for analyzing and visualizing
US ocean space. The tool unlocks authoritative ocean planning data to answer essential
questions in seconds around planning, regulating, permitting, rulemaking, and efforts
toward conserving the diversity of ocean resources and assets in the United States.

Coastal managers tasked with regulating ocean space and the industries occupying it
require the best available information to make confident decisions regarding current
and future ocean uses. Ocean planning requires coastal managers to consider the
environmental diversity and array of uses throughout our oceans—ranging from the
distribution of sensitive habitats to the prevalence of vessel traffic—and minimize
conflicts among them. Science-based, geospatial tools allow them to address
specific ocean management challenges and advance economic development and
conservation goals.

The Port of Oakland in Northern Californiajis typical ameng.major US ports in
terms of the demands placed on it from various stakeholders, including shipping,
fishing, the cruise industry, and the general public, to name butafew.
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Block Island Offshore Wind Farm, aerial view.

The multiple dimensions of the ocean space

Some major goals of ocean planning include restoring infrastructure, protecting critical
habitats such as migratory corridors for endangered species, and managing ecosystems.
For ocean industry, marine planning includes matching the most appropriate ocean use
to an ocean space. Oceans within US jurisdiction play host to numerous military and
industrial objectives (e.g. energy production, major communication hubs, movement
of goods and services, training for military readiness), as well as fisheries, recreation,
and tourism activities. These activities occur in the shared ocean space with diverse
marine habitats, sensitive species, and many other natural resources. Within the ocean
planning schema for new activities, coastal planners must pay close attention to the
characterization of the ocean neighborhood in which an ocean activity will occur over
space and time.

Plannersrequire spatial data at multiple scales and dimensions to better understand how
different activities share a common ocean footprint. Most maps are two-dimensional
and may leave the false impression that the ocean contains virtually no unused space.
In reality, information needed for ocean planning spans multiple dimensions, including
the seafloor, water column, sea surface, and interactions with the atmosphere above the
ocean. Consideration of all dimensions is essential for conflict avoidance (e.g., shipping
traffic, sensitive habitats). Further, some data must be considered over time, as some
datasets only apply to certain seasons or time of day (e.g., migration of whale species,
fish spawning aggregations).

" AIR COLUMN

SEA SURFACE

WATER COLUMN

" SEA FLOOR

The multiple dimensions of the ocean to account for during the planning process.
Considerations on the sea surface, such as vessel traffic, can be accounted for
over space and time by viewing the Automatic Identification System (AIS) ship
transit data. Planning for Cetacean species, such as Humpback whales, movement
(e.g. migration, feeding, reproduction), helps minimize interactions with shipping
routes, as cetaceans not only use the water column, but also come to the surface
to breathe. In the case of aquaculture or wind energy operations, multiple
dimensions are important to consider, including the seafloor where important
habitat or seafloor infrastructure (e.g., pipelines, cables) may occur.
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OCEAN REPORTS: AUTOMATING OCEAN PLANNING ANALYSIS

MarineCadastre.gov, a cooperative effort by the BOEM and NOAA, provides
authoritative ocean data, tools, and support to marine planning communities. The
website organizes marine planning data and disseminates it into the public domain.
At its core, MarineCadastre.gov contains data on jurisdictional boundaries, marine
infrastructure, transportation, alternative energy, traditional energy, physical factors,
and biological data to support planning, management, and conservation of marine
spaces.

OceanReports began in 2014 as a prototype to help ocean planners, industry
representatives, and regulators more easily query a specific area of ocean space
and receive essential summarized information. Available in seconds in the form
of graphics and statistics, the information is used to inform planning decisions.
Through unlocking spatial data and analysis, OceanReports increases the power
and utility of data for technical and nontechnical users such as coastal managers,
environment-focused nongovermental organizations (eNGOs), environmental
policy analysts, geographic information systems (GIS) managers, K-12 educators,
international partners, industry consultants, and congressional and policy staff.

Designed as a freely available web application, OceanReports allows users
with no technical experience in GIS to select an area of US ocean space and
instantaneously obtain more than 80 unique, information rich infographics derived
from an automated spatial analysis of data associated with that location. These
include information on energy and minerals, natural resources, transportation and
infrastructure, the oceanographic and biophysical conditions, and the local ocean
economy. For anywhere in US ocean waters—from the coastal shelf of Florida to

the Bering Sea of Alaska to the far ocean reaches of the Pacific Islands—users can
start with an area of ocean space in mind and in return receive a comprehensive
automated report detailing key environmental and space use considerations
essential for planning, as shown in the bottom figure depicting harmful algae bloom
data off the Gulf coast of Florida.

Custom Area near Sarasota, FL

OCEANOGRAPHIC AND BIOPHYSICAL

Harmful Algal Blooms (Karenia brevis) = o

This compilation of harmful algal bloom (Karenia brevis) observational point data for the Gulf of
Mexico and eastern coast of Florida represents both presence and absence of K. brevis. Consistent
sampling occurred from 2000 to 2018, and therefore, this data period was used to determine areas of
consistent annual bloom levels above cellar concentrations lethal to fish (100,000 cells per liter).
Frequency of blooms (number of years with lethal fish blooms}) is visualized to indicate areas of
potential concern for current and future impacts to fish species occupying these areas. Importantly,
areas with no bloom occurrence in these data should not be interpreted to mean no bloom occurrence
@ has or will occur. Data were opportunistically sampled and binned to show patterns over time. Areas

. with no hexagons represent areas where samples were not collected, whereas bins with samples with

no K. brevis detected are hollow hexagons.
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Coastal managers can infer biological risks in a given area by visualizing harmful algae bloom (HAB)—in this case , Karenia brevis near Sarasota, Florida—in terms of its occurrence
and frequency over time at cellular levels harmful to finfish. This information applies to fisheries management and inland and offshore aquaculture screening and siting.
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OceanReports themes and data

OceanReports delivers a customized report for a user-derived ocean “area of interest”
that analyzes and distills key spatial data and provides location-specific insights in
these six topic areas:

1. General information: Describes the size of the selected area, jurisdictional and
political boundaries, land elevation and water depth, relevant laws, and popu-
lated places.

2. Energy and minerals: Highlights the energy potential available off the coast
of the United States, current areas of extraction/collection, and the availability
of mineral resources used to restore hundreds of miles of coastline and protect
billions of dollars in infrastructure and ecological habitat from coastal erosion
and destructive storms.

3. Natural resources and conservation: Provides information on the distribution
and abundance of natural resources (e.g., habitat locations that support migratory

and endangered species). These considerations are essential for balancing a healthy
economy and coastal ecosystems through mitigating impacts to natural resources.

Oceanographic and biophysical: Offers critical information on a variety
of oceanographic parameters, including data resources derived from the
Ecological Marine Unit.

Transportation and infrastructure: Shows the infrastructure and activities of
the marine transportation sector along the US coastline, including information
on vessel traffic, routing, and restricted areas. It also provides information about
permanent and semi-permanent structures such as cables, pipelines, ports, oil
platforms, and wells.

Economics and commerce: Provides information on relevant marine-
dependent jobs, commercial fish landings, census-derived indicators, and other
key economic considerations.

Chapter Theme  Symbol

Report Area Congressional and Legislative Districts
Depth/Elevation Federal Statutes

Populated Places Indian Land Areas
Federal/State/County Jurisdictions

General Information (@

Qil and Gas Planning Areas
Oil and Gas Leases

Offshore Wind Potential
Offshore Wind Planning Areas

Energy & Minerals Offshore Wind Energy Leases Coastal Energy Facilities
Qil and Gas Potential OCS Blocks with Sand Resources
Federal Sand and Gravel Leases
2 AlS Vessel Count Ports
Transportahon & Vessel Routing Coastal Maintained Channels
Infrastructure N. Atlantic Right Whale Management Areas Danger Zones/Restricted Areas

Anchorage Areas Unexploded Ordnances

Formerly Used Defense Sites

Protected Areas

Artificial Reefs

Shallow Corals

Deep-sea Sponge/Coral Obs.
Deep-sea Coral Habitat Suitability

Endangered Species

ESA-Critical Habitat Designations
Managed Highly Migratory Species
Audubon Important Bird Areas
Coastal Barrier Resource Areas

Natural Resources

Wave Height, Period and Direction Nitrate concentration

OQeanographic & Wind Speed and Direction Phosphate concentration
: g Current Speed and Direction Silicates concentration
BIGphy‘Slcal Sea Surface Height Aragonite Saturation State
Water Temp/Salinity at depth Light Attenuation (Kd PAR)
: & Ocean Job Contributions Census Statistics
Ecuﬂom ics GDP of Ocean Economy Fishing Economic Value (North and Mid
Commerce Contributions by Sector Atlantic)

Commercial Fish Landings

Infographic Reports Available

OceanReports chapter themes, the symbol
representing that theme, and the info-
graphics present in each theme where
statistics are provided for the user.

Beach Nourishment Projects

Surficial Sediment Texture
Ocean Disposal Sites

Wrecks/Obstructions
Cables and Pipelines
Wastewater Outfalls

Deepwater Ports
0il/Gas Platforms
Oil/Gas Wells

Aquaculture Pilot Boarding Areas
Oll Lightering Zones

Historical Lighthouses
Cetacean Biclogically
Important Areas
Essential Fish Habitat

Light Attenuation (Kd 430)
Chlorophyll a Concentration
Harmful Algae Blooms (K.
brevis)

Historical Tropical
Cyclone Exposure

Washington, D.C.

One of the most important aspects of
OceanReports is the built-in ability for
users to immediately access the data
underpinning the tool through map
layer viewing, available downloads, and
the original data source information
provided in the metadata. This example
from OceanReports shows a report for
the lower Chesapeake Bay in Virginia
state waters and a snapshot of the
economics and commerce for that area.

Richmond X@qg

Marine-dependent Jobs

Data represent state marine economy totals for three economic indicators: number of employees,
annual wages, and gross domestic product. Data presented in Marine-Dependent Jobs are only
available for U.S. states. Report statistics over territorial waters will show data from the closest
states,
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Under the hood

OceanReports provides synthesized and authoritative information early in
permitting or planning process in an effort to provide a “first look™ at ocean
interactions, with the goal of longterm ecosystem sustainability in mind. Providing
this information early in these processes can greatly impact the project trajectory
and outcome. A comprehensive ocean neighborhood (i.e., a geographically localized
community that interacts or overlaps with a proposed site) analysis allows decision
makers to see the big picture and make screening-level decisions quickly and
more efficiently. It also increases transparency in decision making by allowing all
stakeholders, from developers to regulators, to use the same data and information
to make decisions. OceanReports ultimately streamlines communication between
the public, agency, and industry; agency to agency; and agency to the public.

Users can come to OceanReports with a predefined planning goal prior to exploring
an ocean area of interest (i.e., custom area). Custom areas can be drawn in the tool,
representing ocean areas of interest given a user’s specific geographic focus. The back-
end software then accesses the necessary data associated with that custom area, and
applies specified reporting rules that define the automated spatial analysis (e.g., report
what is inside or intersects with the custom area); then parallel automatic processing
generates the themed infographic report for the custom ocean area. In some cases,
maximum area thresholds limit the descriptive statistics returned for an area that is too

OceanReports Process & Benefits
- Automated Analyses )

Data Inputs |

Project Goal Data Input

&

W?T

Individual Rules
are then Applied

Report what is inside, near,
or intersects
the custom area

et

Resulting statistics are
retrieved for each
infographic in the
automated analyses

Draw or Define Custom Area

large to provide valid statistics. These were determined for each continuous
data layer using the Moran's I spatial dependence test. °

Although visualizing mapped data can provide useful information to guide
decisions, summary statistics derived from the underlying spatial data can
provide deeper insights. Subject matter experts in specific coastal planning
topics such as wind, oil and gas, marine minerals and aquaculture, helped
develop rules to guide the return of statistical and attribute information
within each infographic. Each infographic follows a rule specific to the data
being analyzed and returns a result for the user defined custom area. To
provide useful and intuitive statistics and graphical summaries of data for
each infographic in OceanReports, numerous different graphical displays
were developed to convey easily interpreted important information about
a users specific ocean area of interest (i.e., custom area). Infographics
complement each dataset displayed on the map viewer portion of a custom
report and offer critical insights about the user-defined area. Examples of
graphical depictions of data for infographics displayed for a custom area
include interactive tables and charts, rose plots for oceanographic variables,
monthly displays of data with temporal components, and profiles to illustrate
data at various depth levels.

OceanReports Output

* Themed report is produced on-the-fly

» Report defines usable space and
quality of the space

« Aids in potential reduction of
ocean use conflicts

» Better informed decisions by users
with no geospatial background

?

« Time saved as data is in one location

« Print & share report

» Data & metadata available for download

Ol =

& BOEM

Some graphics courtesy of IAN, UMCES, NCCOS BioGeo, and the Marine-life Data and Analysis Team (MDAT)
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The nuts and bolts

The basic structure of a web mapping application includes the front-end (client) and
the back-end (server). The user interacts with the front-end, most commonly in a web
browser window. Behind the scenes, the application pulls, processes, returns, and
displays data to the user.

A cloud server hosts OceanReports using Microsoft Azure™ Platform as a Service (PaaS).
The application uses the Google-developed Angular web application framework. The
application also needs additional open source libraries and dependencies that are
included using a JavaScript module bundler called Webpack. For the presentation of the
application in a web browser, styles are added using a powerful cascading style sheets
(CSS) preprocessor, known as SASS. The Highcharts JavaScript charting library powers
the charts featured in many infographics in the application. A Socket.io connection
establishes real-time communication between the server and client, allowing data to be

updated quickly in the custom report infographics. Atlassian’s Bitbucket and Bamboo
provide continuous integration and deployment, ensuring each line of code is source
controlled, QA tested, and deployed automatically to the cloud servers.

The two main components that comprise the back-end of the application are a runtime
environment and a database. The runtime environment uses Express, a NodeJS server
framework, which handles the dynamic calculations, conditional statements, and
functions for the application. An Azure database for PostgreSQL allows for fast indexing
and querying of the 86 vector and 72 raster data layers (i.e., relational database) and the
application uses PostGIS for storing spatial datasets. Esri's ArcGIS Map Services display
and render map layers stored within the Azure database. Because of the complexity of
the data and large load requests, the application uses Nginx for load balancing and a
fast reverse proxy.

OceanReports
Architecture and Workflow

Local

¢, Bamboo Data
Code/Data =P Migration

Test and Deploy Script

Internet
Browser

Angular
Web App

Microsoft Azure Cloud

n .de | Postgres
S = with
PostGIS

Map Services | |

OceanReports architecture and workflow uses a variety of software to produce fast load times from calculations on large datasets. The user accesses the OceanReports web
application from an internet browser, while in the background the application accesses several software and service platforms to produce and retrieve the user’s request. Local

machines are used to update and improve the web application.
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SITING A WIND FARM UNDER BOEM'S RENEWABLE ENERGY PROGRAM

BOEM is the federal agency in charge of planning and leasing renewable energy
in US ocean waters. The BOEM Office of Renewable Energy Programs facilitates
responsible development of renewable energy on the outer continental shelf through
conscientious planning, stakeholder engagement, comprehensive environmental
analysis, and sound technical review.® The first step identifies potential wind-
planning areas by the state or region’s renewable energy task force. A renewable
energy task force is created when a state or a region expresses interest in the
development of renewable energy in federally managed US waters and is made up of
representatives from the states, federally recognized tribes, and federal agencies that
have an interest in the area. A task force considers numerous factors in choosing a
site for an offshore wind farm. These considerations include costs, potential profits,
available resources, potential conflicts, and political will. Considerations for design
and engineering of the structure depend on site-specific conditions, particularly
water depth, seabed geology, and wave loading.® In choosing a location, the task
force recommends potential lessees to consider where the energy is needed and
whether the wind farm is close enough to supply those needs.

All new wind energy farms must comply with BOEM’s renewable energy program,
which occurs in four distinct phases: 1) planning and analysis, 2) lease issuance,
3) site assessment, and 4) construction and operations. The planning and analysis
phase seeks to identify suitable areas for wind energy leasing consideration through
collaborative, consultative, and analytical processes that engage stakeholders,
tribes, and state and federal government agencies. During this phase, BOEM reviews
environmental compliance and consults with tribes, states, and natural resource
agencies (https://www.boem.gov/Commercial-Leasing-Process-Fact-Sheet).

Before or during this phase, potential stakeholders in the region often start with
a general area of interest. Using OceanReports, we can begin to guide some
decisions that allow the task force to view the same general area or areas of interest.
Stakeholders should consider answering these kinds of questions before beginning
the first phase:

e  Where is the energy needed? Is there a potential location with good wind
resources close to energy needs?

e |s the wind is strong enough year-round to keep the turbines going at a
profitable rate?

e |s the bottom type appropriate for a wind turbine installation?

e s it shallow enough (under 100 feet) to support a seafloor suported structure or
is it greater than 100 feet suggesting a floating windfarm?

e Are there ports and transmission connections that can handle the construction
and operational needs?

e Which authorities can approve, permit, lease, monitor, and evaluate the project?
What are the regulations that need to be considered?

What other human activities regularly occur in the area?

Are there environmental issues (wildlife harassment, air pollution, water pollution,
potential effects to Essential Fish Habitat areas, etc.)?

In this hypothetical example, stakeholders wanted to locate a wind farm off Montauk,
New York. The investor group and the state are interested in the area shown off Long
Island, as these stakeholders operated a successful wind farm within Rhode Island
state waters (i.e., Block Island Wind Farm). The investor group wanted to move to
the open ocean that lies in federally managed waters, as offshore winds tend to
blow harder and more uniformly than on land, and thus can produce significantly
more energy/electricity.® Additionally, siting turbines farther offshore makes them
less visible from shore, minimizing potential visual conflicts. Nearby, ports and
transmission connections are already in place that can handle construction and
operational needs. To further investigate the proposed area, the investor group used
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Artist rendering of proposed offshore wind turbine designs
gives stakeholders and the public a sense of the visual impact
of massive renewable energy projects.

OceanReports to inspect several other questions that need consideration, including
depth, other human ocean activities in the area, characterization of the surrounding
ecosystem, investigation of sensitive habitat and species, bottom type, and the
potential for wind energy in the area of interest.

First, the investors drew a custom area within the OceanReports tool for the area
of interest for siting the wind farm (next page). Next, the investor group reviewed
each theme chapter within OceanReports for the custom area, which provides
synthesized information about the drawn area. The general information theme
provided the general characteristics, including the size of the area (281 km?),
minimum (-37.2 m) and maximum depth (-60.6 m), and whether the area is in
federal waters or state waters. In this case, the investor group aimed to be in federal
waters, and 100 percent of the custom area was in federal waters.

Next, the group checked wind energy potential and found it was “outstanding”
for the custom area. Looking further into the custom area, the group checked for
substrate type because it is one of the main factors in determining whether and
what type of turbines should be used. By looking at the Energy & Minerals theme
information, the group saw the predominant substrate in the area was sand,
which is favorable for the project. Next, clicking the Natural Resources theme, the
group saw that 100 percent of the area is in North Atlantic Right Whale Seasonal
Management Area, which dictates caution for ship traffic in migration season. The
Cetacean Biologically Important Area Fin Whale feeding zone covers part of the
area, and the Northern Right Whale Migration Area covers all of the area.

At this point in the automated analysis, the investor group considered reviewing
the biological opinion (i.e., formal consultation, stating the opinion of the agency
on whether a federal action is likely to jeopardize the continued existence of listed
species or result in the destruction or adverse modification of critical habitat) if they
proceed from the nearest wind energy lease blocks.’ Clicking on the Transportation
& Infrastructure theme showed that vessel traffic is relatively low, but seafloor
infrastructure may impede progress, despite the three electric power facilities

nearby. Submarine cables run through the proposed wind farm area, but other
proposed sites have submarine cables running in subsurface sediment. Because
of the uncertainty associated with potential interaction with the cables, the group
then moved the custom area by dragging the original drawn area to a nearby
adjacent area to avoid the cables. After toggling on unexploded ordnance and
shipwrecks, the group decided to go farther offshore to avoid the aforementioned
constraints. The project was still economically viable but would require a different
and more experimental type of turbine platform such as tripoled, jacketed, or tripod
wind turbine structures in the deeper waters. After checking several oceanographic
factors (e.g., tropical cyclone wind exposure, significant wave height, prevailing
wind direction), the investor group decided to pursue further conversations with
relevant agencies to determine whether the location is truly viable and permissible.
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Hypothetical custom area drawn off the coast of Montauk, New York, to determine whether
the Custom Area characteristics meet the needs of the proposed wind farm.

In real-world applications of OceanReports, the custom area would be drawn
multiple times within multiple areas, allowing the user to run a report for each
area to share with collaborators and state and federal government agencies and
compare the options for each area against one another. Not all intersecting data
layers become roadblocks to development. Wind farms can build around cables
to avoid them; protected areas for whales can be utilized as long as construction
doesn’t occur while they are in the area. Finding just the right area that eliminates
all conflict is nearly impossible, but avoiding already known impediments before
progressing further in the planning process can save significant time. OceanReports
helps users quickly identify the known challenges for each area, understand needed
further investigation, and can use finer-scale data and information to provide
needed detail once a potential area is identified.
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After reviewing the seafloor infrastructure inside the custom area, the hypothetical investor group decided to move the area to avoid known potential constraints.
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PIONEERING OFFSHORE AQUACULTURE IN THE GULF OF MEXICO

Aquaculture is one of the fastest-growing food production sectors in the world, and it
plays an increasing role in sustainable seafood production across the United States.
The need to increase food security, reduce a multibillion-dollar seafood trade deficit,
create jobs, and revitalize coastal communities drives aquaculture development in
the United States. Many regions around the country are preparing for this increase
as aquaculture aims to move offshore. The Gulf of Mexico offers substantial potential
for development of marine aquaculture. During the past decade, industry and
proponents for aquaculture have tried to develop frames of reference and rationales
for creating an offshore aquaculture industry in the Gulf. Stakeholders and residents
in coastal communities have intensely debated aquaculture development. Coastal
managers and stakeholders need awareness and confidence to use science-based
decision tools to inform coastal ocean use plans and equitably resolve points of
resistance to industry development.

Although the United States owns immense ocean space, identifying suitable
locations for commercial aquaculture development requires specific environmental
conditions and must minimize conflict with natural resources such as sensitive
habitats, as well as established ocean industries such as energy, mining and mineral
extraction, recreational and commercial fishing, navigation, military, shipping,
and other public interests. The task of identifying these locations is particularly
important within the Gulf of Mexico, where abundant resources have contributed
to a growing ocean economy. For instance, more than 90 percent of US oil and gas
production occurs in the Gulf of Mexico, providing billions of dollars to the national
economy. The multibillion-dollar shipping and shipbuilding industries include two
of the largest ports in the world, Houston and New Orleans. Gulf fisheries are some
of the most productive in the world and yield more finfish, shrimp, and shellfish
annually than the South and Mid-Atlantic, Chesapeake Bay, and New England areas

—

In Hawaiian waters, aquaculture uses the Aquapod finfish
cage to grow fish in the open ocean environment. o’ &g

</ /";/ [

combined. The region is home to three of the top eight fishing ports in the nation by
weight, and five of the top 20 fishing ports in the nation by dollar value.”

In what has been perceived as a sea of conflict, OceanReports lends support to
regulators and industry in prospecting for suitable locations for aquaculture
development. Locating an aquaculture operation offshore is an expensive endeavor.
Siting and reconnaissance in the unprotected open ocean environment depend
upon using the best available science to account for increased exposure to extreme
weather and ocean conditions, competition for space, and protection of natural
resources. In this hypothetical example, industry and academic partners in the
Gulf region want to deploy a new, technologically advanced finfish farm in tandem
with a decommissioned oil platform. The Energy Policy Act of 2005 granted BOEM
jurisdiction over projects that use existing (decommissioned) oil and natural gas
platforms for other purposes in federal waters, in addition to jurisdiction over
renewable energy projects. Alternate uses of existing facilities may include, but
are not limited to, research, education, offshore aquaculture, support for offshore
operations and facilities, and telecommunication facilities.® These infrastructures
can withstand high-energy systems and might eventually reach economies of scale
that offset some of the additional costs of offshore locations."

After determining viable decommissioned platforms within the region, the team
needed to explore Gulf waters to determine a platform area where oceanic conditions
are conducive for finfish aquaculture. In this hypothetical example, the team aims
to moor the finfish cage near the rigid platform structure. The team plans to use the
structure for worker housing, storage, feed automation, extra parts for cage repair,
and as a communication hub to transmit real-time data gathered by sensor systems
on the cage to land-based facilities. Given the species of fish for culture, the design

characteristics of the cage, and the frequency of natural disasters in the region, the
group used the automated spatial analytics in OceanReports to quickly screen large
areas of ocean space. The analytics inform the basic engineering criteria for culture
systems (depth, current speed, sediment type) and environmental conditions
required for aquatic species (temperature, water quality). Because of significant
wave heights during storms in the Gulf of Mexico, the aquaculture cage must be
located in at least 50 meters of water. The group toggled on the depth contours to
determine this depth before drawing a custom area. Once the depth constraint was
met, the team investigated the Oceanographic & Biophysical theme for significant
wave height and sediment type because these variables also limit gear type and
placement. The team assessed temperature and salinity at the depth for culture
species within the drawn custom area to determine whether the candidate species
of finfish could thrive. Further, the team assessed the speed of the current on and
below the surface to ensure it never rose above 1 meter per second on average
(i.e., faster than the gear or species could sustain over time). During episodic
storm events, sensors will alert the team to conditions so they can sink the cage to
potentially mitigate damage and losses.
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The map portion of OceanReports shows the average current speed at the surface of the ocean over a 20-year climatology, distilled into monthly intervals. The

current rose diagram at the top of the infographic gives the prevailing current direction and speeds over the climatology assessed. The bottom infographic depicts
monthly maximum, mean, minimum, and standard deviation to determine, for instance, which month the maximum current speeds occur.




As ascreening tool, OceanReports gauges opportunities for aquaculture at a regional
scale. Generally, a team will find multiple alternative sites before conversations
begin with state and federal government permitting agencies, because each site
has different sets of constraints that require negotiation. The team can streamline
the permitting process by holding pre-permitting meetings with agencies and

finding several locations that meet required parameters and avoid major ocean use
conflicts. OceanReports can screen large ocean spaces to identify major conflicts in
an area. The use of high-resolution oceanographic and biophysical data can further
define an area and is recommended before farm planning proceeds to the next step.

A conceptual diagram of the finfish cages
in the ocean using the rigid structure of the
decommissioned oil rig as an automated
feeding platform, housing unit for workers,
and real-time communication hub to relay
any issues to land-based operations.
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Conclusions and insights

OceanReports represents the next chapter in marine spatial planning and a
fundamental advance in our ability to access and transform big ocean data.
In unlocking access to an unprecedented amount of essential information,
OceanReports shares information transparently to empower ocean planning
decisions. Public benefits derived from OceanReports include increased regulatory
confidence, decreased time and increased efficiency in the permitting process,
transparency, and better-informed stakeholders (e.g., public, industry, government,
NGOs). Standard web mapping applications or data portals allow users to view and
download numerous spatial datasets. OceanReports takes the standard web map
application to the next level by allowing the user to draw and define a custom area
and receive a customized report detailing essential information for an area of ocean
space derived from an automated spatial analysis, usually in less than 2 seconds.

OceanReports helps users engage openly with coastal communities, develop
pilot-scale demonstrations, and plan large commercial projects. OceanReports
stimulates an objective and rigorous analysis of ocean space to inform planning
and preliminary permitting discussions with regulators and also provides
transparency to the planning process. Early and informed engagement with the
regulatory community—facilitated partly through the information provided via
OceanReports—can illuminate crucial trade-offs, incorporate public values and
concerns, and explore approaches to minimize environmental impacts.
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THE GEOGRAPHY OF
OCEAN PLASIIC

Since their invention in 1950s, plastics have had an alarming and highly visible impact on the
world’s oceans that humanity certainly never anticipated. Modern scientific detectives are turning
to big data and advanced GIS software to understand the major sources of plastic pollution in the
world's oceans as a first step to reducing their presence.

By Orhun Aydin and Shaun Walbridge, Esri.

e

Plastics washed ashore in Accra Beach, Ghana. 99.9% of plastics ever
produced still exist in their original shape (including discarded plastics).




THE PROBLEM WITH PLASTIC

Understanding the exposure faced by marine animals—from the largest whales
to the smallest plankton—to moving plastic debris is a crucial first step toward
estimating (and ultimately mitigating) the impact of this insidious and long-lasting
type of pollution on the world’s marine ecosystems. This chapter highlights the
work of scientists to quantify the spatio-temporal overlap between moving plastic
debris and the marine migration paths of certain species, with the goal of modeling
and predicting the extent to which different animal species are exposed to moving
plastic.

We can surmise through anecdotal evidence like the images seen on this page
that there is a major problem. Quantifying it is another matter altogether. One of
the grand challenges associated with understanding the dynamic relationships
between marine life and plastic is an acute lack of data on the movement of plastics
pollution from the major sources into the so-called ocean gyres (the well known
example being the notorious Great Pacific Garbage Patch). Modeling the amount of
plastic degradation that happens en route adds another layer of complexity as the
original bags, bottles, and countless other items degrade into even more dangerous
micro- and nano-plastics.

This work uses geographic information systems (GIS) tools to combine multiple
data sources to mine spatio-temporal patterns behind different marine animal
species’ exposure to moving plastics. The model represents plastic movement as
a coupled process between ocean currents and surface winds using a Lagrangian
simulator—an open source algorithm that is widely accepted in the realm of fluid
dynamics. Resulting movement of spatially heterogeneous plastics is represented
within a space-time data structure. The team developed a temporal co-location
analysis between plastic movement and animal telemetry to model exposure times
of different marine animal species to moving plastics. This type of analysis can be

PLASTICS IN NUMBERS

8,300,000,000 metric tons of plastics produced
since its invention in the 1950s'

99.9% of all plastics ever produced still exist
in their original shape (including discarded
plastics)?

Number of microplastics from marine debris in
the oceans is 500 times more than the number
of stars in Milky Way (100 billion)?

1.15-2.41 million tons of plastic waste
currently enter the ocean every year®

74% of emissions occurring between May
and October®

100s of marine species are at direct risk?

2

Recycled
and managed

A

Unmanaged

MAPPING THE GLOBAL PLASTIC WASTE SITUATION

Data from Jenna Jambeck et al* linked worldwide data on solid waste, population
density, and economic status to estimate the mass of land-based plastic waste
entering the ocean. The study initially estimated the amount of plastic waste

Per capita plastic waste t'

kg per person per day
=]

Plastic waste per capita reported in kilograms per person per day. This figure displays
the amount of plastic waste produced per capita per country. Note that United States
is one of the top producers of plastic waste at an average of 3.6 kg per person per day.

produced per capita. But plastic waste becomes an environmental problem only
when it is mismanaged, in other words, when it is not recycled and managed

properly.
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Percentage of mismanaged plastic per country. This figure shows that some of the top
plastic waste producers are largely managing their plastics waste, preventing it from en-
tering the environment. Amount of plastic waste left in contact with Earth’s subsystems
is again mapped using the data on the amount of mismanaged plastics by weight.

broadly described as spatial statistics.

Environmentally unfriendly plastics impact the environment when instead of being
recycled, they come in contact with the subsystems of our planet. Mismanaged plastic
One of the biggest problems with plastics in the oceans is mismanaged plastics waste is the amount of plastics that cannot be (or are not) recycled with current
traveling into ocean gyres, areas where currents circle and accumulate plastics and infrastructure. Rivers, tides, winds, and illegal dumping can all carry mismanaged
other marine debris into so-called garbage patches. Throughout their ocean transport, plastics to the natural environment

plastics degrade and form micro-plastics that are detrimental to marine life.
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Up and down the food chain, marine animals, like this crab in the Philippines, face the
consequences of plastic products.

Whales—like this breaching humpack-—despite their place at the top of the marine
food chain, are especially vulnerable to ocean plastics as they continually filter sea
water in search of plankton and other small fish and ingest whatever they encounter.

Mismanaged plastic waste. Countries are symbolized with respect to their percentage contribution to overall plastic pollution. This map displays
the contribution of every country to mismanaged plastic waste. Despite the high amount of plastic per capita, North America has a low amount of
mismanaged plastic waste. However, other countries with relatively lower plastic waste per capita have higher total contributions of plastic pollution.
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SPATIO-TEMPORAL CLUSTERS OF PLASTIC POLLUTION

The already complex variables that come into play when studying this problem are
compounded by the fact that even managed plastic trash doesn't necessarily stay
in its country of origin. The maps on the previous page do not reflect transnational
flow of plastic waste. Large amounts of plastic waste are being exported to countries
in Asia.” Thus, the amount of plastic to manage exceeds the amount produced by
the local population in Asia.

The first line of defense to protect the environment from plastic pollution is reducing
waste by recycling and managing the plastic waste. Managing plastic waste includes
these mechanisms:®

« Mechanical recycling

« Feedstock recycling

« Incineration with energy recovery
« Landfilling

Mismanaged plastics can pollute the soil” and be transported via wind and
groundwater into major rivers.® Once in a river, plastic debris is transported to an
outlet that can put the plastic in contact with the ocean, a sea, or a lake.” Once in
the ocean, currents typically move the plastic debris along currents until they lose
velocity and sink or start converging in areas called gyres.

North Pacific

Subtropical
Convergence Zone

Western Garbage Patch

North Equatorial

GIS for Science

We can summarize the journey of many plastic molecules from site of use to an
ocean gyre in this way:

Disposal on land

Land runoff into river
River runoff into outlet
River outlet into ocean
Ocean transport to gyre

Grh Lo

This quantity of plastic debris is then imported to an open-source Lagrangian
simulator—OceanParcels—to model the travel of plastic debris transported by
different rivers. The resulting initial data describes movement patterns of plastics
which are then visualized and quantified in ArcGIS Pro.

Pacific gyres

Global positioning system (GPS) tracker data for different marine species provided
in the animal telemetry network dataset were filtered to focus on species that travel
in the Pacific Ocean. A gyre is characterized as a system of circular ocean current
movement (clockwise north of the equator and counterclockwise south of the
equator), and with at least 100 GPS points tracking its movement.

" Calife

Eastern Garbage Patch or
N. Pacific Subtropical High

Garbage patches are large areas of the ocean where litter, fishing gear, and
other debris collects. They are formed by rotating ocean currents called
“gyres. The Great Pacific Garbage Patch collects debris between Hawaii
and California. It is the most well known garbage patch. (Graphic courtesy
of National Oceanographic and Atmospheric Administration.)

MODELING THE JOURNEY OF PLASTIC DEBRIS

The study estimated the amount of plastics that rivers carry. They analyzed the
movement of simulated plastic particles and animal tracks from river outlets to the
Pacific gyres, relying on the Multivariate clustering in ArcGIS Pro. This detects the
number of distinct animal movement patterns with respect to the average distance
and angle they have to the nearest plastic stream. In addition, we used a test of
movement correlation based on the existing work by Laurent Lebetron and team?
that implements the Hidden Markov Model (HMM) in R using an open-source
package called moveHMM. The number of distinct movement patterns defined with
respect to distance and angle was used in the HMM model to test the significance
of impact of plastic streams and gyres to animal movement. This part of the study
analyzed whether marine animals were significantly collocated with prominent
bodies of moving plastic debris.

Reserachers used data for mismanaged plastic from Lebreton® to quantify the
patterns of plastics arriving at river outlets. The model shows the plastic outputs
from 10 rivers in Asia, which contribute a major amount of plastic to the oceans. They
datasets were binned in Esri’s space-time cube data structure to characterize spatio
temporal patterns of plastic pollution originating from these rivers. Following the
characterized spatio-temporal patterns, we simulated numerical plastic particles
at these eight river outlets with respect to surface winds and geostrophic currents.
The simulation was conducted using an open-source simulator that is integrated
into ArcGIS Pro through the Python integration via ArcPy. Travel times and routes
of plastic particles are analyzed using ArcGIS Pro".

Because the study covers a global problem, its conclusions refer to that global
scale instead of to the plastic pollution management policies of any one country.
The analysis shows that 8 out of the 10 rivers are positioned geographically where
their discharged plastics can reach the Pacific Ocean Gyres in less than a decade.

Following the characterized spatio-temporal patterns, the team simulated
numerical plastic particles at these eight river outlets and simulates their
movement with respect to surface winds and geostrophic currents. The
simulation is conducted using an open-source simulator that is integrated into
ArcGIS Pro through the Python integration via ArcPy. Travel times and routes of
plastic particles are analyzed using ArcGIS Pro.

Last, the team uses two methods to analyze the relationships between marine
animal paths in the Pacific Ocean and areas of plastic debris concentrations:

«  Multivariate clustering in ArcGIS Pro
«  Hidden Markov Model in moveHMM package of R

Using the multivariate clustering tool, our team detects the number of distinct
animal movement patterns with respect to the average distance and angle they
have to the nearest plastic stream. The number of distinct movement patterns
defined with respect to distance and angle is used in the HMM model to test the
significance of impact of plastic streams and gyres to animal movement. This
part of the study analyzes whether marine animals are significantly collocated
with prominent bodies of moving plastic debris.

Mismanaged plastic data

from Asia (tons/month)
(Lebreton et al, 2017)

Animal telemetry network

data from 100S
(Block et al, 2016)

Quantify spatio-
temporal patterns of
plastic influx

Simulate and analyze
plastic movement

Quantify animal-
plastic interaction

Marine species that exhibit distinct
movement behaviors wrt. plastic streams

Overall workflow for evaluating the impact of moving plastic debris on marine life. The flexibility of the ArcGIS platform allows incorporating open-source libraries in this scientific
workflow while enabling the powerful suite of geoprocessing tools. In particular, space-time pattern mining and spatial machine learning tools in ArcGIS Pro are used in the geo-

processing building blocks shown here.
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PLASTIC DEBRIS INPUT FROM RIVERS

Plastic debris from rivers is not constant and seasonality has an impact. Lebreton et
al.*provided data on inverse-modeled mismanaged plastic by weight globally. Our
team uses a subset of this dataset along the coast of Asia, because of its role as an
ocean plastic source. Our team creates smooth kriging surfaces of the mismanaged
plastic by weight in a time-discrete manner and uses measurements in rivers to
estimate the amount of mismanaged plastics flowing through rivers at any given
time. Smooth mismanaged plastic by weight surfaces is generated with Empirical

February

MPwW
(tonne/menth)

MPW
(tonne/menth)

Empirical Bayesian Kriging maps of mismanaged plastic by weight per month.
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Bayesian Kriging (EBK)."” We prefer EBK because it can capture non-stationarity,
which is expected because of localizing effects of currents on the plastic debris. The
small multiples below depict the resulting smooth surfaces. Notice that they display
strong seasonality for plastic waste arriving at the Pacific coast. Note that early in
the year the majority of the plastic pollution originates in the coast of Malaysia
and the Philippines and later in the year is surpassed by the plastic outflow from
Yangtze, Pearl, and Yellow rivers.
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A SPATIO-TEMPORAL LOOK AT THE PLASTIC PROBLEM

The Lebretron study® estimates that annually between 1.15 and 2.41 million tons
of plastic flow from global rivers into the oceans. Their model of plastic inputs
from rivers into oceans is based on waste management data, population density
maps, and hydrological information. The model is also calibrated against an ever-
expanding set of surface plastic field measurements being carried out in response
to the recognition of the issue. The top 20 polluting rivers are mostly located in
Asia and account for more than two-thirds (67%) of the global annual input while
covering 2.2% of the continental surface area and representing 21% of the global
population. The data also showed that the majority of plastics is emitted between
May and October (roughly correlating with the rainy season).

For the purposes of the GIS part of the analysis, researchers selected the following
eight rivers ranked by their estimated mismanaged plastic. The top-polluting rivers
in this study set were, in order:

1. Indus [India]

2. Ganges [India]

3. Irrawaddy [Myanmar]

4. Mekong [Vietnam, China, Laos, Thailand, Cambodia, Myanmar]
5. Pear! [China]

6. Yangtze [China]

7. Yellow River [China]

8. Amur [Russia, China]

Mapping in 3D space and time

Researchers aggregated these as space-time bins along the rivers to analyze patterns
of incoming pollution to the Pacific Ocean. Resulting hot-spot analysis on space-
time cubes per river is depicted here.

Vertical axis indicated time (lowest January, highest December).
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The eight worst plastic-polluting rivers that end up in the Pacific Ocean traverse some
of the most densely populated countries on Earth.

Vertical bins depict time, the
lowest bin being January and
highest being December.
Colors indicate whether the
time series was higher than
average (red) or lower than
average (blue). Emerging hot-
spot analysis shows that the
Yangtze and Ganges have high
plastic debris outflow after May.
Note the difference in spatio-
temporal patterns of plastic
debris mass in the Ganges and
Yangtze rivers. The Ganges
exhibits distinct time cycles in
; which amount of plastic debris
| 7 : is less compared to other
y R e, 5 rivers earlier in the year. The

' amount of plastic debris in this
river increases later in the year
(around May).
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HOW FAST DO RIVER-BORNE PLASTICS MOVE?

At this point in the workflow we move from the river sources to the ocean
surface global scale. But closer to shore, things get more complicated because
of the outitself and consider the spatio-temporal patterns of plastic pollution in
the Pacific. sized impact of winds on shallow surface waters. The team simulated
plastic particles following space-time patterns of mismanaged plastic by weight.
Much work is currently under way to refine the computer models that describe the

akarta
o kana o Esia

Simulated plastic pollution tracks.
Time-tagged plastics particles in red

Emerging hot-spot analysis for Pacific Ocean

GIS for Science

To factor all these variables, a Lagrangian particle simulation is performed using
general circulation patterns of the oceans. Things like satellite imagery of ocean
Open Parcels," an open-source simulator. Additionally, a specialized model—
temperatures have helped us to better understand ocean movement on a macro-
Global 1/12°—incorporates the impact of wind in shallow currents. A visualization
of the simulated plastic particles in the Pacific Ocean is seen here. (The HYCOM
consortium is a partnership sponsored by the National
Ocean Partnership Program, as part of the US Global Ocean
Data Assimilation Experiment. It's goal is to develop and
Time-of-flight maps for plastics evaluate the next generation
ocean from different river outlets. Hot model used in this
analysis. NCODA colors indicate fast travel times. Hot is a
similar US Navy data assimilating colors corresponding to
low time-ofmodel used in conjunction with flights imply
plastic emitted at that HYCOM.)corresponding river can
reach the locations in hot colors faster than Areas of plastic
stagnation are cold colors. Note that plastic debris depicted
in the emerging hot spot from Ganges stagnates in the Bay of
map as areas of high plastic counts. Bengal without reaching
the Pacific

CANADA

Areas of plastic stagnation are depicted in the emerging hot-
spot map as areas of high plastic counts. Note that the Bengal
Bay has multiple localized hot spots due to stagnant waters
creating high concentration in plastics. In addition, plastics
that are on the move are also characterized to slow down on
certain portions of their trajectories. Lagrangian simulations
of plastic particles are terminated when particles reach a
coast or a gyre. Thus, the map below displays areas where
plastic streams accumulate as they are moving toward gyres.
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W Intensifying Hot Spot
- Persistent Hot Spot
Diminishing Hot Spot
Sporadic Hot Spot
W8 Oscillating Hot Spot
Historical Hot Spot
\El New Cold Spot
- Consecutive Cold Spot
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MNo Pattern Detected

TIME-OF-FLIGHT MAPPING

ﬁﬁ"_i Ly ol
Al

Combined

Yangtze

Time-of-flight maps for plastics from different river outlets. Hot colors indicate fast travel times. Hot colors corresponding to
low time-of-flights imply plastic emitted at that corresponding river can reach the locations in hot colors faster than cold colors.
Note that plastic debris from Ganges stagnates in the Bay of Bengal without reaching the Pacific Gyre. From the Yangtze and
Mekong Rivers, plastics enter “plastic highways” into the Pacific Gyre because islands do not impede the debris as it travels on
strong ocean currents. Plastic particle can reach one of the Pacific Gyres in two to five years depending on which river it origi-
nates from. Thus, reducing the outflow of plastics can save a large water body in the ocean from micro-plastic emitted as these
plastic particles travel in the ocean.
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MODELING INTERACTIONS BETWEEN PLASTIC MOVEMENT AND MARINE LIFE

Animal telemetry network (ATN) data' is the main data source for marine animal
movement in the Pacific Ocean. A subset of the ATN network data contains 24
species of marine animals, such as leatherback sea turtles, whales, and marlins to
name a few. Interactions between these marine animals and plastic streams are
quantified by calculating the minimum distance between migration paths of marine
animals and angle of approach of marine species to plastic streams and gyres.

The team first defined cluster jointly for distance between different species’ paths
and their angle of approach to the plastic streams. The next figure shows a map
resulting from multivariate clustering.

Clustering map

Marine animal telemetry data in the Pacific Ocean. Every point is a time-stamped GPS
location for a species. All GPS locations are color coded with respect to clusters defined
for distance and angle to plastic streams.

The Calinski-Harabasz index returns four distinct groups in ATN data with respect
to distance to plastic stream and angle of movement. Clusters of animal movement
are further explored by plotting the characteristics of every cluster with respect to
minimum distance to plastic streams and angle. The next figure depicts the box plot
for multivariate clusters. For every species, our group also built a Hidden Markov
Model to investigate the probability that movement patterns discovered here are
statistically significant. R's Hidden Markov Model library is utilized for this purpose.

Multivariate clustering box plots

Box-plots for clustered marine animal movement data. Red and yellow indicate
species that are collocated with plastic streams that swim with and against the current,
respectively. Moving plastic debris is expected to impact these species the most. Blue
indicates species that evade plastic currents due to persistent high angle movement
and distance. In this instance, our study only investigated the overall angle and distance.
Micro-paths may also exist that overall clusters may not reflect. Green indicates species
that travel orthogonally to plastic streams. These are plastic-agnostic species that do not
alter their path. Most of the species in this group are whales.

CONCLUSIONS

« Lagrangian simulation results indicate that spatio-temporal contribution of
every river to the Pacific plastic gyres cannot be avoided, because time-of-flight
from every river varies considerably.

« Preliminary HMM analysis of movement data on marine animals shows that
some species alter their course toward plastic streams. Although this analysis does
not imply direct correlation simply because these species may travel on the same
currents as plastic streams, certain species are observed to be collocated with
prominent plastic streams
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7. F-M. Li, A.-H. Guo, and H. Wei, “Effects of Clear Plastic Film Mulch on Yield of
Spring Wheat,” Field Crops Research 63, no. 1 (1999): 79-86, https://doi.org/10.1016/
$0378-4290(99)00027-1.
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188 (2014): 177-81, https://doi.org/10.1016/j.envpol.2014.02.006.

10. K. Krivoruchko, “Empirical Bayesian Kriging Implemented in ArcGIS
Geostatistical Analyst” (2012), https://www.esri.com/NEWS/ARCUSER/1012/files/
ebk.pdf.
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Observations in the United States,” Animal Biotelemetry 4, no. 1 (2016): 4-11, https://
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Satellite transmitters attached to a sea turtle’s back. The transmitters are small,
lightweight devices attached to the turtle’s carapace (shell) using aquarium-
grade epoxy resin and are designed to withstand up to 300 days at sea. The
transmitters rely on solar power to charge the unit and satellite telemetry to
pinpoint their location every time a turtle returns to the surface for air.
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EXPLORING BENEATH
THE BASEMAP

The majority of the world’s energy and mineral resources are extracted from the below ground.
Subsurface geologists explore the world below land and sea through the lens of current and historical
data. Using GIS and geoscience methods, scientists are redefining our knowledge of the subsurface.
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By Jennifer Bauer, Devin Justman, MacKenzie Mark-Moser, Lucy Romeo, C. Gabriel Creason,
and Kelly Rose, National Energy Technology Laboratory

Layers of exposed rock tell a story about the geology in the Baffin Region, Canada.
™ Subsurface scientists use deep-drilled wellbores and other records to understand
[ the dynamic forces beneath the Earth’s surface.
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EXPLORING BENEATH THE BASEMAP

Charles Lyell, one of the fathers of the science of Geology, is noted for his observation
that “the past is the key to the present.” Over the past century and a half, subsequent
geologists have leveraged the science of cartography to explore, document, analyze,
and visualize the geospatial features of Earth's geology. In the past couple decades,
scientists have increasingly integrated and utilized GIS tools and techniques to
enhance surface exploration and mapping. Efforts to integrate remote sensing data
and methods with surface- based observations and measurements. Resulting in a
global basemap of the Earth's geology.

However, extending traditional GIS map analyses and interpretation methods
into the subsurface is challenging. The geology of Earth is heterogeneous, and the
geologic features observed today are the result of complex, systematic processes
that have occurred over the past thousands to billions of years. Much of our
understanding of the subsurface relies on limited physical samples or from
indirect measurements, such as geophysical surveys and wellbore logs.
However, data collected with indirect measurements are uncertain, and  Crust
the accuracy of the measurements declines when used in the deeper

regions of the subsurface, especially for the Earth’s mantle and

core.

Analytics, such as those applied to predict, interpolate, and Mantle
map subsurface properties, such as temperature,
pressure, porosity, permeability, and -
others, rely upon spatially and %
temporally disparate data coupled /
with limited a priori information. /"
Resulting predictions are often /
highly variable, with poorly /|
constrained values and high
degrees of uncertainty. Even
regions with concentrated
subsurface exploration are
still plagued with geologic
uncertainty  that  can
obstruct safe and efficient
exploration of the subsurface.
As a result, even with an
increase in human exploration
of the subsurface, the Earths
vast interior remains largely
unexplored. There is, however, great
potential for GIS-geoscience innovations
to address this uncertainty and improve our

exploration and study of the Earth's subsurface to meet a variety of challenges and
needs.

By far, human exploration of the subsurface for mining, water, oil, natural gas,
geothermal energy, underground storage, and research purposes has provided most
of the opportunities to obtain the direct measurements, information, and samples
that have allowed researchers to create a more complete understanding of the Earth’s
crust. The scale of human interactions into the Earth's crust varies across the globe,
both spatially and temporally. Hard rock mining and wells drilled for drinking water
and geotechnical purposes account for centuries of relatively shallow subsurface
interactions, penetrating only the upper 100’s of meters of the Earth's crust. However,
the millions of wells drilled for energy exploration for oil, gas, and geothermal
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Outer core

resources, as well as for underground injection and research across the world offer
greater insight into deeper portions of the Earths crust. Some of these wells reach
depths greater than 40,000 ft (or more than 12,000 m) below the Earth’s surface, but
most, on average, are within 10,000 to 20,0001t (3,000 to 6,000 m) range. All of these
conduits into the subsurface offer opportunities to collect data that can be utilized to
improve characterization and mapping of the Earth's subsurface systems.
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The exploration and study of the Earth’s surface has provided key insights
into the geology of the planet below the basemap. However, extrapolation
and prediction of subsurface features are based on limited spatial and
temporally disperse surface observations and indirect measurements.
These data are limited by uncertainty, which increases the further from the
surface that humans delve.

Data to describe subsurface geologic features come from numerous sources.
Surface-based observations as well as samples (i.e., fluid and rock) brought to the
surface from subsurface mining and coring efforts offer insights about subsurface
systems and processes. These types of direct measurements are often used to cross-
validate interpretations and analyses performed using other subsurface data types.
Surface-based geophysical studies provide indirect measurements of subsurface
characteristics and properties, which are often used to predict properties and
patterns in the Earth's subsurface systems. Wells serve as the primary source of
finer-scale data, offering direct, high-resolution measurements of in situ subsurface
properties in the Earth’s crust. Data from wells fed numerous geologic, geostatistical,
and GIS-based studies to improve prediction and constrain our understanding

Aerial surveys and satellite imagery offer
remote sensed information about surface and
sometimes near-surface geologic systems.

Satellite
Data

Geophysical
Surveys \

of both the in situ geology of the Earth’s crust, and how human interactions have
perturbed these subsurface systems over time.

The challenges faced to explore, analyze, and visualize the subsurface with
current techniques have resulted in a demand for better data- and knowledge-
driven methods to improve the prediction of subsurface properties. GIS offers a
solution to integrate both indirect and direct measurements to better constrain
the subsurface architecture and evaluate the distribution of subsurface resources.
GIS and geostatistical methods, when coupled with data from direct and indirect
measurement, offer solutions to further improve our ability to predict, explore, and
evaluate the subsurface.

Surface measurements and observations
collected in the field or from geologic core
samples offer insights into geologic patterns
and processes across multiples scales. Data
obtained from these direct measurements are
frequently paired with GIS tools to generate
geologic maps.

Outcrop-

Surface geologic
studies

Geophysical methods and tools offer insights but are based on indirect
information and data. These measurements are calibrated against
direct measurements and observations derived from geology at the
surface that once resided deeper in the subsurface (e.g., ophiolites),
and from data obtained from subsurface mines and wells.



HISTORY OF SUBSURFACE EXPLORATION

Subsurface drilling for scientific exploration, resource production, and waste
disposal worldwide has existed since the 19th century. Deep subsurface drilling
activities began in the mid-1800s, targeting the commercial production of salt brines
in the present-day countries of Canada, China, Poland, and the United States.! In
1859, the first commercial well targeting oil, the Drake well, was drilled near Oil
Creek, Pennsylvania."” The realization that mineral oil had commercial value helped
drive the persistent expansion of the deep subsurface drilling record. This record
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In the mid-1800s, the spatial footprint of deep subsurface exploration begins to
emerge, consisting of deep wells drilled for salt brine production in North America,
Europe, and Asia. Deep well drilling for commercial oil production also begins. Drake
well denoted by the red star on the map above.

represents one of GIS and geoscience’s best foundational datasets for investigating
and interrogating subsurface systems. To date, there are more than 6 million deep
drilling well records worldwide associated with oil, gas, geothermal, underground
fluid disposal, research, and permitted locations. These wells are found across all
continents, except Antarctica, and scattered across the world’s oceans. More than
half of these wells penetrate more than 3,000 ft (1,000 m) into the subsurface.?
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By the early 1900s, deep drilling mainly becomes tied to oil exploration, resulting in

an increase in subsurface activities. The footprint of drilling expands across North
America, South America, Europe, Asia, and parts of Oceana, with visible spatial clusters
beginning to form in areas where oil prospects are rich across the United States.
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SYSTEMATIC, DATA-DRIVEN ASSESSMENTS SPUR CHANGE

From 1960 to 2010, the chance of drilling a “dry hole,” or a well that does not contain
any oil or gas, dropped from more than 40% to about 10%. This improved efficiency is
directlyrelated to the use of newand improved technologies, such as seismic surveys,
subsurface imaging, and improved interpolation methods, like geostatistics, which
help improve the prediction of subsurface properties. New technology coupled
with systematic, data-driven methods that integrate GIS help improve subsurface
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New technologies for measuring and imaging subsurface features, such as geophysi-
cal surveys, coring, and geophysical logging of wellbores, increased in use during the
1960s, and demonstrated how activities could benefit from more systematic efforts to
characterize, predict, and map subsurface features.

1940 1950 1960 1970 1980

characterization and more accurately detect patterns and trends in the subsurface,
helping transform the way geoscientists assess and map the Earth’s subsurface. By
the 1960s, innovative technologies began to increase the footprint of drilling across the
globe, touching every continent except Antarctica. Modern activities have expanded
the cumulative footprint of subsurface drilling to all the continents and oceans.
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From 1960 to 2010, the successful discovery of oil and gas in new wells increased from
~40% to ~ 90%.* The increase of subsurface research and characterization and the
integration of geologic exploration with geophysics and GIS methods have helped
significantly improve our understanding of the subsurface.
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Retouched 1859 photograph showing Edwin
L. Drake, right, and his Drake Well, the first
commercial oil well drilled in the United States.
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In 1901, with the automobile era under
way, the new “black gold” was discovered
at Spindletop in Texas. Within a year,
hundreds of wells were crowded together,
one next to another, as prospectors
rushed to discover the next gusher.

The lack of robust data, information, and mapping-based methods to explore
the subsurface is evident from this pattern of drilling in that era, as seen in the
image on the left from Spindletop, Texas. Most prospectors were drilling wells,
sometimes within 10 ft of an existing well, reflecting the lack of systematic, data-
driven mapping and predictions that are the hallmark of today’s subsurface geo-
discovery efforts (right).
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Six million wells have been recorded between 1802 to 2015 (footprint displayed on
the map above).? Through these records, wells have been drilled at increasing depths
(graph A) over time, based on the reported “spud” year (or the year the drill bit begins
drilling a well). The number of wells drilled each year has fluctuated greatly over time
(graph B), showing the “boom and bust” nature of these of activities and influence of
technology advances (in blue) and major historical events (in black).? This entire historical
record offers a trove of data for modern geoscientists, providing critical insights to better
support geo-discovery, geo-exploration, and geo-hazard prevention when coupled with
geoscience and GIS methods.
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GEO-DISCOVERY: AN ENDURING RECORD IN THE EARTH'S DEEP CRUST

The drilling of more than 6 million deep wells during the past two centuries has left
an enduring global footprint of human alteration of the subsurface. These activities
have resulted in the placement of wells on all major oceans and continents, reaching
down more than 40,000 ft (or 12,000 m) into the Earth’s crust.

Beyond simple exploration and characterization of the planet’s subsurface, human
engineering of the subsurface has resulted in far-reaching and indelible changes
to the in situ geology of the Earth’s crust. Carbon storage, geothermal resource
production, underground fluid injection, compressed air storage, drinking water
production, agricultural water storage, and natural gas storage encompass a
growing suite of activities taking place in the subsurface worldwide.

Ultimately, this magnitude of subsurface exploration and engineering has changed
the composition and the behavior of the subsurface itself. The hybridization of
geologic, geophysical, geostatistical, and GIS methods offers a unique solution to
explore beneath the basemap, providing new insights for geo-discovery and ways
to improve analysis and exploration of our planet’s geo-hazards and geo-resources.
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Subsurface Data Boom

The rapid worldwide expansion in subsurface exploration coupled with innovative
technologies to obtain subsurface signals, remote sensing tools, and GPS-enabled
devices and equipment have also spurred an exponential boom in subsurface data.

This deluge of subsurface data has produced extensive volumes and varieties of
high-resolution and quality subsurface signals, measurements, observations, and
modeled data. However, spatial and temporal coverage and overlap of these data are
highly varied, often forming a patchwork of different data types, formats, resolutions,
ages, and quality within the area of interest. The heterogeneity of subsurface data
presents a challenge in determining the best process to use to synthesize these large
volumes and varieties of data to drive novel analyses.

To effectively and efficiently filter through the subsurface data deluge, scientists at
the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL)

are leveraging data-science computing methods paired with GIS and other open-
source data-processing tools, custom scripts, and machine learning to tease out
pertinent information to support interpretation and analytics for subsurface data.

This rapid growth and availability of subsurface data, resulting from increased
human exploration, offer an opportunity to produce better data- and knowledge-
driven methods with the integration of GIS. Spatio-temporal statistics, geostatistics,
machine learning, and artificial intelligence offer prospective techniques that
improve prediction of the subsurface beyond the limitations of current methods,
which rely on disparate and limited a priori information. In the geo-resources and
geo-hazards sections of this chapter, the intersection between geostatistics, geology,
and GIS are further examined with examples of how these three disciplines combine
to improve forecasting and insights into subsurface systems.

Total density of wells per 1-degree cell as of 2015.
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Integrate subsurface and related data from known sources (e.g., data
collected from field/lab samples, data clearninghouses®®) with new data
discovered from other sources using NETL-built'®!! or other open-source
web crawling, scrapping, and parsing tools.**¢

Apply a variety of GIS and open-source tools to help transform, characterize, and label data. These
efforts increase the power of our data by making it easier to rapidly integrate them into analytics,
as well as ensure each dataset can be used more then once to support a wider range of research.

Engineered
infrastructure - - KEY - -
Spatial N ( Data N\ ( Data Labels N\ ( Metadata & data ) ~
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” (=) =) _, Tools
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. Geologic & coordinate system topics/themes L and future work ) improve future use tools
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Data interpretation & analytics

Use data coupled with GIS and open-source tools through the ArcGIS API® for Python and
the R-ArcGlIS Bridge to help evaluate, assess, model, and predict geo-resources and
geo-hazards, such as the examples shared later in this chapter.

Subsurface data management workflow, which integrates GIS tools and techniques, to rapidly collect, process, and analyze subsurface data.




GEO-DISCOVERY: GIs AND GEOSCIENCE F

One of the most infamous geologic hazard events, the Deepwater Horizon oil spill, was

initiated by a catastrophic wellbore blowout in April 2010.
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Workflow:

Subsurface Trend Analysis

OR SUBSURFACE PROPERTY PREDICTION

Traditional two-dimensional surface geology maps have long been coupled with
cross-sectional figures to help visualize geologic data beneath the Earth’s surface.
Now, through the power of geostatistics and GIS, we can combine data from direct
surface-based geologic observations with subsurface data collected using indirect
methods, including seismic data and wellbore geophysical measurements. Coupling
geostatistics and GIS has expanded our ability to visualize in three dimensions and
improve prediction of subsurface properties, such as temperature, pressure, porosity,
and others. This is critical to evaluating geologic resources, such as reservoir sands
and geothermal plays, and geo-hazards, such as wellbore blowouts and shallow gas
accumulation, all of which have implications for ensuring the safe and responsible
use of natural resources in the future.

Integrating geologic information and geostatistics is most effective when
approached methodically."” Without geologic context, statistical methods fail to
accurately predict subsurface properties, largely due to the heterogeneous and
highly variable subsurface environment. The Subsurface Trend Analysis (STA)
framework was developed to pair geologic information, geostatistics, and GIS
together to improve subsurface property prediction. By integrating geologic history
and context into our predictions, we receive better predictions over larger areas for
the highly variable subsurface. Our use-case in the Gulf of Mexico demonstrates
how we applied the STA to improve interpolations for reservoir sand pressure and
temperature gradients.'”!
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Advanced property prediction and feature analysis

The initial use-case of the STA method improved prediction of the subsurface
pressure gradient for oil and gas reservoir sands (map A). Predicted values were
cross-validated with 150 new data points, and results showed that the STA
improved the prediction of subsurface pressure gradient for two out of every three
new data points when compared to predicted pressure gradients interpolated
using Empirical Bayesian Kriging (EBK)."” In addition, we were able to use STA
to predict additional subsurface properties, such as temperature gradient (map
B), and compare interpolation trends with the presence of certain geologic
features, such as natural seeps that allow oil and gas to migrate up to the seafloor
(right). Improved prediction of subsurface properties and the presence of geologic
features that can result in human and environmental hazards offers critical
insight to ensure safe and efficient energy production and geologic storage, as
well as supporting better decision making to help protect the environment and

energy economy.

Predicted reservoir sand pressure gradient A) and sand temperature gradient B) in the offshore Gulf of Mexico performed with influence from Subsurface Trend Analysis

domains (polygons), compared to the location of known and suspected subsurface seeps (points).

The subsurface seeps
that support unique
seafloor ecosystems, such
as the chemosynthetic
community studied

by the Alvin deep sea
submersible shown

at left, can indicate
subsurface conditions
that contribute to
geologic hazards.
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Multi-environment, multi-scale prediction

The Subsurface Trend Analysis framework has been applied to provide subsurface
property predictions beyond oil, gas, and geologic storage applications. One such
effort involved integrating the STA approach into an assessment method that
evaluates and predicts rare-earth element accumulations in sedimentary lithofacies
(the REE-SED Assessment Method). The STA approach enables assignment of
properties for defined geologic domains, in turn reducing geologic uncertainty.
This improved understanding of the spatial distribution and concentration of REE’s
offers critical insights to ensure effective extraction from discarded coal tailings
and sedimentary systems in the future.19 Utilizing the full spectrum of subsurface
information afforded by the STA approach—from direct and indirect data to
contextual information from literature—can support sustainable subsurface
resource use for decades to come.

The Subsurface Trend Analysis (STA) approach
utilized as a step in the REE-SED Assessment
Method. Example shown here where distinct
STA domains (colored areas) are defined for
an region in the Powder River Basin, Wyoming
(black outline).

Exploring Beneath the Basemap
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GEO-HAZARDS: IDENTIFYING AND MAPPING RISK

Subsurface geo-hazards include earthquakes, faults, fractures, and seeps of gas and
other fluids. These geo-hazards are natural geologic processes that can occur at
multiple spatial and temporal scales. Each poses a unique risk to the environment,
people, and property. Human interactions with the subsurface often perturbs the
state of these geologic systems and processes. Understanding human interactions
in the subsurface and how they affect current geologic conditions can help
characterize geo-hazard risk. Integrating “big data” volumes of different geologic,
geophysical, and subsurface properties with GIS tools provides insights that can
help mitigate, prevent, and prepare for future hazards.

Induced Seismicity

Cases of induced seismicity, or earthquakes that are caused by human-related
activities, have been documented around the world. Several cases have been linked
to different subsurface activities, such as waste-water disposal, hydraulic fracturing,
oil and gas production, dams (reservoir impoundment), geothermal operations, and
mining. A study of 198 induced earthquake cases that have occurred since 1929
suggests that these practices have potentially caused earthquakes with magnitudes
as high as 7.9.% Since 2008, Oklahoma has seen a dramatic increase in the number of
earthquakes with magnitudes ranging from 3 to greater than 5, with many occurring
on previously unknown and unmapped faults. These events are mostly attributed to
the increase in waste-water disposal volumes, a byproduct of oil and gas operations
within the state. Research suggests that the recent spike in earthquakes in Oklahoma
can be linked to a range of human interactions with the subsurface, as well as other
natural factors.*

Efforts to characterize geo-hazards, such as induced seismicity, can benefit from an
understanding of key patterns and trends between faults, earthquakes, and other
subsurface properties. Coupling geospatial analytics with big volumes of subsurface
data offers a novel workflow to predict subsurface faults and fractures, especially
for areas with little or no data, and help improve our understanding of subsurface
geo-hazards.
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Workflow: Predicting faults and fractures

Efforts to predict subsurface faults and fractures, or geologic structural complexity,*
aim to offer improved geo-hazard prevention. But these efforts are limited by
ambiguous and sparse data that often lack key attribute information. To overcome
these challenges, a coupled data-driven, fuzzy-logic, and GIS workflow was
developed to predict subsurface structural complexity (SC).*” The approach helps
to improve the characterization of the subsurface and offers critical information for
predicting and prevention of geo-hazards, especially in areas where little or no data
on subsurface faults and fractures exist.

To determine structural complexity, explicit fault and earthquake location data
were used as “labels” of known structural complexity in the fuzzy logic model (steps
1 and 2 below). These data were then used to train and test the model (steps 3 and 5)
with other topographic, lithologic, and geophysical proxy datasets (step 4) to predict
structural complexity. The predictions (generated from step 6) were evaluated
(steps 7 and 8). Results demonstrate the model’s effectiveness and limitations as a
screening approach to identify and validate structurally complex areas in maps and
interpreted cross sections.

|dentify and modify explicit structural data

to represent Structural Complexity (SC) 2 Apply fuzzy nfrence model
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tions; red) along the cross section as horizontal bars.
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GEO-RESOURCES: RETHINKING SUBSURFACE RESOURCE
EXPLORATION FOR STORAGE

With new technology, depleted oil and gas reservoirs that were initially mapped
and analyzed for oil and gas production can be reused for a variety of storage
needs, including geothermal, water, and carbon capture and storage
(CCS). In relation to greenhouse gases, such as carbon dioxide
(CO,), the fossil fuel and industrial processes make up ~65% of
global emissions® and efforts to reuse depleted subsurface
reservoirs for storage, especially for CCS, offers a solution
to help mitigate emissions. The use of a depleted reservoirs
for CSS requires the presence of a geologic seal to trap CO,
once injected, the absence of leakage pathways to limit
risk, existing infrastructure for transport and injection,
and for the area to be able to meet an economically
efficient storage capacity. Uncertainty and risk are
inherent with CSS, including concerns over groundwater
contamination and leakage of CO,up to populated areas,
which can have significant human and ecological impacts.
Evaluating the potential for successful CCS sites relies on
data, as it is a data-driven process, where the assessment of
each project will only be as good as the data used to assess the
project site.
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Differences in the subsurface: onshore versus offshore

Storage capacity has been characterized and predicted for multiple regions,
which includes understanding where storage could occur and how this solution
to greenhouse gas mitigation differs onshore versus offshore. The National Risk
Assessment Partnership® (NRAP) applies science-based predictions in engineered-
natural systems to assess the safe and long-term storage potential of CSS. This
partnership is composed of members from five national labs including NETL,
Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory,
Los Alamos National Laboratory, and the Pacific Northwest National Laboratory.
With input from industry, academia, governmental, and nongovernmental
organizations, this initiative has built the resources needed to understand how
storage systems behave in the extreme subsurface conditions over time.

Density of potential sources of CO2 emissions, which includes oil and gas infrastructure (wells,
platforms and well pads, refineries, processing plants, power plants, liquefied natural gas
(LNG) terminals, pipelines, mines, stations and storage sites), oil, gas, electrical, industrial,
and public infrastructure, agriculture processing sites, ethanol and cement manufacturing
sites, fertilizer and ammonia production plants, and waste management sites.'0 203!

Potential hazards of onshore to off-
shore CCS in saline formations, includ-
ing leakage into groundwater, faults,
and identifiers of migrating CO, in the
form of chemosynthetic communities.

Groundwater

Caprock/Seal

Saline Formation Ml 0

Saline Formation
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Offshore CSS, which has been explored but is yet to be proven in US waters, is
further from human population centers and groundwater sources, but still presents
risks due to increased data uncertainty and leakage potential to effect surrounding
environments. The offshore environment for storage differs from the onshore with
frequently changing pressure-temperature regimes, lithologies (i.e., type of rock),
and depositional settings at multiple scales throughout the 3-D space.

For example, the Gulf of Mexico subsurface is more unlithified (i.e., less solid,
more porous) and unconsolidated than onshore areas. Taking these differences
into consideration, NETL has implemented the DOE volumetric methodology to
calculate storage capacity potential for geologically distinct domains in the offshore
Gulf of Mexico. These domains are spatially defined and statistically supported by
NETLs STA methods. These efforts have built up spatial data resources for better

Sediment
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0 Potential Storage Site
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capacity prediction and implemented GIS techniques to select injection sites and
areas, avoiding known leakage pathways, identifying applicable infrastructure, and
calculating storage resource potential.

Additional Opportunities for Reservoir Reuse

In addition to CCS, other strategic uses for the reservoirs include storage for fluid waste
or compressed air, which essentially operates as subsurface battery, and enhanced
oil recovery. Enhanced oil recovery is the process of injecting materials into existing
wells to increase pressure on the trapped oil, lowering the viscosity, making it easier
to recover. With increasing amounts of accurate data, advanced spatial analytics,
and an understanding of geologic processes, oil and gas reservoirs can be sustainably
repurposed for CCS and other resources with less uncertainty and risk.

Identified potential sites for CCS in sedimentary basins, which include capture and storage in basalt formations, oil and gas reservoirs, shales, saline formations, unminable coal
areas, and others. Sites are laid over global on- and offshore sedimentary thicknesses ranging from O to 18 km.323
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GEQ-RESOURCES: RETHINKING COAL RESOURCES TO DRIVE
ENVIRONMENTAL AND ECONOMIC BENEFITS

Coal source footprint

A spatio-temporal understanding of the life cycle of coal resources is essential
to optimize their use and inform resource management. Integrating geospatial
data related to coal production, delivery, consumption, and waste streams allows
us to characterize and evaluate coal as a resource. Coal has been extracted from

Powder River Region

Quantity of coal delivered
to power plants (short tons)

71,000,000
@ 18,000,000
~ 1,100

Texas or
Mississippi
Region

thousands of mines throughout the United States that lie within defined regions or
fields that have experienced similar geologic histories. Moreover, coals within these
regions often display similar physical and chemical attributes that may be optimal
for specific uses, including electric power generation, heating, steel manufacturing,
carbon-based products, and other industrial processes.

Eastern Region

B

T
d 1]

Northern
Appalachian
Region

Central
Appalachian
Region

Quantity of coal delivered from the top five source regions* to power plants between 2011 and 2016.% Both figures are colored by source region, and the size of the pie chart (map;
above) or line thickness (Sankey diagram; left) represents the quantity of coal delivered. In the map above, the color of each pie chart represents the percentage of coal received from
each region. In the Sankey diagram (left), percentages denote the total percentage of coal received at power plants from each region on the left to the percentage of power plants
that receive coal from a single region (uncolored circle; top right) versus multiple regions (colored circle; bottom right) on the right.
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Matching coals to associated industry needs requires transportation from the mine
to the associated facility. From 2011 through 2016, a total of 4.8 billion short tons
of coal was delivered to plants for electric power generation throughout the United
States. Most (49%) of this coal was delivered from the Powder River Region, an area
straddling the border of Wyoming and Montana. Depending on the requirements of
coal attributes needed for a specific use, a power plant or facility may source its coal
from one or more regions.

During the same time period, just over half (56%) of all coal delivered was received
by power plants that source coal from a single region, accounting for 59% of all
power plants. While 46% of delivered coal was received by power plants that source
coal from multiple regions, accounting for 41% of all power plants. The mixing of
coals at individual facilities and industries can inform and optimize coal delivery
networks from mine to facilities and supports understanding of coal byproducts or
post-combustion waste streams as a resource.

Storage:
4%

Beneficial
Use:

Post-combustion waste Streams

After coal is burned at a power plant or facility, significant volumes of waste streams
or byproducts are produced, being one of the largest sources of industrial waste in
the United States. Of the approximately 754 million tons of byproduct produced
from 2011 through 2016, 67% was coal ash and the remaining consisted of materials
such as gypsum, boiler slag, and others. Most coal ash was disposed of in landfills,
ponds, and offsite locations (58%) or sold for beneficial use (38%), mainly in concrete
and cement products, mining applications, or as structural fill.

Understanding the fate and use of coal and coal byproducts supports opportunities
to increase beneficial use or remediate disposal locations of coal ash. This can
provide potential economic benefits, reduce environmental hazards, and ultimately
optimize coal as a resource.

Map displays power plants® as pie charts colored by percentage of coal ash disposition
and sized by coal ash quantity produced from 2011-2016.% Disposition is categorized
by disposal (red), beneficial use (green), and storage (blue). Leader lines point to
location of power plants (gray lines). The cumulative breakdown of disposition for the
contiguous United States between 2011 to 2016 is represented by the larger pie chart
on the bottom left.

Quantity of coal ash produced
at power plants (thousand tons)
12,000
3,300
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MOVING TOWARD A VIRTUAL SUBSURFACE

Coupling geoscience and GIS has helped scientists apply data-driven, systematic
frameworks to better explore, characterize, analyze, and visualize the subsurface.
This integration has provided new insights to enhance geo-discovery, improve the
identification and prevention of geo-hazards, as well as offered solutions to ensure
safe and enduring access to geo-resources. But more work still needs to be done to
fill in our knowledge gaps regarding the complex, dynamic subsurface system and
our interactions with it.

Looking forward, new insights into the subsurface appear on the horizon due to the
rapid evolution of technological advances in the fields of geoscience, GIS, and data
science. These include ongoing advances in data manipulation, integration, analysis,
and visualization that are unlocking powerful GIS, machine learning, and artificial
intelligence solutions to foster new opportunities to “see” into the subsurface.

Further pairing of the geosciences with GIS, machine learning and advanced
computing will offer improved methods to overcome numerous time-consuming
challenges encountered due to the large, unstructured, dispersed, and uncertain
nature of subsurface data. These integrated solutions will enable geoscientists
to move up the data science pyramid faster, thereby arriving at new discoveries,
insights, and solutions that improve our predictions of subsurface properties and
optimize how we interact with the subsurface.

Together, geoscience, GIS, machine learning, and advanced computing offer the
opportunity to begin to build a more comprehensive, virtual understanding of our
subsurface by combining disparate data in new and powerful ways. Ultimately, they
allow us to further and more clearly peer beneath the basemap to understand the
dynamic, complex subsurface system of our world.

; rn &
optimize

Aggregate & label

Explore & transform

Move & store

Discover & collect

4]

Integrating GIS and geospatial data, geoscience tools will help researchers move up the data pyramid and derive insights faster to improve human exploration of our planet’s

subsurface systems.
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HOW EARTH LOOKS

How Earth looks is essentially how we as humans change Earth’s appearance and function, as illuminated
by linkages between natural science and social science, in science partnerships that work across disciplines,
geographies, and organizations. Here, we often use GIS to interactively and iteratively create and evaluate
alternative (geo)designs to make better decisions, especially with land cover for land-use planning, green
infrastructure planning, urban planning, and sustainability science.
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This GIS view of downtown Boston simulates shadow
patterns at 1:40 PM on January 9, 2019. Try the interactive
web app created by the Office of GIS, Boston Planning
and Development Agency linked at GISforScience.com.
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INTRODUCTION

The critical need to account for vulnerable populations has shaped the pioneering
population modeling program at Oak Ridge National Laboratory (ORNL) from the
onset. The programss history is tied to ORNLS nuclear legacy as a Manhattan Project
site, initially established to support US atomic weapons priorities in the 1940s. The
program matured into a US Department of Energy national laboratory with leading
expertise in peaceful applications of nuclear energy, including power production,
medical isotopes, and neutron-scattering research for open science. Population and
environmental risk assessment developed alongside the lab’s evolving missions,
beginning with the need to examine local contamination and exposure risks and
becoming a multifaceted program that today looks at populations globally.

The programs earliest questions—where, when, and how many—are now evolving to
capture the dynamics of mobile populations, enabling new insights to inform urban
development, socioeconomics, humanitarian campaigns, and emergency management.

ORNL uses a full suite of geographic information system (GIS) mapping expertise
and resources to deepen understanding of populations in motion, moving beyond
where people are to the nuances of who they are, why they move, where they go,
and what they do. Their efforts expand, on a global scale, possibilities for how GIS

data and tools can be used to locate volatile at-risk groups before, during, and after
a crisis.

Basic questions of how many people are at risk and é‘*‘r : ‘:- A R
where they are located continue to motivate novel |

that grow, decline, and move at often unpredictable
paces. ORNL's current population research combines
geospatial and computational expertise to model
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spatially and temporally explicit populations at very
high resolution. ORNL uses scalable methods to assess
any region of the world and locate groups most at risk
for or affected by the varying insecurities of urban
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settlement, ranging from natural disasters, infectious
diseases, and strained resources to rapid population
growth, migration, and sudden displacements.

Data and compute advances during the past two
decades have brought greater accuracy and immediacy
to the work of locating global populations. The
enormous volume of existing high-resolution satellite
imagery along with rapidly increasing refresh rates
enable the detection of formal and informal settlements
everywhere in the world. The parallel-computing power
of today’s graphics processing unit (GPU) systems has
dramatically accelerated the time needed to extract
relevant information from large datasets. Settlement
maps can now capture abrupt changes in built-up
areas, such as the overnight appearance of makeshift
refugee camps, a feat that was not easily achievable
before the 2000s.

The ORNL challenge—distributing nearly eight billion
people into the trillions of pixels estimated to contain
the world’s current population—is no small proposition.

Since the 1990s, the ORNL group has undertaken
a critical effort to map and estimate the worlds
population at a global scale. Their modeling-based
approach combines high-resolution imagery, statistical
data, and computational resources to support US and
global population distribution databases with 90-meter
spatial resolution and variable temporal resolutions.

ORNL population risk-assessment maps produced in the 1970s with US Census input data.
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This pen-plotted population density map—created for the final 1980 Census using an early GIS system
developed in house with Fortran using Census TIGER geography—shows the Northeast United States
when the total US population was 226.5 million (compared to 330 million in 2020).



NIGERIA: A BOTTOM-UP APPROACH

In 2013, ORNL began a critical effort to locate previously unmapped populations
in northern Nigeria as part of a multiyear collaboration with the Global Polio
Eradication Initiative (GPEI). The project demonstrated the need for a census-
independent, bottom-up approach to mapping and estimating populations with
the spatial precision needed to account for specific demographic subpopulations,
especially in data-poor countries.

Kano Metropolitan
Area Boundary

The GPEI has conducted vaccination campaigns aimed at children younger than
age five since the 1980s and successfully eradicated polio viruses in much of the
developing world, but the disease remains endemic in three countries: Afghanistan,
Nigeria, and Pakistan. Limited access to at-risk communities and inadequate
information on target populations can undercut the effectiveness of vaccination
efforts in the most vulnerable areas.

Nigeria's most recent national census in 2006 well out of date at the time of the
project, and the information it provided at the local government level made
it difficult to identify smaller communities within these administrative areas.
Moreover, projected population estimates were based on constant growth rates
that missed the accelerated development of Nigeria’s urban areas, leaving more than
a million people essentially invisible from any records.

To locate vaccine-eligible children in Nigeria, ORNL developed a model-based
approach incorporating layers for settlement areas, building types, and population
density. Researchers used supervised machine learning to extract settlement areas
from high-resolution satellite imagery and classify the results into residential and
nonresidential categories. Microcensus surveys conducted by locals provided per-
building population counts in sample locations. Combined with the classified
settlement layer, population density estimates from the survey data informed
residential population counts at a fine spatial (<100 meters) resolution.

0

10 km

The total settlement area in Kano, Nigeria, increased more than 40% from 2006 to
2014. Estimates based on past trends projected a 2.02% annual increase in built-up
areas, while ORNLs mapping results showed an increase of 4.37% per year. This
image juxtaposes 2006 settlement areas (tan) with additional areas detected in 2013
imagery (red). Eric M. Webera, et.al, “Census-independent population mapping in
northern Nigeria” Remote Sensing of Environment;

The geospatial dataset created for the Nigeria effort helped identify chronically missed
settlements in polio vaccination campaigns and continues to play a critical role in
eliminating polio from the developing world. The initial GPEI-based project expanded
to support other world health missions in sub-Saharan Africa and South Asia.
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pUpUlﬂtiUn Kano City is located in Kano State,
a jurisdiction in northern Nigeria.

ORNL's approach captured accelerated growth post-2006 in Kano, Nigeria, accounting for new, unmapped settlements and
yielding a population estimate much higher than previously published projections.
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METHODS

ORNLs modeling-based approach to mapping human dynamics incorporates
settlement, contextual, and population layers into geospatial datasets that can
provide building-level population insights for anywhere in the world. Observations
at the level of individual buildings now offer context on land use, neighborhood
type, occupancy, and demographics. Population estimates are time variant and
mapped at pixel level across the globe.
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Imagery processing pipeline

The vast amounts of data required for ORNLs mapping projects travel a long road
of processing before researchers can begin their study. As an example, a query for
images of Washington State yields 11,435 image strips—swathes of high-resolution
satellite images, each covering an average land area of 1,200 km?. A second search
filters out images obscured by clouds or otherwise judged unsuitable, whittling the
results down to 605 strips of ground images. Those results add up to a total of 2.7
terabytes—2.7 trillion bytes, or the equivalent of around three-quarters of a billion

« Level 1—Settlement layer: building feature-extraction methods are applied to high-
resolution imagery to detect individual buildings and map land use in built-up areas.

« Level 2—Contextual layer: urban land use is characterized using sampling
workflows and automated feature learning techniques.

« Level 3—Population layer: novel statistical methods are used to estimate
population density and capture human activity patterns globally.
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pages of text. High-speed data transfer nodes at ORNL then move the data to servers
and begin parallel processing the images. This stage of the operation decompresses
the data, corrects for perspective and terrain, and sharpens the resolution, ballooning
the size to 26 terabytes, or nearly 10 times the original. A single processed image
may consist of more than 2 billion pixels. To support GIS population research, the
Compute and Data Environment for Science (CADES) system at ORNL holds around
1.5 million images at any given time, a total of about 2.6 petabytes of data.
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The high-resolution satellite imagery used by ORNLs geospatial researchers translates to massive amounts of data. Researchers once physically transported the data via piles of

hard drives but now conduct preprocessing transfers through the cloud.
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From settlement mapping to building feature extraction

Historically, ORNL developed settlement mapping methods to analyze high-
resolution imagery and distinguish settled and unsettled areas. The output achieved
a general representation of built-up areas, initially at a coarse, 8-meter resolution.
Today the program uses building feature extraction methods to describe individual
buildings at near half-meter resolution. The evolution from binary to multilayered,
contextual information on the structure and type of individual buildings has
expanded opportunities for data analysis and enabled novel outputs relevant to the
timely and specific needs of user communities.

Advances from many directions, especially imagery, sensing, and computing,
continue to stimulate progress. In recent years, GPU-based platforms have
become smaller and more affordable, making HPC (high-performance computing)
capabilities available to data analysts and not limited to supercomputing facilities.
Although ORNLS leadership-class computing systems, including the 200-petaflop
supercomputer Summit, inform the development of population modeling, day-to-
day processing happens on mini-GPU clusters that bring parallel-computing power
to desktops.

Foundational imagery needed for settlement detection has evolved in resolution
and availability. The satellite-based data that originally fueled settlement mapping
were mostly panchromatic images physically transported to ORNL on hard drives.
Now multispectral input imagery can be transfered on demand via cloud servers.
Image quality and global coverage make satellite data essential to ORNL’s large-
scale applications. However, advances in remote sensing and drone technologies
are dramatically improving image resolutions—from meters to centimeters—and
are potential sources of new information.

Machine-learning algorithms for object detection, image segmentation, and
classification have also been enriched by technological advances. The algorithms
developed at ORNL in the 1990s during the early days of the population-modeling
program remain fundamental to current approaches. The difference now is that
models have more and better imagery for training data, and outputs come in hours
rather than months, opening realistic routes to improve algorithms.

Upgraded compute power and advanced algorithms now make it possible to
rapidly extract building features from large datasets, such as countries and groups
of countries with input imagery reaching hundreds of terabytes. For example,
processing the country of Nigeria in 2014 took 4-5 months. Processing Afghanistan
in 2019 took 6 days. The speed boost stems from parallel processing on GPUs and
evolved modeling approaches generalizable to large areas. Early modeling relied on
support-vector machine learning that required building multiple unique models to
cover an area as large as a country. In addition to longer processing times, more
models require more human effort to manually label training data. Now, machine-
learning algorithms can accommodate variations in landscape types, such as
distinguishing forested terrain from deserts, increasing the workload one model
can handle. A single model can be used to extract building features from an entire
country.

A standout feature of the ORNL program is its scale of commitment to a mission
that drives GIS technologies toward future, sustainable routes for modeling
populations globally. Creating efficient models to extract building features from
massive imagery archives—truly “big data’—over very large land areas is one step.
However, the program encompasses all of the steps that follow, covering current
bottlenecks as well as emerging challenges.

The vision for optimizing the process of settlement and building detection for global-
scale applications is essentially a quest for practical methods to store and analyze
the estimated 10 trillion pixels that cover the planet’s land area—and maintain the
output.

Researchers describe the challenge as akin to “drinking from a fire hose” More
imagery comes in than they can realistically use. Significant labor goes into
the immediate work of making the imagery viable for analysis so that its value
becomes tangible. Looking ahead, sights are set on greater automation and efficient
methodologies to keep the output current.

As an example, in 2021 ORNL will complete a baseline dataset for all US structures
larger than 450 square feet. This dataset includes regularized structure outlines
with a variety of attributes attached to each structure, including occupancy type,
address, and height. The project began in 2017, meaning some of the input imagery
comes from that date or earlier. Potential updates to the end product are less of
a compute challenge than a pragmatic one. The computational horsepower and
imagery needed to rebuild models from the ground up already exist, but is the
exercise practical or efficient? Future strategies that leverage machine learning to
filter essential information from large image files, determine where changes occur,
and automate updates are all part of a sustainable, scalable approach to population
modeling.

Advances in the spatial resolution of source data improve observations of the built
environment. The comparison here shows urban areas detected for the same area
using satellite imagery of varying spatial resolutions, including MODIS (500 meters)
and Landsat (30 meters). ORNLS Settlement Mapping Tool (SMT) achieves high spatial
precision and granularity at half-meter resolution using WorldView-1 satellite imagery
(0.46 meters).
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HIGH-PERFORMANCE COMPUTING FOR POPULATION MODELING

ORNL is home to the nation’s most advanced supercomputing resources for open
science. The labs leadership-class computing resources have included Jaguar,
which became the science community’s first petaflop system in 2005, followed by
the 20-petaflop Titan supercomputer in 2012. At 10 times more powerful than its
predecessor, Titan introduced a hybrid GPU-CPU architecture and operated as
a top-ranked system supporting researchers from all over the world until it was
retired in 2019. ORNLS current flagship computer Summit boasts 200 petaflops at
peak performance.

ORNLSs HPC capabilities enable researchers to develop machine-learning workflows
and prototype models, as well as explore potential new directions on HPC
architectures.

In 2017, ORNL researchers were allocated 25,000,000 processor hours on Titan
for a project exploring HPC-accelerated approaches to settlement mapping. The

First fired up in 2005, the Jaguar supercomputer was built at Oak Ridge Lab by Cray and
had 224,256 x86-based AMD Opteron processor cores (and operated with a version of
Linux called the Cray Linux Environment).

team processed more than 45 terabytes of imagery for Yemen in less than 2 hours.
New projects are planned on Summit in 2020, a machine with eight times the
computational power of Titan.

=
=

Summit is an IBM supercomputer designed for use at ORNL. As of November 2019,
it is one of the fastest supercomputer in the world, capable of 200 petaflops. It is also
one of the world’s third most energy-efficient supercomputer, with a measured power
efficiency of 14.668 gigaflops per watt.

Decommisioned in August 2019, Titan helped launch a new era for
science and engineering as computing approaches the exascale, or a
million trillion calculations a second. This machine was instrumental in
ORNLSs pioneering imagery-based population research.

NEIGHBORHOOD MAPPING—BUILDINGS WITH CONTEXT

Building-feature extraction methods generate first-
order (L1) information about settlement areas, such
as individual building footprints. Once buildings are
detected, researchers can map urbanland use (L2) and
characterize neighborhoods or clusters of buildings
according to use functions, ranging from industrial
to residential categories. Characterization provides
additional layers of knowledge that open pathways
for targeted analysis. For example, humanitarian
campaigns may need to locate populations in
impoverished areas, so maps that highlight informal
settlements are critical to success. By distinguishing
densely populated areas, impoverished areas, or
industrial parks, neighborhood mapping generates
contextual information about a city’s settlements
with far-reaching potential. Understanding the
spatial arrangement of neighborhoods can point to
vulnerabilities and support many initiatives to fight
infectious diseases, stimulate economies, expand
access to resources, and otherwise sustain urban
communities.

To map land-use patterns at scale, machine-learning
algorithms are applied to high-resolution imagery
to generate contextual information over very large
areas. As a comparative example, large visual
databases of global imagery, e.g., ImageNet, cover
in their entire library only a fraction of the land
surface area ORNL typically analyzes for a single
country. One of the biggest challenges to scaling the
approach is fitting the models to enormous datasets
with extensive diversity. Computers learning to
identify industrial parks in South America suddenly
need to detect industrial areas in Southeast Asia
that look very different. The question becomes how
best to develop algorithms that can accommodate
differences in terrain, land-use patterns, architectural
style, structural density, and other variations across
the globe. Packing in more and more training imagery
with additional cultural diversity eventually results in
underfit models that perform poorly. Thus, for large-
scale mapping projects, training models to recognize
building categories inevitably tests the limits of how
much input data the approach requires and can
handle.

ORNL uses experience-based machine learning
to map neighborhoods. The process involves
gathering imagery that contains all of the different
neighborhood types the computer needs to detect in
a given geography. Next, deep-learning algorithms are
designed to examine the training data and encode the
patterns that distinguish building categories. Having
the computer figure out the distinguishing features of
a neighborhood, e.g., industrial and residential areas,

avoids the hand-engineering otherwise required to manually code all of the rules that define each category. Deep-
learning advances such as this add efficiency that makes large-scale mapping feasible. The approach likewise
gains additional accuracy in instances where computers detect subtle features that may be difficult for humans
to interpret.
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Neighborhood mapping workflows applied to satellite imagery in Caracas, Venezuela, identify building categories to
generate insights on the socioeconomic patterns of urban land use.
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Getting a good fit

Given the scope of the ORNL program, which aims to map every pixel across the
globe, the organization will need more than one model to meet the challenge.
Ideally, the fewer the models there are, the better. Current research is testing a
proof-of-concept workflow with multiple models that characterize sample imagery
across the planet. The concept is based on observations that pockets of similarities
tend to reappear globally that are not necessarily tied to regional geographies. The
idea is to analyze the entire collection of global imagery using an algorithm that can
gather similar pixels and distribute them into multiple “buckets” for unique models.
When unseen imagery enters the workflow, the computer quickly determines
which bucket to use and pushes the input through the appropriate model. The
beauty of the highly automated workflow is that once the buckets are allocated, the
corresponding models can be changed as needed to support not only neighborhood
mapping but also other kinds of analysis.

Estimating global populations—a people-per-pixel approach

To populate settlement and contextual layers at scale with the critical “missing
pixels’—people—researchers must overcome global disparities in data availability.
While the United States conducts regular censuses and household surveys that
provide population insights at the national level, many other countries do not
record adequate, up-to-date, or reliable population information (if any at all) at the
minimum coverage needed to estimate and distribute populations with any degree
of confidence. That means outside of North America top-down disaggregation
methods of population modeling are impractical. To scale population modeling
for the world, bottom-up solutions for aggregating populations in any country are
essential.

A unique feature of the ORNL program is the use of statistical data in addition to or
in lieu of census reporting to model populations outside the United States. ORNL-
developed population density tables (PDT) report building occupancy estimates of
people per 1,000 square feet at the national and regional levels and for night, day,
and episodic activities where large gatherings occur. Using a Bayesian statistical
machine-learning approach, baseline models cover every geographic area in
the world and include more than 50 building functions, ranging from residential
households to museums, churches, schools, hospitals, and even open-air locations
people visit such as cemeteries. The PDT database is dynamically updated and
published through a content-management system that reports building occupancies
in both tabular and geospatial formats.

The concept is about capturing human activity at the building level to understand
how people use spaces in normal patterns of life—during a typical workweek,
weekends, holidays, special events, and potential seasonal fluctuations.

Mining the source data is an exhaustive attempt to collect snapshots of all of these
experiences. The project includes personal accounts, subject-matter experts, and an
assemblage of open-source data such as publications, websites, and reports.

Open-source data

PDT collects open-source data from more than 50,000 published references,
including:

«  Academic journals

«  Official government statistics

«  Corporate and university webpages

«  Tourism brochures

«  Nongovernmental organization publications and data
«  Real estate databases

«  Surveys

«  Websites

«  Images

The database deliverstransparentinformation about the source data, methodology,
and uncertainty for probabilistic population density estimates. All source data are
geotagged and reviewable.

TIME VARIANCE

ORNLSs population-modeling approach achieves high temporal resolution in addition
to fine spatial resolution. Ambient, day, and nighttime estimates are mappable for
populations both in and outside of the United States. A broad distinction between
day and night values for residential populations can be thought of as ranges when
daytime populations are likely at work, school, or moving through daily routines vs.
nighttime ranges when populations are expected to be at their residences. Not all
countries have the same day and night ranges because business hours and cultural
activity patterns vary around the world. US Census data inform time-variant
population estimates for America, while PDT informs estimates globally. As more
data become available, the day and night distinction may evolve into a 24-hour
account of the world’s activity patterns.

For the United States, ORNL has created LandScan USA, the only national dataset
delivering day and night residential populations at an incredibly high 90 meter-
resolution.

The capability to deliver time-variant population information has been critical
to national risk assessment and emergency management. As a unique geospatial
resource, LandScan USA has proved indispensable to the Federal Emergency
Management Agency (FEMA), Department of Homeland Security, and National
Geospatial-Intelligence Agency missions.

New York City daytime population

<

San Francisco daytime population

ORNL is testing the feasibility of automating the identification and quantification
of graves—both formal and informal—like these in North Korea. By using satellite
imagery and modified convolution neural networks for image classification,
researchers are able to automate the manual quantification of graves.
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IMPACTS

Critical infrastructure and emergency response

ORNL develops critical infrastructure data that supports US federal agencies  and Maria. In recent years, ORNL has provided critical, timely population and
in assessing the interdependent vulnerabilities of at-risk populations and infrastructure data to help assess the impacts of devastating volcanic eruptions in
infrastructures during emergencies. Open-source data are used to create critical ~ Hawaii and raging wildfires across California.

infrastructure layers that inform ORNLSs population models and contribute to

user platforms, namely, the Homeland Infrastructure Foundation-Level Data open

platform, a public domain resource for geospatial data to support preparedness,

resiliency, and research among diverse user communities. National critical

infrastructure includes: schools; prisons; rail networks; day cares; solid waste

facilities; mobile home parks; hospitals; energy infrastructure (e.g., petroleum,

natural gas, electricity); major sports venues; national shelters; nursing homes; law

enforcement; and convention centers.

ORNL data supported emergency response during the record 2017 hurricane season
that impacted areas of Texas, Florida, Puerto Rico, the Virgin Islands, and Caribbean
territories.

As an example, to address Hurricane Harvey-related flooding in Texas, ORNL

delivered buildings and structures data for the state’s coastal counties—processing

2,000 images covering 26,000 square miles of land—in just 24 hours. Natural

disasters and other emergencies have intensified the need to quickly identify

and characterize vulnerable and affected populations. To that end, ORNL makes R e
invaluable data contributions to FEMA and other government agencies, enabling I
first-response efforts as well as post-impact damage assessments. A massive effort e

in 2017 supported federal response to areas of Texas, Florida, Puerto Rico, the Capeind

Virgin Islands, and Caribbean territories in the wake of Hurricanes Harvey, Irma,

Mobile homes, which are especially vulnerable to tornadoes and other natural
disasters, were previous gaps that are now included in national infrastructure data.
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SUSTAINABLE
F00D PRODUCTION

Facing the prospect of feeding an additional 2 billion people by the year 2050 has agricultural
scientists scrambling for practical and sustainable solutions. Using data from a broad range of
sources, geospatial innovations are creating breakthroughs.

. b
\r e Small plot vegetable farming in Ethiopia. Small and medium farms occupy more =%
-

-~ global land than large-farms and provide much of the world’s crop diversity. The
&
4 harvests from small farms also tend to be consumed closer to their source.

By Paul West, James Gerber, and Deepak Ray, University of Minnesota,
Institute on the Environment; Mauricio Castro Schmitz, The Nature Conservancy Z
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CREATING A SUSTAINABLE GLOBAL FOOD SYSTEM

One of humanity’s grand challenges is feeding a growing population on a warming
planet. The current situation is daunting—hundreds of millions of people go hungry
most days. And while crop production must double between 2010 and 2050 to
bridge the gap,' current yield projections are not on track to meet the anticipated
demand.” Agriculture already occupies about 38% of the ice-free land,® including
the best land for growing food. Further, agriculture accounts for 70 percent of
the freshwater used by people* and 20% to 25% of all greenhouse gas emissions.’

L2}

Agriculture activities contribute to degraded water quality and are the leading
driver of habitat loss globally, especially across the tropics. A changing climate,
growing population, and increasingly rich diets accelerate these challenges.

With nearly three-quarters of the planet covered in water, relatively small part of
the earth is available for humans and other land-dwelling organisms; this map*®
depicts the current balance of Earth’s croplands and pasture lands.

FOOD IS MORE THAN CALORIES

How can humanity rise to meet the global food supply challenges? This chapter explores
how scientists at the University of Minnesota’s Global Landscape Initiative (part of
the Institute on the Environment) study the many complex geographic factors that
interact to shape the global food system. Integrating and synthesizing geographically
referenced data from a myriad of international, national, regional, and local sources
form an inherently large-scale geospatial problem. Ecological factors, including
climate, soils, topography, and geology, provide the basic constraints that determine
what'’s possible for food production. Socio-economic factors—prices, policies, cultural
preferences, land tenure, management, etc.—add further complexity. Combined,
these factors determine which food grows where, how it is produced, whether a crop
becomes feed or fuel, how it impacts the environment, how the climate changes, who
trades with whom, and where food waste occurs. By 2050, the world population is
expected to reach about 10 billion. That's more than 2 billion more people who need
food, water and shelter to survive. This rapid population growth, combined with rising
dietary and biofuel consumption, has led to a major transformation of Earth's land,
water, and air systems.

Spatial data and computational analysis with a geographic information system (GIS)
are essential for both assessing the challenge and designing solutions. The patterns,
trends, opportunities, risks, and trade-offs in the food system vary across scales and
from place to place. For example, the relationships among scales and stakeholders
might look like this: multilateral institutions working at the global scale assess progress
toward Sustainable Development Goals. Other stakeholders, such as development
banks, develop strategies designed to address regional strategies and identify projects
where investments can promote sustainable development and improve human well-
being. Nationally, governments work with stakeholders to set goals and policies
to meet their specific needs as well as achieve their targets toward meeting the

Sustainable Development Goals, the Paris Accord, and other international agreements.
Locally, communities design strategies where farming is important for tradition and
the economy, environmental resources are a protected tradition and important to the
economy. Having a common information platform on which to synthesize all these
data is imperative. Ideally, the assessments and solution designs are integrated such
that global assessments shape regional solutions, regional assessments shape local
solutions, and local solutions help achieve both local and global goals. While this ideal
situation may not be common in practice, the possibility of it isn't there in the absence
of spatial data that are managed and used to make science- and place-based decisions.

Fortunately, many companies, governments, development banks, foundations, non-
governmental organizations (NGOs), and others are working toward a sustainable
food system. Their work includes reducing the environmental impacts of commodity
production, increasing yields in regions where poverty is high and food is scarce, and
adapting to a changing climate. Since the many ecological and social parts of the food
system are all intertwined, strategies to improve food security need to be holistic. In the
absence of this approach, progress in areas such as increasing commodity production
through irrigation may do little for (or further set back) efforts to improve local food
and water availability.

This chapter examines several data-driven strategies for improving global food security
and the environment through a three-part strategy: producing more food on current
agricultural land, growing food sustainably, and using what we already grow more
efficiently.

At the end of this chapter, a case study in Latin America illustrates how large-scale
analyses and datasets can be integrated to direct action at regional and local scales.

Food not only provides dietary
energy, it is also a source of
many different nutrients that

play important roles in human
growth and development, as
well as disease prevention and
longevity. Getting all the nutri-
ents we need to grow, develop,
and thrive requires eating and
producing a variety of foods.

People use about 38% of Earth’s ice-free land to grow crops and raise animals.>¢ More than 15 million square kilometers, an area about the size of South America, are needed just to grow
crops. For pasture and rangeland, we use more than 32 million square kilometers—an area comparable to the continent of Africa. In comparison, urban areas cover less than half a percent
of total land area.

Calorie Production on Croplands
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THE BIG PICTURE: FARM SIZE AND NUTRIENT DIVERSITY

Across the planet, farms vary greatly in size and in what they grow. In many parts Small & Medium Farms Large Farms

A 3

of the developing world, small farms play a critical role in producing a diversity of Lo

foods that are essential forlocal food security and nutrition. Collectively, small farms
produce between half and three-quarters of the world’s food and micronutrients.

There are broad, regional patterns of farming systems. For example, small farms (<20
hectares), which tend to be more diverse than large farms, produce more than 75%
of most foods and 80% of essential nutrients in sub-Saharan Africa, Southeast Asia,

South Asia, China, and the rest of the East Asia and Pacific region.” Where large e o Mo et
farms dominate the landscape, they produce the majority of the region’s cereals and m o
livestock. Globally, large farms produce more than half of the world’s sugar and oil o 04

crops.”

Spatially, the patterns of field size show very large farms concentrated in North
America, southern Australia, eastern Europe. and western South America. Small e e
and very small farms dominate India, China, and other Asian nations.® ety Eowfs bl
(zn) (@ Both large and small farms are
critical for food security.’”

Agricultural Field Size

Wery small  Mediom  Large Mary
Small Large

Agricultural field size was mapped? using a data fusion approach, combining landcover maps derived from satellite imagery, national agricultural production statistics, and
crowd-sourced data from Geo-Wiki. This data set, developed by the International Institute for Applied Systems Analysis, the International Food Policy Research Institute, and
several other organizations, illustrates how multiple data sources can be combined to address the difficulty of mapping agricultural lands in many parts of the world.
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Farm size around the world
As published in the Diverse Farm, Diverse Foods Story Map.’

The scale of all 6 images on this spread
is the same to invite comparison:
about 1.5 miles miles across.

Sub-Saharan Africa

Very small farms (< 2 ha) produce more than half of most foods and nutrients

in China. This includes 71% of Vitamin A and 63% of Vitamin B12. While rice

is a staple crop for most Chinese farmers, relatively small field sizes allow for

a higher diversity of agricultural production between fields.

North America

Large farms account for more than 85% of protein, iron, and folate in North
America, and at least 77% of all other nutrients. They also account for at least
three-quarters of foods, including cereal, livestock, and fruit production.

South America

This image, from the Matopiba region of Brazil, shows the massive extent of
soybean farming that has become the norm in recent decades. Very large
farms (>200 ha) account for more than half of all food and nutrients pro-
duced in South America, including 75% of sugar crops and oil crops.

Most of sub-Saharan Africa is dominated by smallholder farming, though in
many cases systems are less dense than in Asia, as farms use less-productive
or more arid land for grazing livestock. Small farms are responsible for over
80% of essential nutrients, and 60% of regional food calories.

Central America

Central America, along with western Asia, North Africa, and Europe, is nota-
ble in that medium-sized farms (20-50 ha) are more significant producers. In
Central America, medium-sized farms are responsible for about a quarter of
most key foods, and more than 20% of all nutrient production.

India and South Asia

Very small and small farms produce more than 90% of nearly all foods and
nutrients in India. Large farms produce less than 4% of all major nutrients.
These farms are managed by millions of smallholder farmers and are vital to
local food security.

Sustainable Food Production
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TAKING STOCK OF TODAY'S FOOD PRODUCTION

Redesigning a sustainable food system requires baseline data for the basics of
how much of what is produced and where: crop distribution and yields, livestock
distribution and density, and cropland and pasture area. Croplands and rangelands
have been mapped in several landcover data products derived from satellite
imagery, such as from Landsat and MODIS.**"*2 Crop-specific distribution maps
have also been developed for a few commodity crops, such as soybean and maize,
for a few specific regions.'*'* but estimating crop yields from satellite data largely
remains elusive. The United Nations Food and Agriculture Organization (FAO)
tracks national-level data on more than 150 crops. While each of these datasets has
its own strengths, they do not allow for subnational analysis for crop production.

To fill this information gap, coarser-scale global maps of crop distribution and
production can be created by integrating landcover map products with tabular
data on yield and harvested area from agricultural census and survey statistics
from counties, states, and countries.'*'® Similar approaches of combining satellite
and census data have been used to map livestock production around the world.'!
These tabular data on crop and livestock production can then be combined with
other spatial datasets to map detailed aspects of the food system, such as where
micronutrients are produced, field size, resource use, and the impact of the global
food trade system. A path to sustainably improving both global food security and
the environment requires assessing how the food is produced and used.

Workflow

GROWING MORE FOOD ON EXISTING AGRICULTURAL LAND

About land, Mark Twain once said that “they’re not making any more of it” Much of
Earth’s most fertile lands are already tied up in the production of food. To avoid the
major environmental costs of agriculture expansion—habitat loss, water quality—
more intense management on existing farmland is viewed as a critical strategy for
boosting production. The research shows that yield trends are generally increasing
most where wealthier countries commonly use crops for feed and fuel instead of
food. But increasing corn yields in the Midwestern United States, which is largely

used for animal feed and fuel, does little to improve food security in countries where
hunger is prevalent. What if instead of aiming for marginal increases in areas where
yields are already near the maximum, yields in the lowest-performing areas were
increased? Given current crop varieties and management practices, increasing the
yield for the top 16 crops to 50% of what’s attainable would add enough additional
calories to feed 850 million people."

Building base datasets of crop yields and harvest area

Cropland and pasture landcover map

Develop rules for distributing data within
administrative units, filling data gaps, and

derived from satellite and Census data

o
S
l

SATELLITE
IMAGERY *

NATIONAL AND
SUBMNATIONAL DATA

LANDCOVER MAPS

CENSUS RECORDS

/ INPUTS

making sure subnational and FAQ national data
are consistent.

RULES

Create crop-specific maps
170 crops circa 2000

10 crops time series 1961-2013 “

TIME SERIES CROP MAPS

Assemble agricultural census and survey records

for harvested area and yield for 20,000 administrative units

from many sources: online databases, paper reports, census volumes,
spatial data files, requests from public agencies, etc.

Agricultural census records report what is grown, but not exactly where. Satellite data reveals where crops are cultivated, but not what is grown. Together, these
two sources of information are combined to create maps of harvested yield and area for more than 170 crops tracked by the United Nations Food and Agriculture

Organization.
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Potential calories to gain from boosting
yields in the lowest-performing areas.

[
High

This figure shows how many more calories could be produced on current croplands by increasing crop yields in underperforming areas. The white areas indicate places where the crop

yields are already at least 50% of what's possible using today’s best management practices.”” The green areas represent how many additional calories could be produced by boosting

yields in underperforming areas.
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GROWING FOOD MORE SUSTAINABLY

Food production arguably is the biggest driver of global change. Agricultural land
and production methods are major (and, in some cases, the main) sources of habitat
loss, water use, greenhouse gas emissions, and degraded water quality. Geospatial
data and analysis are critical for quantifying and mapping the status, trends, and
hotspots of the environmental impacts of agricultural production. Researchers
can use insights gained from analysis to assess risk, develop strategies, and track
progress toward creating a sustainable food system.

Habitat loss

Agriculture is expanding most rapidly in the tropics, driving habitat loss. Although
deforestation rates have dramatically decreased since the 1990s, about 5.5 million
hectares of tropical forests were cleared each year from 2010-2015.* To counter this
trend, many countries and companies established laws and commitments to reduce
or eliminate deforestation from commodity supply chains. Spatial data are critical
for tracking progress and compliance. The ArcGIS Emerging Hot Spot Analysis
tool helps streamline analysis of forest cover trends in large datasets.> Online
tools, such as Global Forest Watch, combine annual tree cover data, near real-time

deforestation alerts, commodity production, biodiversity, and other data to increase
transparency and encourage compliance with laws and voluntary standards. ArcGIS
can integrate these tools.

Water use and quality

Agriculture profoundly affects water quantity and quality. Irrigation enables
agriculture to thrive in parts of the world where rainwater is inadequate in volume or
falls at the wrong time. However, irrigation for agriculture, which accounts for 70%
of all freshwater withdrawals, can severely impact the environment in water-limited
areas. Understanding and addressing the impacts of irrigation—and assuring wise
stewardship of groundwater resources—rely on datasets of irrigation infrastructure.
Using irrigation datasets,” models, and satellite data, other researchers estimate
that about 71% of all irrigated areas have periodic water shortages,® and that
groundwater aquifers are being depleted in many parts of the world.** Globally,
nearly all water used for irrigation in water-limited areas is for wheat, rice, maize,
cotton, and sugarcane."

Agriculture is also a major source of degraded water quality. Sedimentation and

Workflow

Calculating excess nitrogen on croplands

5

Harvested area and yield
data for 170 crops

Develop rules for distributing manure

and atmospheric deposition on croplands
Define rules for mapping fertilizer and nitrogen
fixation for crops with no data

HARVEST AND YIELD DATA

Assemble data from reports and tabular data sources:
fertilizer application rates, percentage of nitrogen in manure,
percentage of nitrogen in the harvested crop average nitrogen
fixation rates for legumes

2 =

Create crop-specific maps for the inputs:
fertilizer, manure, atmospheric deposition,
M fixation outputs: nitrogen in the harvested crop

TABULAR DATA SOURCES

INPUTS

nutrients (particularly nitrogen and
phosphorus) from farmlands reduce the
quality of nearby streams and lakes and
downstream coastal areas. The added
nutrients enrich the waters, causing
some species, like algae, to thrive to the
point of limiting oxygen available for fish
and other animals. To identify where
these sources of excess nutrients are
around the world, fertilizer and manure
application data can be constructed
by building off the base data described
MODEL earlier. Average application rates for
nitrogen and phosphorus fertilizer
reported elsewhere can be mapped onto
the crop distribution data. Nutrient
inputs from manure can be mapped
using livestock density data and
developing a set of rules for how the
manure is distributed across pastures
and crops.

Simple mass balance model
N balance = inputs - outputs

l MAP PRODUCTS
Additional nitrogen inputs also come
atmospheric deposition livestock densities from nitrogen fixation by leguminous
crops and atmospheric deposition. The
nitrogen and phosphorus removed from
the land is calculated as the amount of
V. e those nutrients that are in the harvested
7 F w crops. From there, the amount of excess
? ’ iw, or deficit is calculated using a simple
N mass balance model of the inputs
B S — (fertilizer, manure, Nitrogen fixation,
RESULTS atmospheric deposition) minus the
outputs (nitrogen or phosphorus in the
harvested crop).

Assemble and standardize existing map products:

Map model results of the nitrogen balance
(excess and deficits) on the landscape

Planners can use these assessments to target policy or management interventions to increase efficiency and reduce nutrient pollution.
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USING WHAT WE GROW MORE EFFICIENTLY

Excess nitrogen on croplands

Low

Excess nitrogen on croplands. Globally, about 60% of the nitrogen inputs (fertilizer, manure, nitrogen fixation, and atmospheric deposition) are in excess of the nitrogen in the
harvested crop.”” Much of this excess nitrogen leaches through the soil, into rivers, and eventually coastal areas, where high concentrations of nitrogen have created many
oxygen-free "dead zones.” Planners can use these assessments to target policy and management interventions to increase efficiency and reduce pollution.

Sustainable Food Production

93



Greenhouse gas emissions

Agriculture accounts for about a quarter of global greenhouse gas emissions.’
About 80% of these emissions occur where the food is produced, with the
remaining 20% from energy for producing fertilizer, processing, and transporting
food.®* The main sources of emissions associated with food production are methane
from cattle and rice, nitrous oxide emissions from fertilizer application, carbon

Greenhouse gas emissions
from managing agricultural
lands and clearing land for
new agriculture account

for 20%-25% of total global
emissions.® By combining
crop management data (and
the relationship between
management and emissions)
with crop distribution data, we
see that most emissions from crop
production are from growing rice, which is
concentrated in Asia.? Hotspots for nitrous
oxide emissions are in China, India, and the
United States. Emissions from peatlands
are concentrated in northern latitudes and
Indonesia.

Emission level
Low | TOEEEEEEE Hioh

Emissions from Fertilizer
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CH, Emissions from Rice Production

dioxide emissions from draining peatlands,” and land clearing. Greenhouse gas
emissions associated with various farm management techniques are known, and
thus by combining management information (e.g., flooding of rice fields, application
of nitrogen fertilizer, draining peatlands) with maps of crop production, we can
identify hotspots of emissions.

Emissions from Peat

0

Percentage of calories available as food

Low I A T

FOOD VS FEED

Improving food security is not just about producing more food. Changing what
we grow, what we eat, and what we waste can have a greater impact on both food
security and the environment. About 30-50% of food is wasted.” Similarly, 36% of
calories produced on the world’s croplands are used for animal feed, and many of

10 20 30 40 50 60 70 80 90

those calories are “lost” in the food system as it takes several calories of feed to
produce a calorie of meat or dairy”” Reducing food waste and eating less meat are
two actions that not only reduce the need for more food, but also the land, water,
and other natural resources used to produce it.

This map shows the number of calories available in the food system after accounting for the calories used to produce meat, dairy, and eggs. The areas in purple have
few calories available that end up in the food system, whereas the green areas are places where calories produced are consumed directly.?’
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CASE STUDY

Targeting efforts to create regenerative ranching and agricultural systems across Latin America

Researchers and others are using global datasets to identify opportunities for
creating sustainable agricultural systems across Latin America. Farmers use nearly
38% of the region’s land for agriculture.”® Latin America raises 28% of the world’s
cattle,” and 47% of global soybean exports originate in Brazil and Argentina alone.”
Many of these economic strengths resulted in habitat loss in several biodiversity
hotspots within the region. Further, land degradation and a changing climate create
risks for producing food and conserving biodiversity.

The Nature Conservancy (TNC) and other conservation non-profits increasingly
focus their efforts on sustainable agriculture to benefit people’s livelihoods and
biodiversity. Using a geodesign process, TNC, the University of Minnesota’s Institute
on the Environment, the International Center for Tropical Agriculture, and the
University of Sdo Paulo collaborated to identify a set of “action landscapes.” Their
efforts focused on these landscapes to maintain and restore regenerative ranching
and agricultural systems that increase profit, improve the environment, and build

% & oo ~ SR

Learning from farmers helps shape regional strategies. Here, a ranching family in
Colombia shares its three generations of experience restoring degraded land to
sustainably increase meat and milk production, profits, biodiversity, and soil health.

In other cases, collaborations with large-scale farmers producing commodities like soy
help determine which management practices effectively increase production, build
climate resilience, and reduce environmental impacts.
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resilience to climate change. The collaboration prepared several iterations of
analysis and maps to create a set of products that could support the data-driven
decision making. The products aimed to provide context for people with on-the-
ground expertise and help identify major opportunities and challenges across
the region. The partnership created map products for several attributes of TNC’s
Regenerative Ranching and Agriculture strategy: agricultural productivity, climate-
related risks, degraded lands, and restoration of ecosystem services. Participants
reviewed map products, developed selection criteria, and identified a draft set of
priority landscapes based on visual interpretation of maps. Later, they completed
additional analysis and revised maps to refine the products and ensure that the data
supported the draft set of priorities as well as to include additional landscapes that
met all criteria.

TNC in Latin America is using this product to guide investments in these landscapes
and design actions with partners.

G Priority Action Landscape

c Provisional Action Landscape

Land Cover 2015

Agriculture (croplands and grazing lands)

. Grasslands and grazing lands

. Forests
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The planning process identified a set of action landscapes for The Nature Conservancy
and its partners to focus their efforts to create regenerative ranching and agricultural
systems. The landscape boundaries shown here are being modified as implementation
proceeds.*

CONCLUSION

GIS is an essential tool for creating a sustainable food system. The examples in
this chapter show how spatial data and analysis are used to advance three broad
solutions to grow more food on existing agricultural lands, produce food more
sustainably, and use what we already produce more eficiently. These products help
instituions—including development banks, non-profit organizations, governments,
philanthropic foundations, and companies—develop science-based strategies and
target their investments.
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Photo on opening spread by Nena Terrell/USAID.
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Using big geodata, researchers at the World Resources Institute are u-sing-édvanced
geospatial tools and data frameworks to better monitor and model the spatial ¢
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of deforestation in the Congo rainforest during the past 20 years have been small-scale
subsistence agriculture, clearing for charcoal and fuel wood, urban expansion, and



THE COMPETITION FOR FORESTS

Planetwide, forests have changed rapidly during the past several decades. Rising
global demand for commodities such as timber, wood fiber, palm oil, beef, and
soy has pushed agricultural land into previously forested areas. The forests reflect
changes in national political and economic conditions. Forests provide wood
for construction, fiber for paper, and fuel for energy. They offer food, medicines,
and other non-timber forest products. They moderate the quality, quantity, and
timing of freshwater flows and influence regional precipitation patterns (critical
for nearby agriculture and cities). Forests are central to the fight against climate
change because they remove carbon from the air and emit it when burned, cleared,
or degraded. They offer a place for recreation and spiritual renewal, and are home
to 70 million Indigenous peoples. And forests harbor the most biodiversity of any
ecosystem on Earth.

But the forests, and their capacity to provide these benefits, are threatened. About
10,000 years ago in the age before humans learned to farm, forests covered about half
ofallland on Earth. Approximately half of these forests have since been cleared. Most
forests still standing today have been degraded or fragmented; by one measure less
than one fifth of them are still intact. The main causes of forest loss and degradation
include the expansion of agriculture and settlements, unsustainable extraction of
timber and fuel wood, and roads and other infrastructure that fragment forests and
bring settlers to new frontiers. Climate change impacts, including severe fires and
new vectors and outbreaks of forest pests and diseases, exacerbate the decline.

Underlying causes of forest loss and degradation include market and governance
failures driving land-use choices that do not recognize the value of forests or

mitigate the risks of depleting them. For instance, decisions about the fate of a
forest are often made in the absence of accurate information, in a nontransparent
manner, without participation of all relevant stakeholders, and without adequate
accountability. In some places, corruption and powerful vested interests hold
sway, governance is opaque, and laws are poorly enforced. And poor recognition of
customary rights to forest lands and resources fans conflict and robs people of their
cultural heritage and livelihoods.

During the past decade, many governments and companies have made time-
bound commitments to end deforestation, restore degraded forest landscapes,
and achieve sustainable forest management. The Sustainable Development Goals,
the New York Declaration on Forests (NYDF), the Paris Climate Agreement, and
the Bonn Challenge provide policy frameworks, accountability mechanisms, and
financing opportunities to help these goals succeed. These global and local policies
such as the moratoria on agricultural development in Brazil and Indonesia, have
been enacted with much fanfare. Policy makers and local enforcement agencies
all need timely, reliable, and trustworthy data to track individual and collective
progress, guide decisions about where and how to invest, and inform the design and
implementation of policies and programs.

Instituted by the World Resources Institute, Global Forest Watch is an online
platform that synthesizes data from authoritative sources and provides geodata
and tools for monitoring forests, providing near-realtime information about where
and how forests are changing around the world.

100 GIS for Science

A landscape under change, this region near Yangambi in Democratic Republic of
the Congo shows the effects of agricultural encroachment.

GLOBAL FOREST WATCH

Launched in 2014, the Global Forest Watch (GFW) platform provides timely and
spatially detailed information on forest dynamics that is globally consistent and
locally relevant. The GFW platform enhances the practical use of these data by
providing solutions to the challenges often associated with big data including
visualization, storage, analysis, sharing, and querying. These and other data products
derived from satellite imagery have fundamentally changed the way the world’s
forests are monitored by various stakeholders. But as sources of data become larger,
more complex, and more numerous, the ability to quickly explore and interpret

patterns with confidence has become a bottleneck for effectively using these data
to inform forest policy and management decisions.

Products like University of Maryland’s 30-meter-resolution GLAD (Global Land
Analysis and Discovery) laboratory forest-loss data and weekly deforestation alerts
(available on globalforestwatch.org) have made near-realtime forest monitoring a
reality. Forest managers, law enforcement officials, and policy makers can use this
information to track how forests fare and identify deforestation while there’s still
time to make a difference.
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SPATIO-TEMPORAL CLUSTERS OF FOREST LOSS

To turn this wealth of forest data into actionable information, researchers needed
to apply methods that would illuminate the spatial and temporal trends that exist
in the data. The goal was to find meaningful areas of primary forest loss across
the tropics based on spatial statistics and the latest analytical methods rather than
easily biased interpretations of thematic maps. Geospatial appliations often use the
term Aot spot to describe a region or value that is higher relative to its surroundings.
In the context of forest conservation, deforestation hot spots can be thought of
as fronts—broad regions of deforestation concern based on expert opinion and
scenario analyses where available.

In GIS methodological terms, a hot spot is defined as an area that exhibits
statistically significant clustering in the spatial pattern of forest loss. Hot spots are
locations where observed patterns are not likely the result of random processes or
of subjective cartographic design decisions; they represent places where underlying
spatial processes are at work. Emerging hot spot analysis extends this definition to
incorporate information about the temporal dimension of the data. The Emerging
Hot Spot analysis tool, which is part of the Space Time Pattern Mining toolbox
in ArcGIS® Pro, allows researchers to understand spatial clusters of deforestation
across the tropics and trends in those clusters over time. Results show new, sporadic,
persistent, intensifying, and diminishing hot spot patterns, as seen in the table.

In the graphic showing the workflow for emerging hot spots, the task is revealed
as a high-intensity geospatial operation. Cell-based raster data derived from raw
satellite imagery are aggregated and clipped into a space-time cube (essentially a
set of georeferenced layers stacked in time slices). An analysis mask is applied to
include only relevant, forested areas.

These spatio-temporal patterns are based on statistical analysis of the clustering of
instances of primary forest loss, where statistically significant hot spots of primary
forest loss represent places where researchers found more clustering of primary
forest loss than would be expected based on random spatial processes. Finally,
statistical results were summarized into categories as shown in the table to help
users of the data interpret and communicate the information.

pE:Fned Hot Spot Type Definition
Short term | New A hotspot for only the year 2018. It has never been a hot spot before.
trend
Sporadic An on-again then off-again hot spot. Less than 16 years have been hot
(Less than spots.
16 years
were
statistically
significant)
Persistent A statistically significant hot spot for 16 years with no discernible
Long term increasing or decreasing trend in the intensity of loss over time.
trend
Intensifying A statistically significant hot spot for 16 years, including the year 2018.
(At least In addition, the intensity of clustering of high counts in each year is
16 years increasing overall and that increase is statistically significant.
were
statistically | Diminishing A statistically significant hot spot for 16 years, including the year 2018.
significant) In addition, the intensity of clustering of high counts in each year is
decreasing overall and that decrease is statistically significant.

Emerging Hot Spots Workflow

These steps illustrate the process of analyzing primary forest loss data over
nearly two decades. Repeatable and applied to tropical countries and subregions,
this workflow helps to understand and reduce deforestation, preserving forests
for future generations.
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EXPLORING THE RESULTS: BRAZIL

Emerging hot spot analysis applied to the University of Maryland primary forest-
loss dataset revealed important trends in loss from the years 2002-2018. Old
growth, or primary, tropical rainforests are a crucially important forest ecosystem,
containing trees that can be hundreds or even thousands of years old. They store
more carbon than other forests and are irreplaceable in sustaining biodiversity.
Primary rainforests provide habitat for animals ranging from orangutans and
mountain gorillas to jaguars and tigers. Once cut down, these forests may never
return to their original state. The tropics-wide analysis examined results from four
countries that contain some of the most important forests in the world, where the
impact of environmental, economic, and political changes on these forests must be
better understood. For the latest analysis and primary forest loss data updates, visit
globalforestwatch.org.

From 2002 to 2018, Brazil lost an average of 1.4 million hectares of primary forest
per year, an area about the size of the Bahamas. The government enacted policies
such as the Amazon Soy Moratorium in the early 2000s to curb deforestation in
the Amazon rainforest. Nevertheless, Brazil experienced its third-highest rate of
primary forest loss in 2018 after a prominent fire-related spike in 2016-2017.

In this analysis, it is still too early to assess how the devastating fires from the
summer of 2019 and the weakening of environmental laws and enforcement under
Brazil’s Bolsonaro administration will impact forest loss. The high rate of primary
forest loss in 2018 occurred before President Jair Bolsonaro took office (though
there is evidence of deforestation rates spiking during the election season).
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The maps of Brazil show hot spots across the country, representing new fronts of
primary forest loss. Wildfires caused some of the 2018 loss, but most of it can be
attributed to clear-cutting in the Amazon, threatening to reverse the declines in
deforestation the country achieved in the early 2000s.

Notably, several hot spots of primary forest loss occurred near and within indigenous
territories. For example, the Ituna Itata Reserve had more than 4,000 hectares illegally
cleared in the first half of 2018, more than double the total loss from 2002-2017. The
reserve is home to some of the world’s last remaining uncontacted peoples, who
depend on the forest for survival and have conserved it for centuries.

Tracking Global Forest Loss



Colombia

Primary forest-loss data for Colombia reflects a 9
percent increase in primary forest loss between 2017
and 2018, continuing a dramatic upward trend that
began in 2016. Three regions on the border of the
Amazon biome (Meta, Guaviare, and Caquetd) show
new hot spots of loss advancing into pristine intact
forest landscape, and these areas account for about
half of the increase that occurred in Colombia in 2018.

The rapid increase in forest loss happened as peace
came to the country. In 2016, the Revolutionary
Armed Forces of Colombia (FARC), the country’s
largest rebel group, was pushed out of large amounts
of remote forest it previously controlled. The FARC
had kept tight control over land use and allowed little
commercial use of resources. After FARC demobilized,
a power vacuum emerged, leading to illegal clearing
for pasture and coca, mining, and logging by other
armed groups.

Land speculation is rampant, as people occupy and
deforest new areas in the hopes of getting a land
title under the rural reform law, a key component of
the peace agreement. Abandoned FARC trails also
provide access to previously remote forest areas, with
some regional governments officially expanding these
roads to promote development. New hot spots in the
northeastern part of the country could also indicate
loss associated with some migration across the border
from Venezuela.

The Colombian government is actively working to slow
forest destruction. It canceled a major highway project
connecting Venezuela and Ecuador, destroyed several
illegal roads, expanded Chiribiquete National Park
by 1.5 million hectares, and launched the Green Belt
initiative to protect and restore a 9.2-million-hectare
forest corridor. Norway, Germany, and Britain have
also pledged to spend up the $366 million from now to
2025 to slow deforestation in the Colombian Amazon.
It's too early to tell whether these actions and others
will be enough to slow the country’s rampant forest
loss, but evaluating the data again with the Emerging
Hot Spot tool and looking for diminishing and
historical patterns will help us to better understand
the rapidly changing conditions in this country.
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New hot spots of primary forest loss encroach into intact forest landscapes in the Colombian states of Meta, Guaviare,
and Caqueta. Intact forest landscapes are pristine forests with little human-caused deforestation.
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In DRC, overlaying shifting cultivation with emerging hot spots reveals overlapping areas with the sporadic hot spot
category. This on-again, off-again category matches the cadence of periodic tree clearing that typically occurs in
shifting cultivation areas.

The Democratic Republic of the Congo

The Democratic Republic of the Congo (DRC)
primary forest-loss data reflect the country’s
conflicting environmental regulations and lack of
enforcement. From 2002 to 2018, DRC lost an average
of 256,000 hectares per year, an area about the size
of Luxembourg, and reached its second-largest
total loss in 2018. Agriculture, artisanal logging, and
charcoal production drive much of the forest loss in
the region, with nearly 75 percent of DRC forest loss
in 2018 occurring in shifting cultivation areas known
as the rural complex. Shifting cultivation is a type of
rotational farming system, in which trees are cleared
and the land is farmed for several years. Once soil
nutrients can no longer support agriculture, the land
is left fallow, and trees and secondary forest regrow
until eventually the vegetation is cleared again for
agricultural activities.

While shifting cultivation does not necessarily
indicate expansion into primary forest, growing
populations can intensify agricultural practices, thus
reducing fallow periods during which trees regrow
naturally. Overlaying the shifting cultivation areas
with emerging hot spot results reveals overlapping
areas with the sporadic hot spot category. This on-
again, off-again category matches the cadence of
periodic tree clearing that typically occurs in shifting
cultivation areas.

In addition to sporadic hot spots, some shifting
cultivation also falls into new and intensifying hot spot
categories, as well as no-hot spot categories, meaning
no statistically significant pattern was detected or
a statistically significant low amount of forest loss
occurred. Further research could compare shifting
cultivation practices and other local conditions in
the expected sporadic hot spot areas, with conditions
in the intensifying, new, and non-hot spot areas
determining whether changes in population or other
agricultural practices are impacting forest loss.

While shifting cultivation is associated with much of
the forest loss observed in DRC recently, changes in
federal law could see pressure on forests shift to new
areas. For the past 16 years, DRC has had a moratorium
on new industrial logging concessions, but the
government reinstated concessions to two companies
in 2018. Environmentalists worry that opening the
forest to additional logging could exacerbate the
countrys growing deforestation problem. But there
is more to DRC’s forest loss than industrial logging
concessions. While the moratorium applied only to
industrial logging, artisanal logging, often illegal, also
soared. Given the increasing trends observed since
2016, it is critical that DRC move ahead with improved
land-use planning and forest law enforcement, and
vigorously transition to better management practices.

Tracking Global Forest Loss
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Indonesia

Indonesia lost about 538,000 hectares of forest
annually between 2002 and 2018, an area about the
size of Brunei. Unlike most tropical forests, Indonesia
experienced a drop in forest loss in 2017 and 2018,
including a 40 percent decline in primary forest loss in
2018 compared to the average annual rate from 2002-
2016. The country experienced an even more dramatic
decline in forest loss in protected forests, suggesting
that recent government policies are working.

On peatlands deeper than 3 meters, which have been
legally protected from development since 2016, forest
loss dropped 80 percent from the 2002-2016 average.
And in areas under Indonesias forest moratorium,
primary forest loss dropped 45 percent in 2018
compared to 2002-2016.

Normally, the presence of large agricultural tree
plantations such as oil palm complicates the task of
measuring loss, especially in Sumatra, Kalimantan, and
Papua. Because tree-cover loss data dont distinguish
between natural vegetation and planted trees, harvest
activity within plantation boundaries are observed
within the tree-cover loss data. However, since the team
used the primary forest extent data in the emerging hot
spot analysis, this removed the expected loss within
plantations and draws attention to more concerning
trends occurring within primary forests.

Using the emerging hot spot analysis to dive further
into the primary forest loss trends, the research team
discovered several concerning new hot spots of forest
loss in protected areas. Two areas in Kerinci Seblat
National Park in Sumatra overlap with new hot spots,
and additional research reveals that small areas of forest
have been cleared for agriculture and other purposes in
this protected area.

In a country with recent forest-loss decline but also
thousands of smaller, fragmented areas of loss to
investigate, it can be daunting to try to understand
where to focus deforestation reduction efforts.
When paired with contextual layers like protected
areas, emerging hot spots can be especially helpful
in evaluating the statistical importance of loss and
identifying the most concerning areas of forest loss.
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New hot spots of primary forest loss overlap with Kerinci Seblat National Park on Sumatra, Indonesia. Forests in this
area have been cleared for agricultural activities.

GETTING TO EMERGING HOT SPOTS

The foundation of the analysis is the emerging hot spot analysis, which identifies
spatio-temporal trends in the clustering of data, in this case, with a focus on finding
clusters of forest loss. It takes as input a space-time cube, created from the forest
loss raster data through a process of reclassification and aggregation. The space-
time cube represents the data in a cube-like structure with information about what
has happened at each location over time. The analysis calculates a spatio-temporal
Getis-Ord Gi* statistic. The statistic tests to see whether there is clustering of
deforestation in space and time, and, more important, to see whether that clustering
is more than the team would expect to see based on random chance.

The team made several more important decisions in order to fine-tune the analysis
based specifically on the exploration of forest-loss data. First, the team used a
dataset representing the extent of forest in each country as a mask for the analysis.
This mask limited the locations evaluated in the analysis to include only relevant
locations. This was a critical aspect of the workflow, because every location included
in the analysis contributed to the global average against which all locations were

compared. When locations are included that either do not have forests or are
not relevant to the analysis, the global average can become unrepresentative
and lead to unreliable results. Additionally, while the default neighborhood size
was helpful as a first iteration, it was frequently found to be too large for the
forest-loss data. Usually a distance of about two thirds the default brought out
additional, nuanced patterns in the loss data. Ideally, the neighborhood size is
selected based on the width of loss patterns in the landscape, such as that along
roads and rivers, or of typical patchy loss, such as farms or pasture.

Once the space-time hot spot analysis completes, each bin in the input cube has
an associated z-score and p-value added to it. These hot and cold spot trends
are evaluated using the Mann-Kendall trend test on the z-scores at each bin
over time. Those trends, along with the z-score and p-value for each bin, are
then used to categorize each study area location (each location is composed of
a time series of space-time bins).

An emerging hot spot analysis starts with an aggregation process,
turning the global forest-loss raster data into a series of space-time
cubes representing the spatio-temporal forest-oss data in space
and time. Next, the statistical analysis evaluates each location to
determine whether it is part of a statistically significant hot or cold
spot based on a comparison of local values (in space and time) and
global values. Those locations marked as hot or cold are locations
where it is unlikely that the clustering observed happened as the
result of random chance. Finally, those spatio-temporal hot and
cold spots are summarized into categories that help communicate
the trends in clustering over time.

The hot and cold spots of

primary forest loss in Liberia as
seen in the red and blue areas,
respectively, can be stacked into

a 3D visualization to see the
underlying patterns that ultimately
make up the hot spot categories.
On their own, they tell only part of
the story of forest loss in Liberia.
The categorization plays a critical
role in the interpretation and
communication of the results.
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INTERPRETATION ACROSS THE TROPICS

The Emerging Hot Spot tool outputs 17 categories of results: eight different hot
spot types, eight different cold spot types, and a no-pattern-detected category.
The results identify different long- and short-term trends, with variations in the
intensity of clustering over time, and the presence or absence of hot and cold spots
at different points in the time series. Since the researchers mostly care about where

forests are experiencing important loss, they chose to recategorize locations
by eliminating all cold spots (clusters of statistically significant low amounts of
forest loss) and combined and eliminated other categories to focus just on the
stories that would matter most to policy makers. This resulted in five categories,
which are outlined before the results section.

Comparing the resulting maps before
and after recategorization (top and
bottom), reveals how important this
step is in the analysis process. Before
recategorization, the map is visually
cluttered, and the eye is mostly drawn
to the persistent hot and cold spot
categories in dark red and blue.

After recategorization, there are only
five colors, and the eye is drawn to
the most important categories for
stakeholders—the new and intensifying
categories in bright red and brown.

CONCLUSIONS

Emerging hot spot analysis can provide powerful information about precisely which
places experience the most significant impacts of deforestation, a valuable insight
for decision makers, law enforcement, journalists, and activists. Focusing on the
places with the largest, new clusters of clearing can help decision makers, law
enforcement, and other forest advocates can apply their limited resources in a way
that will have the most impact.

The emerging hot spots of primary forest loss layer are now available on the GFW
platform. Several organizations have adopted the methodology in their work to
combat forest loss. The Monitoring of the Andean Amazon Project has used emerging
hot spots of forest loss to identify urgent forest loss and synthesize forest-loss data
for policy makers, researchers, and journalists who are looking for a concise and
comprehensive overview of loss in a particular region. The World Wildlife Fund
uses emerging hot spots as an input to identify and report on key deforestation
fronts around the world. The Rainforest Trust uses the methodology to identify
and prioritize tropical rainforests in dire need of protection through purchases,
partnerships, and/or community engagement interventions.

As more frequent data updates become possible, rapid assessment of the most
significant loss can strengthen efforts to reduce deforestation. Rising demand for
commodities and a destabilized climate mean that more work is needed to ensure
deforestation doesn't continue unchecked, and that we make smart decisions about
how we develop and preserve our forests for future generations.
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HOW T0 FEED THE WORLD

Agricultural science is searching for more efficient and sustainable farming practices in the face of an additional 2 billion
mouths to feed by 2050. Big data from new innovations in sensors, delivered within the geospatial cloud, will in turn
enable a new crop of precision farming techniques and analytics.

By Daniel Roberts, Bruce Vandenberg, Steven Mirsky, Michael Buser, USDA—AGgricultural Research Service;
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Milling truck in a field harvesting crops near Austin, Texas. Access to

' adequate healthy, nutritious food is central to several of the United
' Nations” Sustainable Development Goals.
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THE CHALLENGE CONFRONTING AGRICULTURE AND THE WORLD

Regardless of the country or farming region, feeding a human population that
could reach 10 billion by 2050 presents enormous challenges to the agricultural
community." Plant-food production must increase 60 to 100 percent to keep pace
with current food consumption, food waste levels, and population trends. Food
producers must successfully grow more crops, and while enacting strategies to
conserve, they must also build soil resources and minimize agriculture impacts on
the environment. Additionally, they must enhance the nutritional quality of many
plant foods to ensure a healthy human population.*® New agricultural practices
required to meet this challenge must evolve quickly because a radical change in
farm practices can take decades to adopt.

Simply increasing land acreage devoted to crop production will not likely be going
to satisfy the food needs of future populations. Competition for land use with urban
development and the loss of land to salination and desertification will reduce
suitable farming land. Repurposing natural landscapes for farming also impacts
global carbon and hydrological cycles, greenhouse gas emissions, soil conditions,
and biodiversity. It’s also unlikely that agriculture can increase crop production
using previous agricultural intensification methods. Food production doubled
worldwide during the past several decades, largely because of the extensive use of
synthetic fertilizer, pesticides, and irrigation.**®

These methods are unsustainable for a few reasons. First, certain feed stocks for
fertilizer production are dwindling, making their future availability uncertain.
Second, water scarcity has affected many areas around the world, and the problem
is expected to worsen. In addition, agricultural intensification practices during
the past decades have increased soil erosion and decreased soil fertility; polluted
ground water; contributed to eutrophication of rivers, lakes, and coastal ecosystems;
and increased greenhouse gases.**® These harmful impacts on soil, water, and the
atmosphere will dramatically effect food production going forward. Clearly, we
must transform agricultural systems to scale up food production while reducing
environmental impacts on a finite amount of land.

Fertilizer and eroded topsoil spill from an unprotected lowa farm in a rainstorm.
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Food producers also must expand the development of crop cultivars and their use
in crop production systems. (A cultivar—cultivated variety—is an assemblage of
plants developed for specific beneficial characteristics.) Public and private breeding
programs have focused on traits affecting yield, pest and disease resistance, and
appearance rather than traits affecting nutritional composition of edible plant
parts.” Too many farmers have poorly aligned their crop and cultivar choices with
human dietary needs, understandably being driven mostly by price, yield, and
market preference.® As a result, crop cultivars tend to be calorie rich—containing
macronutrients such as fat, protein, and carbohydrates—but poor in vitamin and
mineral micronutrients and in human health-promoting phytochemicals. A key
technical challenge for food producers is thus to expand crop cultivar development
and use to maximize yield and nutritional quality. Crop cultivars must also be
developed that efficiently use water and soil nutrients needed for plant growth.*1°

Global climate change will greatly constrain our ability to produce more nutrient-
dense food.! Researchers expect climate change to bringincreased temperatures and
increased frequency and intensity of extreme weather and drought. These changes
may well offset any possible benefits to crop yield because of expected associated
negative impacts. Yields of most crops decline dramatically at temperatures much
above 30°C. Drought, salinity stress, higher ozone levels, and the onset of new pest
and pathogen problems would limit crop yields."! And elevated temperature and
carbon dioxide levels can degrade the nutritional quality of certain crops.”

Getting the most nutrition from the world’s agricultural operations is inherently
a geospatial problem: crops grow in specific places with specific climate and soil
conditions. Within individual fields, advanced data collection methods now allow
farmers to alter watering and fertilization practices at a precise level within a single
crop. Thanks to advances in geographic information systems (GIS) and realtime
machine learning, farmers can now analyze this explosion of new crop data to
maximize the efficiency of their operations, even to the point of making real-time
adjustments.

The intensity of agricultural activity in the US heartland is apparent in this satellite image
of circular crop fields in Haskell County, Kansas.

GIS: HELPING CHANGE THE WAY WE GROW FOOD

Managing data spatially is inherent to the development of next-generation crop
production systems.” Agricultural fields are highly heterogeneous with respect to
properties that impact plant growth and health. Topography, soil type, and pathogen
and pest populations can vary considerably within and among farmers’ fields.
These field properties interact with climate, greatly influencing drainage, water and
nutrient availability, and pest outbreaks and their spatial distribution. Using GIS,
we can spatially organize geospatial data from sensors for crop yield, soil fertility
factors, water, pathogens, and so on. Food producers can link the spatial patterns
of field properties with climate factors to develop correlations between crop yield,
soil type, and crop and soil management. Further, they can use this information to
more precisely manage varying crop populations and application rates of fertilizers,
pesticides, and irrigation. As a result, farmers can stop treating crop production
fields as a uniform management unit and instead treat the field as a heterogeneous
substrate for plant growth. In this way, they can maximize crop productivity and
profitability and more efficiently use inputs of resources (fertilizers, pesticides,
water), resulting in less loss and fewer harmful environmental impacts. Scientists
developed this precision agricultural approach in the 1980s with the advent of
global positioning system (GPS) technology and GIS and improved it with sensor
technology, big data approaches, algorithms, and robotics.” With increased farmer
adoption of precision agriculture (e.g., adoption was only 30-50 percent on US-grown
corn and soybeans in 2012)," we can minimize the footprint of food production on
the environment going forward.

Environmentally benign crop production tools (i.e., cover crops and beneficial
microbes) are being developed to use in next-generation crop production systems to
make food production more sustainable.®* Farmers can use these biologically based
tools in place of, or in conjunction with, reduced amounts of synthetic fertilizer or
pesticides. Cover crops provide a diverse array of benefits and are gaining traction
among US growers, their use being highly incentivized by state, federal, and private
programs. Farmers grow cover crops during fallow periods in a crop rotation. They
typically plant them in the fall after the summer cash crop and terminate them
in the spring before planting the next cash crop. Cover crops fix atmospheric
carbon dioxide and build soil organic matter as they decompose and contribute
to soil health. Cover crops also capture excess nutrients and prevent nutrient loss
from soil to aquifers and waterways, prevent soil erosion, and increase rainfall
infiltration and soil water-holding capacity. In some cases, cover crops help control
weeds, pathogens, and insect pests. Leguminous cover crops such as hairy vetch
and clover fix atmospheric nitrogen and thereby improve soil fertility.'” Farmers can
use other biologically based crop production tools, such as beneficial microbes, in
next-generation crop production systems to control plant disease and insect pests,
enhance soil phosphorus availability, and promote plant growth.?

To optimize the benefits of biologically based crop production tools, farmers must
integrate them into a precision framework to facilitate site-specific decision making,
an approach called precision-sustainable agriculture. Use of these biologically based
tools adds another layer of management complexity. Their use integrates many

Prescription maps are
generated to implement
variable rate seeding

and variety changes.

o,
&,

Grid sampling, gulded
by GPS, gives a spatial
representation of soil data.

o

i\ Agronomists advise

"\ on variable rate fertilizer
application according to

various soil indicators.

L G
' can quickly track
.y variability in the field.

factors driving the performance of cover crops
and microbes and impacting the performance

e of cash crops. Using these tools in a precision

Continuous yleld monitors framework is a challenge because data must

be in an actionable state for real-time decision
making. The ability to manage large amounts
of data in precision-sustainable agriculture
provides farmers with timely, specific, and
context-appropriate information and is key
for grower adoption. Geospatial information
tools offer this ability because they manage
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: complexity at scale.”®
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¥ possible risks.

Precision agriculture production systems rely
heavily on the fusion of volumes of data from a
variety of data generators with varying degrees
of data velocity and moving between many
user nodes.
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CASE STUDY: COVER CROPS AND THE SMART FARM

Work with cover crops illustrates how GIS underpins technology created to optimize
performance and speed adoption in the agricultural community. Crucial advances
in data science, sensing technology, and artificial intelligence (AI) and machine
learning (ML) applications have ignited a digital revolution, which in turn has led to
adaptive, geospatial decision support tools and on-farm monitoring systems. These
systems provide real-time data for the most effective use of cover crops, which are
grown primarily to protect and improve the soil, as opposed to cash crops, which
are grown for their commercial value.

Cover crops respond to environmental conditions in fields that impact crop biomass
and quality—two performance factors tightly correlated with benefits that cover
crops deliver to these fields.'*'” New sensing technologies coupled with Al algorithms
can quantify the performance factors and spatial variability of cover crops and how
they affect cover-crop benefits. Remote sensing offers many tools relevant to cover
crops, including populating landscape-level models with estimates of percentage of
land cover. Scientists have used the Normalized Difference Vegetation Index (NDVI)
based on reflectance of cover crops to evaluate soil cover and cover-crop biomass.'®"
Farmers are increasingly using cover-crop mixes to deliver multiple benefits, which
requires cover-crop species identification for optimal performance. Scientists also
frequently use lidar technology to map structure, including vegetation height,
density, and other characteristics across a region. Lidar helps scientists quantify
plant height and biomass for cover crops and weeds. Lidar data and red/green/blue
(RGB) digital images also help farmers identify species.

New geospatial decision-support tools using models calibrated from imagery for
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The Beltsville research farms complex

Located less than 20 miles from the nations capital, the Beltsville Agricultural
Research Center (BARC) is actually a collection of growing fields and research
facilities located around Beltsville, Maryland. Scientists there lead the operation
of working farms to envision, create, and improve agricultural knowledge and
technologies. The center’s mission is to help the United State and the world provide
healthy crops and animals; clean and renewable natural resources; sustainable
agricultural systems; and abundant, high-quality, and safe agricultural commodities
and products.

The Beltsville complex is managed by the US Department of Agriculture’s (USDA')
Agricultural Research Service (ARS). Overall, ARS is the chief scientific in-house
agricultural research agency for the nation. ARS scientists perform research on
more than 660 projects within 15 national programs. Their research covers crops,
insects, animals, nutrition, fertilizers, water, and many other broad topics that help
create a viable food supply for a nation of over 300 million people.
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offering recommendations to farmers.? Many current decision-support tools suffer
from usability issues that stymie adoption of the tools and practices they support.
Going forward, decision-support tools must be designed to reduce information
overload on users, use realistic modeling techniques that integrate field data,
and enable site-specific decision making.® Providing information and tools for
processing this information in near real time will allow farmers to optimally adjust
the way they manage cover and cash crops, thus increasing profits and reducing
stress.

Going forward, tools must be designed to move on-station field experiments to
the farm for development of decision-support tools. Historically, approaches to
manipulate farmer practices in their fields have been met with varied success, often
failing 50 percent of the time. This success rate speaks mostly to the complexity of
farming and how farmers must react to climate and logistics in real time. Fortunately,
a diverse array of sensing platforms makes it possible to link large networks of farms
to exploit the communal nature of farmers and to explore causal relationships
between climate, soil, and farm management without additional cognitive time
burdens to farmers. Increasingly, farmers—even small family farmers—are becoming
comfortable with technology.

These next sections will show how to use geospatial tools to manage and monitor
the performance of cover crops and cropping systems in general.
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Inexpensive tablet technology brings the “agri-data” to the field.
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Application of Earth observation data for cover-crop spatial variability

Collecting ground truth is key not only for traditional models but also for developing
training data for AI/ML, which is heavily dependent on collecting large amounts of
training data for the models to properly generalize. Reducing training data collection
costs through a variety of techniques is, therefore, critical for driving the adoption
of these modern models. To illustrate this concept, this section describes the use
of GIS, satellite data, ground truth around a cover-crop case study at Beltsville
Argricultural Research Center (BARC) using a variety of technologies designed to
reduce data collection times in the context of ArcGIS® Pro tool. The case study
used VENpS (vegetation and environmental monitoring on a new micro satellite)
imagery for the exploratory analysis in ArcGIS Pro that feeds into a data network
used by cover-crop researchers.

The case study used 13 cloud-free images for BARC available from November 2018 to
May 2019. These superspectral images have 12 visible near-infrared spectral bands,
a swath width of 27.6 kilometers, and spatial resolution of 10 meters. A mosaic
dataset—a data model developed by Esri within the geodatabase to manage a
collection of raster datasets (images)—allows one to store, manage, view, and query
large collections of raster and image data. At the start of the process, an empty
mosaic dataset was created as a container in the geodatabase in ArcGIS Pro that
was populated with the VENpS data.

Cover crops in the test field at Beltsville respond to environmental conditions that
impact biomass and quality. The NDVI and Soil Adjusted Vegetation Index (SAVI)
were used as good estimators in aboveground biomass. Raster functions that allow
on-the-fly processing operations were used to explore spatial variation of vegetation
health and to understand the relationship between soil moisture and vegetation.
These indices were saved as persisted cloud raster format (CRF) format, where
the CRF data cube is optimized for writing and reading large files in a distributed
processing and storage environment. In a CRF file, large rasters are broken down
into smaller bundles of tiles, allowing multiple processes to write simultaneously
to a single raster.
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The VENuS microsatellite

The Israeli VENuUS program is a vegetation and environment monitoring system
that utilizes emerging micro-satellite technology. The sensor provides high
resolution digital multi- and superspectralimagery to monitor, analyze, and model
land surface behavior under different parameters. This is high spatial resolution
Earth imaging for a wide range of commercial and scientific applications.

Artist's rendering VENuS microsatellite in action with rainbow suggesting the
multiple spectral bands “visible” to the sensor.

Evolution of NDVI over time
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ArcGIS Pro map and chart of NDVI readings from
the VENuUS microsatellite. NDVI is a standard way
to measure healthy vegetation. High NDVI values
correspond to healthier vegetation. Low NDVI
values correspond to less or no vegetation. This
view of the BARC test field data shows changes in
NDVI during the winter cover-crop period.
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Ground truth

In remote sensing, groundtruth refers to information collected on location, which
can be compared to remote sensing data (e.g., data collected from VENuS) for
validation. The acquisition of carefully documented groundtruth data enables
scientists to calibrate their models and aids in the interpretation and analysis of
what is being sensed. To illustrate the correlation between actual biomass and
the VENuS vegetation indices for biomas estimation, researchers intially collected
ground truth manually at randomly dispersed locations (shown as red dots on the
Central Farm 4-7 map). This literal “on the ground” data was then supplemented
with image data collected from a multispectral, camera-bearing Hiboy tractor
system, which collected NDVI samples directly.
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Driving a Hiboy tractor equipped with sensors through a soybean
W field at the USDA research farm in Beltsville, Maryland.

However, since not every farmer has a Hiboy platform with an NDVI sensor at
their disposal, an emerging investigative area at BARC is the deployment of low-
cost robotics. These so-called Internet of Things (I0T) approaches offer lower-cost
options moving forward that might ultimately lead to the Holy Grail for farming:
an automated recommendation engine that growers can act on in real time. The
EarthSense robot, called TerraSentia, has been developed to measure attributes
such as plant height, stand counts, stem widths, and so on for under-canopy plant
phenotyping. By navigating through a cornfield, for example, the robot can use
methods ranging from computer vision to 2D lidar to construct a model that can
be associated with field maps to support biomass volume estimation. Therefore, a
swarm of TerraSentia robots operating simultaneously in a field offers an efficient
method for continuously monitoring the growth of biomass.
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TerraSentia is an automated, less-expensive robotic solution that uses computer vision
and lidar to get detailed biomass estimates for use as ground truth.

Central Farm: 4-8A

Central Farm: 4-8B

Central Farm 4-7 map showing the sample point locations and a popup indicating
biomass and other details from a data collection pass on April 30, 2019.

is map shows the result of manually collecting groundtruth biomass, which can be used
for calibration. The map also shows the path of the Hiboy through the same field to col-
lect many more control points. By averaging the Hiboy points using a nearest-neighbor
approach, we can compare the results directly to the VENUS reflectance values.
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Crop field boundary detection using deep learning

The previous section focused on cost-effective methods for collecting ground
truth and correlating this with well-known vegetation indices using out-of-the-box
functionality in ArcGIS Pro. But new capabilities in ArcGIS Pro leveraging ML and
Al will significantly reduce the time it takes to build these models.

To develop these new capabilities, ARS researchers considered one of their classic
problems: how to define and create features depicting field boundaries (i.e., crop
masking), called common land units. Using automated techniques has the potential
to significantly reduce the time needed for farmers to create reports on their current
fields and crop plantings, as typical techniques require looking over multiple
growing seasons for field accuracy. But this work also shows great promise in helping
scientists build potential candidate farms for their on-farm research network, and
acting as geofences for queries to imagery stores and other data sources.
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Farmers use the same techniques to identify crop types that are used to quantify
global production of cash crops such as corn, soybeans, and so forth, and this is
essential information to people working in the commodities markets.

Using the Beltsville farm as an example, scientists classified VENuS imagery to
determine field boundaries. Specifcally, the imagery was resampled to 1 meter to
match the spatial resolution of the National Agriculture Imagery Program (NAIP)
output. The images are band stacked to get 16-band imagery (12 bands of VENuS
and 4 bands of NAIP) using the Composite Bands geoprocessing tool as shown in
the NAIP imagery. The trained neural network model has two outputs (croplands
versus non-croplands). The NAIP imagery shows the workflow in ArcGIS Pro.

1. Sample Training Data 2. Add Imagery Source 3. Export Training Data

ad & I

4. Train Model (UNET)

o

TensorFlov

o 6. Call the model directly from
5. Classification ArcGIS Pro

Via Python Raster Function

Aerial platforms capture NAIP imagery from USDA at high resolution and cover the
entire United States every two years. Software training data for classification of the
VENUS data is created with ArcGIS Pro.
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ArcGIS Pro and machine learning can classify VENuS
data using NAIP imagery. The resultant image clearly
delineates crop fields in black versus other features
such as forest and water.

Field data to analytics: Real-time data flow for cover crops

Microsoft Azure’s FarmBeats is another way to collect and aggregate ground-truth
data. The product combines IoT sensors, data analysis, and ML on a cloud-based
framework and allows farmers to gather data-driven insights in a cost-effective
way. FarmBeats uses AI/ML to turn data from many sources, including sensors,
satellites, drones, and weather stations, into actionable intelligence for farmers.
FarmBeats also uses a new, low-cost networking solution to connect the sensor
network to the cloud. The connection leverages unused frequencies allocated to
broadcasting services (called TV white space) not used in rural areas.
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Visualizing the FarmBeats data with the ArcGIS platform.
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Combining FarmBeats with the ArcGIS platform creates the potential to develop
a complex network of sensors from the agriculture industry with GIS data. For the
cover-crop network, a Python script pulls data from the FarmBeats application
program interface (API) for each sensor location and populates the data to ArcGIS
Online as a feature service every 15 minutes.

This real-time data pipeline opens the door for field data analytics and visualization,
improving the access to spatial analysis tools in the ArcGIS platform. As an example
of a decision-support tool, the team built a dashboard on top of real-time data to
monitor a kind of digital “heartbeat” of field observations, a critical tool for the
modern farmer.

display in real time.

Max Soil Moisture Value

1.352%

Min Salinity Value

150.132
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GIS-driven dashboards allow data
from FarmBeats and other sensors to



AUTOMATING AND ASSISTING THE FIELD WORK OF CRUP DEVELOPMENT

GIS serves as the backbone for emerging technologies that support the development
of cultivars with increased resilience to abiotic and biotic stressors related to
climate change and nutrition. For example, drought—the greatest threat to soybean
yields—is expected to more than double worldwide by 2050. For this reason,
developing a more drought-resistant soybean cultivar is a priority. The genetics of
drought tolerance are complex and poorly understood, so field-based phenotyping
is typically central to soybean cultivar development. Although visual traits that
correlate with drought response are known for soybeans (e.g., midday leaf wilting),
screening for these traits is time consuming and often requires highly trained
screeners. This reality limits the scale and number of testing locations.

A system that automatically rates drought-related phenotypes in soybeans in
a high through-put scale would significantly reduce the time and labor required
to increase the accuracy of soybean cultivar selection. Coupling Al with machine
vision, researchers can use low-cost solutions such as simple RBG imaging taken
with drone-mounted cameras to detect drought stress. This method can be widely
distributed across breeding programs to remove the subjective nature of human
scoring systems and greatly accelerate producing drought-resistant soybean lines.
When the camera network detects stress, it can tansfer images of the affected plots
to scientists. Categorizing stress levels within the camera requires relatively small
data streams across rural cellular connections.

FarmWave® is a good example of this technology because it focuses on identifying
and diagnosing pests and pathogens that impact crops. FarmWave leverages
cellphone technology to capture geocoded ground-truth data that can be shared on
a common platform with the producer and scientific community.

Speech recognition technology also plays a pivotal role in crop development in the
form of AgVoice’, a voice recognition technology. With AgVoice, the application
uses an Al “bot” to prompt you through data collection. The focus is a two-way
interaction on domain-specific knowledge around food and agricultural terms.

GIS: Helping change the way we do science

The rapid development and transfer of these new technologies will help farmers
produce more food with better nutrition. Yet these technologies must safeguard the
integrity of the soil, water, and air needed to grow this food while also confronting
the headwinds of global climate change. Until recently, the public and private
sectors largely developed technologies in silos, slowing progress. However, recent
advances in computing infrastructure, big data, and advanced algorithms portend
a paradigm shift in the way we develop technology in the agriculture sector. An
infrastructure based on these new technologies will allow the mass transfer and
sharing among scientists of agronomic data required for the development of next-
generation cropping systems and omics (genomic, transcriptomic, proteomic,
metabolomic) and other data necessary to develop advanced crop cultivars.
Integrating data collected from sensored smart farms into a collaborative network
will create a positive feedback loop that allows rapid testing of next-generation
cropping systems and advanced crop cultivars for different crop-production regions
worldwide. On-station laboratories now must move to farms to better represent
farm conditions and subtle differences in farming practices. A diverse array of
sensing platforms can link large networks of farms to explore causal relationships
between climate, soil, and management. The ability to analyze data from more
farming sites results in better models, decision-support tools, and outcomes, and
will result in more growers adopting these methods.
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AGVOICE

Like virtually all human activities, corn farming is being massively disrupted by
the digital revolution.

Technologically, providing a platform for connecting field systems and existing
GIS nodes results in a new architectural pattern called Web GIS. The Web GIS
pattern supports implementation patterns ranging from on-farm, edge-oriented
architecture to the system of systems approach that acts like a nervous system for
agriculture. From an agricultural perspective, Web GIS provides a framework for
reducing silos between scientists, across the public sector, and between the public
sector and the agricultural industry.
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AgCROS: a collaborative data sharing platform

The USDA leverages GIS built on a cloud infrastructure to increase collaboration
among ARS scientists and collaborators to enhance cooperative science. Developed
using the industry standard Agile approach, the Agricultural Collaborative Research
Outcome System (AgCROS) illustrates a collaborative vision by providing a single
platform to store and disseminate new agricultural data and models.* Data from
studies on greenhouse gas emissions, soil health, genomics, cover crops, renewable
energy, antibiotic resistance, nutrient use, and nutrition are all contained within
AgCROS.?* AgCROS is built on ArcGIS Hub with connections to ArcGIS Online
and ArcGIS Enterprise. Data for the system is stored on Microsoft Azure ARS cloud
as an enterprise geodatabase and referenced in ArcGIS Online. ArcGIS Enterprise
allows for storage of imagery, and real-time data. The ARS cloud allows for on-
demand processing of Al and ML techniques and other analytical tools. Microsoft
FarmBeats and Esri Geo-event server combine to act as the sensor data generator.
Both systems leverage IoT to handle the variety of sensor types that will be deployed
as well as data types. TV white space antennas serve as the way of transmitting
sensor data to the cloud in areas without internet connectivity.
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The ArcGIS Hub interface to AGCROS, which covers the various sites within the ARS
research network.

Remote-sensed imagery data from satellites, planes (lidar), and land or air drones
requires large amounts of storage that the cloud allows for via hard-drive scalability.
In addition to the automated ground-truth data-collection techniques discussed
in the previous sections, Esris field mobility apps such as ArcGIS Surveyl23
and ArcGIS Collector are standards built into AgCROS to systematically reduce
collection times and increase data quality for field scientists and collaborators.
These applications gather data on mobile devices whether internet connections
exist or not. Data gathered on these applications mobile-sync with AgCROS when
internet connectivity is available. The applications provide ground-truth GIS
data, and users can customize them to take pictures, scan barcodes, and gather a
plethora of other observation data that does not have sensor inputs.

Having all the data and tools in the GIS central nervous system allows users to
compare and extrapolate AI/ML worldwide at speeds previously not possible.
These advances allow users to consider ways to improve farming methods while
reducing harmful environmental impacts.

Fort Collins, CO Organic Amendment

Overview  Plotlayout  Description mncmcm Soil Moisture  Soil Temperature
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Scientists can drill down from a site to the field level as shown. Once at the site level,
scientists can use various tools such as graphing across sites to get an overall view of
the data in question, in this case nitrous oxide.
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Breaking silos with service oriented architecture

The big challenge concerning Earth observations data in agriculture domain is how
to make complicated data available and interoperable for a growing user community

with varying interests and domain expertise. Based on the Web GIS pattern, the
ArcGIS platform is evolving in step with the larger technology industry to help meet

these challenges.

In recent years, changes in the geospatial community have required more
collaboration. The growth of cloud computing also has supported the use of scientific
data from real-time field observations with sensors, field data collection, and drone
observation. Most GIS analyists and remote sensing scientists once worked on
their own projects, data, and computers. But the growing volume and diversity of
scientific data and evolution of technology illustrated the benefits of sharing data
and methods. Scientists developed centralized data storage and some centralized
analytic services for use within their operations. Many organizations adopted a
services-oriented architecture (SOA).

Collaborative communities have emerged that reach beyond corporate or
organizational boundaries.? This system of systems is simply a collection of portals
containing distributed data and distributed analytics, which in turn can interoperate
as a single system. This breakthrough allows people to collaborate across space and
discipline. One example of this is the Global Earth Observations System of Systems
(GEOSS), which has 105 member countries and many affiliated research groups,

including Esri and many of its customers active in GEOSS. Similarly, as a
network of networks, the AgCROS bridges earlier gaps in data and analytics.

Sharing the data and models through web services increases the repeatability
of consistent and reproducible research workflows that are consistent and
reproducible. These developments, now in practical use throughout USDA,
have greatly improved collaboration. Cloud computing in agricultural science
has enabled scientists to put their focus where it matters most: improving
precision agriculture.

With the growth of cloud computing, a platform such as ArcGIS allows
scientists to deliver their unique data and analytics to any desktop and push
it back to the web. Web GIS brings analytics to spatial data in a new way.
Researchers previously had to process, modify, and extract data to answer
a set of questions. Web GIS transforms data into web maps and services
that are mashed up with different layers, so that data can answer questions
dynamically without processing them for each parameter. Web GIS in
the hands of a much larger audience reduces the need to create custom
applications, provides a platform for integrating GIS with other business
systems, and enables cross-organizational collaboration.
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CONCLUSIONS

GIS plays a major role in development of next-generation cropping systems and
crop cultivars that are more nutritious and more resilient to biotic stress, abiotic
stress, and other factors associated with climate change. Perhaps most important,
scientists now can leverage GIS to enhance collaboration and speed development
of new technologies. Future plans include linking ARS databases and modeling
environments in AgCROS with databases and other resources from sister USDA
agencies so that farmers and other members of the agricultural community can

more readily access and use their services.
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PART 3
HOW WE LOOK AT EARTH

Successfully understanding how Earth works and how Earth looks to us requires integrative and innovative
approaches to observation and measurement. These approaches include Earth observation in varying forms, such
as from sensors on satellites, aircraft, drones, ships, and so on. They also include the important data science issues
of conducting analysis; modeling, developing, and documenting useful datasets for science; and interoperating
between these datasets and between various approaches.
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MONITORING AIR QUALITY
IN THE UNITED STATES

Born in the midst of rising concern about harmful pollution in 1970, the US Environmental Protection Agency (EPA) has
since its inception focused considerable attention and resources on air quality. Using GIS, the agency’s Office of Air Quality
Planning and Standards compiles, synthesizes, and publishes data to guide policy that keeps the public safe and informed.

By Liz Naess, Halil Cakir, EPA; and Alberto Nieto, Esri.

In 1973, Los Angeles, California, had some of the worst air pollution in the nation. Efforts by the
EPA to document the problem led to greater awareness, then to legislation, and ultimately to
regulations like the catalytic converter that has made a significant impact on air pollution. "
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THE VALUE OF AIR QUALITY

When was the last time you considered the quality of the air that you breathe?

Many of us take for granted the quality of our air that allows us to live our daily lives
in relative comfort. Most of us can go out for a morning walk and enjoy outdoor
activities without constantly checking air quality monitors for hazardous levels of
pollutants.

Ispoorairqualityathingofthe past? Some ofusmayhaveheard oforevenexperienced
the Donora Fog. On October 27,1948, a sudden onset of smog settled over the town of
Donora, Pennsylvania. Sulfur dioxide emissions from US Steel’s Donora Zinc Works
and its American Steel & Wire plant occurred frequently in Donora. But on that
day in 1948, a temperature inversion trapped a mass of warm, stagnant air in
the valley. Pollutants in the air mixed to form a thick, yellowish, acrid smog that
blanketed Donora for five days. When it finally cleared, 20 people had died, and the
smog sickened more than 6,000 people.

Donorawas not the only place experiencing air pollution with deadly consequences:
Almost all major US cities routinely experienced toxic air. Even though they were
not recognized by health officials immediately, smog events killed hundreds of
people in 1953 and 1966 in New York. Elsewhere in the world, the “killer fog” of
1952 in London, England, killed an estimated 12,000 people. These events triggered
a collective wake-up call that ultimately led to the formation of the EPA in 1970,
raised public awareness to the dangers of air pollution, and served as the basis for
the Clean Air Act.

Donora, Pennsylvénia, 1948.

GIS for Science

Heavy smog shrouds the George Washington Bridge connecting New Jersey
and New York. This view faces the New Jersey side of the Hudson River, 1973.

A constable at work during
London’s 1952 “killer fog.”

UNDERSTANDING AIR POLLUTION

The Clean Air Act requires the EPA to set National Ambient Air Quality Standards
(NAAQS) for six common air pollutants (also known as criteria air pollutants)
that are common in outdoor air, considered harmful to public health and the

environment, and come from numerous and diverse sources. Criteria pollutants are
ground-level ozone (O,), particulate matter (PM), carbon monoxide (CO), lead (Pb),
sulfur dioxide (SO,), and nitrogen dioxide (NO,).
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Health effects: Ozone exposure reduces lung function and causes respiratory symptoms, such as
coughing and shortness of breath. Ozone exposure also aggravates asthma and lung diseases such as
emphysema, leading to increased medication use, hospital admissions, and emergency department
visits. Exposure to ozone may also increase the risk of premature mortality caused by respiratory issues.
Short-term exposure to ozone is also associated with increased total non-accidental mortality, which
includes deaths caused by respiratory causes. Environmental effects: Ozone damages vegetation by
injuring leaves, reducing photosynthesis, impairing reproduction, and decreasing crop yields.

Health effects: Exposures to PM, particularly fine particles referred to as PM2.5, can cause harmful
effects on the cardiovascular system, including heart attacks and strokes. These effects can result in
emergency department visits, hospitalizations, and, in some cases, premature death. PM exposures are
also linked to harmful respiratory effects, including asthma attacks. Environmental effects: Fine particles
(PM2.5) are the main cause of reduced visibility (haze) in parts of the United States, including many
national parks and wilderness areas.

Health effects: Breathing elevated levels of CO reduces the amount of oxygen reaching the body’s
organs and tissues. For those with heart disease, this outcome can result in chest pain and other
symptoms, leading to hospital admissions and emergency department visits. Environmental effects:
Emissions of CO contribute to the formation of carbon dioxide (COZ) and ozone, greenhouse gases that
warm the atmosphere.

Health effects: Depending on the level of exposure, lead may harm the developing nervous system of
children, resulting in lower IQs, learning deficits, and behavioral problems. Longer-term exposure to
higher levels of lead may contribute to cardiovascular effects, such as high blood pressure and heart
disease in adults. Environmental effects: Elevated amounts of lead accumulated in soils and freshwater
bodies can result in decreased growth and reproductive rates in plants and animals.

Health effects: Short-term exposures to SO, are linked with respiratory effects, including difficulty
breathing and increased asthma symptoms. These effects are particularly problematic for asthmatics
while breathing deeply, such as when exercising or playing. Short-term exposures to SO, have also
been connected to increased emergency department visits and hospital admissions for respiratory
illnesses, particularly for at-risk populations including children, older adults, and people with asthma.
SO, contributes to particle formation with associated health effects.

Health effects: Short-term exposures to NO, can aggravate respiratory diseases, particularly asthma,
leading to respiratory symptoms, hospital admissions, and emergency department visits. Long-term
exposures to NO, may contribute to asthma development and potentially increase susceptibility to
respiratory infections.

Monitoring Air Quality in the United States
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SETTING AIR QUALITY STANDARDS

The process of reviewing the NAAQS involves assessing new scientific data,
understanding the human and welfare impacts from air pollutants, and determining
protective levels. Throughout the process, the public has a chance to weigh in on the
decisions through public hearings and comment periods.

The Integrated Science Assessment

The Integrated Science Assessment (ISA) is a comprehensive review of policy-
relevant science, including key scientific evaluations and causal judgments, which
provides the scientific foundation to review criteria pollutants. Draft versions of
the ISA undergo review by the Clean Air Scientific Advisory Committee (CASAC),
an independent science advisory committee whose existence, review, and advisory
functions are mandated by the Clean Air Act. The draft ISAs are subject to a public

comment period before the final document is issued. The Risk and Exposure
Assessment (REA) draws upon information and conclusions presented in the ISA
to develop quantitative characterizations of exposures and associated risks to
human health or the environment associated with recent air quality conditions
and with air quality estimated to meet the current or alternative standard(s) under
consideration.

Policy considerations of the REA results are considered in a Policy Assessment
(PA), which is intended to bridge the gap between scientific evidence and technical
information and the judgments required of the EPA administrator. Taking into
consideration all the aforementioned assessments and reviews, the EPA develops
and publishes a notice of proposed rulemaking. A public comment period, during
which public hearings are generally held, follows, and after considering comments
received on the proposed rule, the EPA issues a final rule.
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DATA ANALYSIS

A broad range of analyses can be undertaken to support the technical information
these decisions are based on. Daily ozone (8-hour maximum) and fine particulate air
(24-hour average) monitoring data from the National Air Monitoring Stations/State
and Local Air Monitoring Stations (NAMS/SLAMS) are examples of the types of data
used to inform decision-makers. These data provide on-the-ground measurements
of the quality of the air we breathe every day. Since monitors are concentrated in
populated areas and are more limited in the rural parts of the country, data fusion
methods can be used to better understand air quality in areas without monitors.

Complex data fusion techniques allow scientists to incorporate information from
multiple sources to come up with a better product than individual sources of data
provide on their own. Because many factors drive air quality, predicting local air
quality conditions in areas without any monitors depends on identifying appropriate
spatial modeling techniques and the right covariates. Some of the most advanced and

Detailed diagnostics from EBK regression prediction help
scientists further understand and calibrate the models.

recent techniques, such as the empirical Bayesian kriging (EBK) regression prediction
method, promise more accurate predictions than the other spatial interpolation
models. Another advanced method developed by EPA is named the Downscaler Model.
This model fuses outputs from a gridded atmospheric model known as the Community
Multiscale Air Quality Model (CMAQ) with point air pollution measurements from air
quality monitors to produce an improved air quality surface for the entire country
which is extremely beneficial to the decision-making process. This method uses
probability to represent the uncertainty of the input parameters and the uncertainty
of the output.

Recent developments and improvements in GIS and spatial modeling allow the EPA
to more accurately depict air quality nationwide. Additionally, the Geospatial Platform
(GeoPlatform) is democratizing access to many different data sources. Easy access to
a suite of tools, apps, and data enables scientists to continually improve air quality
spatial prediction models.

Using CMAQ 1) and proximity to the US road network 2) as explanatory variables, the Empirical Bayesian Kriging (EBK) Regression Prediction tool generates the resulting air
quality surface output 3). Supplemental views of the prediction standard error 4) and subset polygons corresponding to regional models 5) demonstrate the advantages of EBK
regression prediction compared to other approaches: local conditions can affect air quality in many ways, allowing the model to tune itself in different areas and account for local
effect and providing better results when compared to fitting a global model.



IMPLEMENTING AIR QUALITY STANDARDS

Within two years of setting a new or revised standard, the EPA designates areas
as meeting (attainment) or not meeting (nonattainment) the standard. Final
designations are based on air quality monitoring data, state or tribal government
recommendations, and technical information.

The EPA has become more innovative in recent years with the designation process,
using more advanced spatial analysis to inform the recommended attainment
and nonattainment areas, including improvements in spatial interpolation or the
estimation of observation in places where data have not yet been collected.

W
Y -

Meteorology '

Designation boundaries

o 5

Jurisdiction :

Rich data at the proposed designation
boundary level comes to life in the EPA's
Ozone Designations Mapping Tool.
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Innovative web applications and analyses provide a wide range of data to
internal and external stakeholders to inform the boundaries of nonattainment
areas. They can help decision-makers understand how emissions, meteorology,
and geography may affect their local air pollution concentrations. These
boundaries are important because they indicate the area where air quality is
above the standard and help state and local decision makers, and tribal leaders
pinpoint the pollution emission sources contributing to poor air quality and
to implement programs and control measures to improve air quality in their
nonattainment areas.

The EPA's Ozone Designations
Mapping Tool informs nonattainment
area boundaries by combining data
from five layers into a synthsized map
of designation boundaries. Through
GeoPlatform, EPA creates short-lived
and limited use designer apps like this
to help policy makers and the public
interactively deliberate alternative
policy scenarios. The EPA creates these
web applications to address specific
problems and replace static figures,
maps, and data.
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MONITORING AIR QUALITY

Air quality data are spatial by definition: sources of pollution exist at specific
locations. A network of thousands of outdoor air quality monitoring stations across
the United States, Puerto Rico, and the US Virgin Islands is critical for monitoring
changes in air quality, particularly important in areas of nonattainment. The data
are compiled into the Air Quality System (AQS) database and available to the public
via the AQS application program interface (API), in aggregated form via the EPA
AirData website, and as dynamic GIS services via the ArcGIS Living Atlas of the
World". These data assist a wide range of people, from the concerned citizen who
wants to be aware of unhealthy air quality days in their region over a time period to
regulatory, academic, and health research communities that need raw data for air
quality studies.
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Today, the EPA partners with local, state, and tribal agencies to manage a network of thousands of outdoor air quality monitoring stations.
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The Clean Air Act has provided
public health protection since
it became law in 1970. To
highlight the achievements
made in the United States,

the EPA maintains interactive
applications and map-driven
reports outlining the trends in
air quality.
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Through successtul state led
implementation, numerous
areas across the country are
showing improvement, and
fewer areas are in nonattain-
ment. Since 2010, there were
no violations of the stan-
dards for CO and NO,,
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INFORMING THE PUBLIC

EPA scientists aggregate, manage, and analyze raw data from thousands of outdoor
air quality monitoring stations for policy-making purposes. The EPA also started
the AirNow program to provide actionable information to the public for its day-
to-day decisions. To better engage with the public, the EPA summarizes air quality
information into the Air Quality Index (AQI), which explains how clean or polluted
air is and what associated health effects might be of concern at their location. The
AQI focuses on health effects that a person may experience.

Air Quality Index
Levels of Health
Concern

Numerical

Value Meaning

Air quality is acceptable; however, for some pollutants there may be a
moderate health concern for a very small number of people who are
unusually sensitive to air pollution.

Everyone may begin to experience health effects; members of sensitive
groups may expernence more serious health effects.

ZIH to 300 Healm alert: everyone may emerience more serious health effects.

Moderate 51 to 100

Health warmings of emergency conditions. The entire population is

30110500 | 1 ore likely to be affected.

AQI colors: The EPA has assigned a specific color to each AQI category so people can
quickly understand whether air pollution is reaching unhealthy levels in their commu-
nities. The network of air quality monitoring stations is extensive, but spatial analy-

sis is necessary to assess air quality for each person’s location in the United States.
Interpolated surfaces are therefore generated using each station’s readings, allowing
the public to receive an estimate of air quality even in regions with sparse air quality
monitoring coverage.

Interpolation and Modeling

Interpolated surfaces allow for the assessment of air quality in areas without monitors.
Currently AirNow uses the inverse-distance weighted (IDW) interpolation method
because it provides fast results. The IDW method assumes that sites that are close

to one another are more alike than sites that are farther apart. AQI values in areas
without monitors are calculated using a weighted average of the values available at
surrounding sites. With recent advances in algorithms and processing power, the
AirNow team is exploring the use of more advanced and accurate but computationally
taxing spatial interpolation methods. One method under consideration is the
empiracal Bayesian kriging regression prediction.

Air Quality Index (AQI)

Moderate

Unhealthy
for Sensitive
Groups

Unhealthy

Very
Unhealthy

Hazardous

These maps shows the air quality index for the entire United States on January 31, 2020. Largest area of moderate air quality for this particular day is in the Great Lakes region.
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AIR QUALITY IS LOCAL

In March 2020, EPA launched a new, locally focused AirNow website. This site
provides the user with their local air quality information using their zip code or
location from their phone. The public can immediately assess the air quality around
them, learn more about historical air quality in their area, and the forecasted
air quality for the following day. This information helps users plan their outdoor
activities.

AirNow provides a window on local air quality data. Millions of people live in areas
where air pollution can cause serious health problems and affect our daily lives. Like
the weather, it can change from day to day. The AirNow program provides effective
and modern ways to inform the public about air quality via the EPA AirNow website,
widgets, and maps providing the current state of air quality around the nation.

Accurate prediction of local air quality relies on the fidelity of the input data
that precisely depict local conditions in many ways. Human activity, topography,
meteorology, and atmospheric conditions can affect local air quality in many ways.

Also new is the national Interactive Map of Air Quality, which provides additional
information about the air quality monitoring locations, current AQI values, and
pollutant concentrations.

In the 1970s Riverside, California, had some of the worst air quality in the nation because
of its proximity to car-crowded Los Angeles. Today, the city routinely enjoys clear and
blue skies but sometimes still experiences moderate air pollution, often in the form of
particulate matter.
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VISIBILITY STUDIES IN NATIONAL PARKS

One of the most basic forms of air pollution—haze—degrades visibility in many
American cities and scenic areas. Haze results from sunlight encountering tiny
pollution particles in the air, which reduce the clarity and color of what we see,
especially during humid conditions. This pollution comes from a variety of natural
and human-made sources. Natural sources can include windblown dust and soot
from wildfires. Human-made sources can include motor vehicles, electric utility
and industrial fuel burning, and manufacturing operations. The same pollution that
causes haze also poses human and ecosystem health risks.

Since 1988, the federal government has monitored visibility in national parks and
wilderness areas. A network of air quality monitors established in these treasured
areas is providing a steady stream of data to assess the progress over time. Visibility
has been improving due to pollution reductions resulting from many different Clean

On a good day in the Great Smoky Mountains, visibility can extend more than 100
miles. The images were taken on different days at 3 p.m.

On a bad day, the visibility range can be just 12 miles or less.
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Air Act programs, including the Regional Haze program, designed to help states
make gradual progress to reach natural visibility conditions in national parks and
wilderness areas. Thanks to the effectiveness of these programs, visibility in our
national parks and wilderness areas is improving.

In general, in eastern parks and wilderness areas, the average visual range (the
distance a visitor can see) has improved from 50 miles in 2000 to 70 miles in 2015.
In western parks and wilderness areas, the average visual range has improved from
90 miles to 120 miles over the same period. The Regional Haze Storymap shows the
visibility improvements in selected national parks. GIS is playing important role in
managing and disseminating these important data. Spatial analytics is helping to
evaluate national and local visibility trends.

2000 -2004 Average Visual Ranges
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Average visual ranges have improved during the past two decades.

ECONOMIC GROWTH WITH CLEANER AIR

Between 1970 and 2019, the combined emissions of the six common pollutants
dropped by 77 percent. This progress occurred while the US economy continued to
grow, Americans drove more miles, and population and energy use increased. We
don't need to compromise on air quality. It is important to get data and information

into the hands of the public and decision-makers, which can be facilitated by
interactive graphics, tools, and story maps. Together, we can make decisions that
benefit the economy and help ensure we continue to improve the air for current
and future generations.

Comparison of Growth Areas and Declining Emissions
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The data clearly show that the US can
experience economic growth while
reducing air pollution emissions and
improving conditions for its citizens and
the planet.
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THE URBAN TREE CANOPY

In dense urban centers, a city’s treescapes (or lack thereof) have a big impact on the quality of life. A unique government and
academic partnership uses lidar and GIS technology to help communities map, assess, and monitor their urban tree canopy.

By Jarlath O'Neil-Dunne, University of Vermont; Dexter Locke and J. Morgan Grove, US Forest Service; Michael Galvin, SavATree
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Tree canopy lines the shores of the East River in New York City, with the Robert F. Kennedy
Bridge connecting Astoria to Randall’s Island. The lidar data shown here was the foundational 1
dataset for New York City’s most recent tree canopy assessment.
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THE SUSTAINABLE CITY

'The consolidation of the human population in urbanized areas during the Industrial
Revolution of the late 1800s and early 1900s caused major challenges for cities across
the United States. Raw sewage running down streets, air pollution, and contaminated
water were just some of the issues that left urban residents in unhealthful living
conditions. Over time, cities became more sanitary as they addressed these issues
and improved their treatment plants, sewer and stormwater systems, and other
facilities known as gray infrastructure. As a result, residents living in urban areas
experienced measurable improvements in their quality of life. For the most part, US
cities today are no longer focused on addressing sanitary ills, but they face a new
set of challenges.

Today’s environmental and livability challenges, such as climate change and urban
heat islands, are in many ways more difficult to solve than those faced in the
nineteenth century. Cities must become more sustainable and livable to meet these
challenges, even as demographic shifts bring more people into urbanized city cores.
Yet cities lack the kind of traditional gray infrastructure fixes when they look for
ways to fight climate change or reduce the impacts of urban heat islands. And in
a global marketplace, attracting the best companies and the brightest minds to a
city is no longer assured simply because of its historically dominant presence in an
economic sector. To remain competitive, a city must provide other amenities such
as parks and tree-lined streets, which in turn requires revenue from the city’s tax
base.

To address these challenges, cities increasingly turn to green infrastructure to
preserve and connect open spaces, watersheds, wildlife habitats, parks, and other
natural landscapes. Growing and sustaining a strong tree canopy is a key strategy of
green infrastructure. Trees benefit the ecosystem in many ways, from reducing peak
summer temperatures to providing wildlife habitat to reducing stress in the human
population. Cities have realized that they must manage trees as a crucial asset if they
are to become sustainable, keep residents happy, and attract commercial entities.

A tree stands in front of row houses in the Reservoir Hill neighborhood of Baltimore.
The city is a leader in mapping and protecting urban forests.
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Knowing what you have so you can manage it

Baltimore, Maryland, like alot of big US cities, has actively recognized the importance
ofits urban tree canopy in providing shade, ambiance, and character not to mention
the climate-cooling and carbon-capture benefits. In 2004, city officials approached a
team that includes US Forest Service scientists and academic researchers, with two
simple questions:

1. How much of the city is covered by tree canopy?
2. How much land is available to plant new trees?

Baltimore, like many cities, had used GIS to map, manage, and monitor its
infrastructure for years. Baltimore used digital parcel maps to collect taxes, updated
gray infrastructure databases such as street centerlines and building footprints to
stay current with changes, and relied on innovative online dashboards to report and
analyze crime. The city had alot of geospatial information at its fingertips but lacked
information about green infrastructure when it decided to set a realistic long-term
goal for tree canopy coverage. Elected leaders realized they could not set a goal for
tree canopy without knowing how much tree canopy they had. They also needed to
know the amount of available land available for new tree canopy.

Cities in general lacked information about their tree canopy partly because they
did not traditionally view trees as a crucial asset. Only fairly recently have they
understood and accepted the value of green infrastructure in urban areas. From a
GIS perspective, technological reasons also prevented strong analysis of tree canopy
until recently. First, cartographers historically mapped land cover at a resolution
of 30 meters. While mapping land cover at that resolution works well to examine
broad areas, 30-meter pixels are too coarse to analyze tree canopy in urban areas. A
single pixel might contain dozens of different land cover features and cross multiple
property boundaries. Cities have had access to high-resolution imagery of urban
areas for many years. However, they acquired the data under leaf-off conditions,
which supported gray infrastructure and property parcel mapping but served as
a poor source for assessing tree canopy. In addition, building shadows made it
difficult to use overhead imagery to map trees in major cities, regardless of the
spatial resolution.
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The Urban Tree Canopy Assessment Protocols from a comprehensive analytical
framework for providing resource managers with insights into their urban forests.

MAPPING THE URBAN FOREST FROM ABOVE

The early 2000s brought anew era of remote sensing that made it possible to efficiently
and effectively map tree canopy in urban areas. High-resolution digital imagery and
lidar became increasingly prevalent, while new object-based approaches to feature
extraction provided a way to automate land cover mapping. Commercial satellites
offered detailed, on-demand acquisition, and the National Agriculture Imagery
Program (NAIP), founded to support agricultural mapping, acquired imagery of
entire states during the growing season while trees had their leaves. The combined
result of these technologies allowed our team to develop workflows to map the tree
canopy and other land cover classes that helped decision-makers estimate available
land to plant trees.

Despitethetechnological advances,urbanland cover mappingremained challenging.
Cities are heterogeneous in the horizontal and vertical planes. The morphology of
trees differs, depending on whether they grow without competition on the street or
as part of a patch in an urban forest. Building shadows can obscure trees, and utility
poles can look like trees in lidar data. The resolution of the remotely sensed data,
while critical for mapping fine-scale urban features, meant that a land cover dataset
for a single city could be made up of tens of billions of pixels, eclipsing the size of
30-meter land cover datasets for the entire United States. Automation itself was not
enough, and old-fashioned manual digitizing still serves as the final check on all of
our land cover maps.

Feature extraction workflow showing the progression from source data (top), to segments
and initial classification (middle), to contextual information and final classification (bottom).

The team’s approach to high-resolution land cover mapping has centered on the
implementation of object-based feature extraction techniques. Objects have the
advantage in that they can contain information from raster, vector, and point cloud
datasets. Objects are also spatially aware, in that they have inherent information on
other objects, such as the relative border. Through an iterative process that employs
segmentation, classification, and morphology algorithms, we can minimize the
limitations of the input data and maximize their strengths. The land cover mapping
workflow starts by classifying objects based on basic properties (e.g., height and
tone).

As the workflow progresses, increasing amounts of spatial information are used in
the classification process, such as relative border and distance. This approach allows
us to eliminate almost entirely inconsistencies in the source data. For example,
offsets between the lidar and the imagery due to building lean may make a building
edge object have the height and spectral properties of tree canopy, but its spatial
properties—its length-to-width ratio and relative border to the building—can be
used classify it correctly. Morphology algorithms help to improve the cartographic
appearance of the land cover features, squaring up buildings and smoothing the
edges of tree canopy. Automation itself is never enough, and good old-fashioned
manual heads-up digitizing still serves as the final check on all of our land cover
maps.
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High-resolution land cover mapping is the foundation of an urban tree canopy
assessment. This example is from the 2017 mapping of New York City.

The Urban Tree Canopy
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Landcover mapping proved to be valuable but alone did not provide enough an ArcGIS geoprocessing model to compute the existing and possible tree canopy : . 8 P
. ) s . - . . . 3 . identify the places lacking the benefits of tree and then
information for cities to make informed decisions about their tree canopy. The by geographical unit, providing an efficient means to batch process the data to help identify organizations whose mission or mandate )
collectlvg benefits of tree canopy can be geographlpally bro‘ad, but the actual compute the UTC metrics for large collections of data. reflects that management priority. For example, trees
ownership of the tree canopy varies because most city land is privately owned. .
s . ! ) reduce summer temperatures by blocking the sun and
Cities also must understand their tree canopy at multiple geographical levels. A through evapotranspiration (exhaling water vapor) |2
school district seeking insights into the percentage of tree canopy at each school 190 2 > Hich %em erztture S fn the summer cg;m be Iethsl t(;
needs parcel-level data. Elected city councilors want to understand the tree canopy 8"; hu%n ans If’ublic health officials mav then choose L)
in their district. Managing water quality requires the summation of tree canopy o ° ®e S | | h Y hot in th
information by watershed 50 = o o to prioritize places to plant trees that are hot in the
y : summer and where the young and old live—people A
. . most vulnerable to heat. UTC prioritization is a set of
An urban tree canopy (UTC) assessment summarizes landcover data within GIS tools and a stakeholder enpa erment Drocess
geographical units to calculate the existing tree canopy and possible tree canopy. gag p .
Existing tree canopy is the tree canopy the community has right now. Possible tree 20 e In the case of Baltimore. the team sathered members
canopy is considered the area without roads, buildings, water, or trees. These places 2 of 25 oreanizations whos,e missionsgor mandates could &
could hypothetically support tree canopy. The purpose of defining the existing and g be achgieve dein part—byv increasine tree cano
the possible tree canopy is so that communities can understand what they have ° 40 o Wi b DY & " ~anopy:
o o @ Parcel value e assembled a “menu” of data reflecting different )
now as well as where the opportunities lie for establishing new tree canopy. The o 7 581,900 . h id hich 1d —
. . . . = $2.000.000 ecosystem services that trees provide, which cou
geographical units used to summarize tree canopy vary by community but generally . . R N
. s . : : g 2 ' $4,000,000 logically be linked to the participating organizations
include property parcels, political/administrative boundaries (e.g., council districts ® () $6,000,000 o .
. 5 $8.000.000 5 8 mission or mandate. For example, by removing 5
and neighborhoods), US Census block groups, and watersheds. UTC developed @ $9.027 600 8 . . : .
el & o o impervious surfaces and by planting trees, flooding
E [ ° .
. e may be reduced. Areas prone to flooding could also be | )
R ARG > , e . 3 identified by the point locations of service requests—
" Baltimore City’s 311 non-emergency government
2) 0000 ERE A % Y hotline. Each organization could distribute 10 votes o
a ) across all the items in the menu to best reflect their
1 oo organization’s priorities. Or they could place all 10 =2
3795 50 500 550 prees ppers S50 votes in the income box, which would indicate that
Year Built they are only interested in planting in low-income
areas. Criteria Weight &
Life
UTC assessment metrics showed that much of the tree canopy in this community is Ex -12
: pectancy
clustered in parcels that are 80 to 120 years old. The trees planted when these homes Ufl?lg A;CGIS’. UTC_ created .cust‘om mapsﬂfor e}a;tgh Road Density 10 K
were built may now be reaching their life expectancy; thus, homeowners should plant of the 25 participating organizations to reflect their Surface 5 Population 4
new trees now to maintain current tree canopy coverage. mission or mandgte, using the weightings that each Temp. Density 8
participant provided. A 26th map was created by Crime 12 FAood Plains 4
summing together all 25 organizations’ maps. That Alt. Trans 9 Tall Trees 7
- . o . . . map is now in the city’s sustainability plan as the Historic Potential =
The metrics in the assessment phase provide communities with the information ofﬁlgial urban tree Can}(f)py prioritizati}c;np map. One Districts " Steward ship 29
Fhey need to set a tree canopy goal. This integration of data also offers' insights important benefit to this approach is that each \Pﬁrrf;;“ . cpESeEe . 2
into the relationships between tree canopy and other variables along with cross- organization can compare its own map to the map & B
tabulation information. A classic environmental justice example is to examine the in the sustainability plan and to other organizations Gldealr ees 17 Slcalfres 8
relationship between wealth and tree canopy in public rights-of-way. This kind of maps. In this way, people can see where they have the ';'ﬁ:g;”“s 61 Fanting friody —
study can help to determine whether wealthy residents, with greater means and same.high priorit,ies for similar or dissimilar reasons Toxic I High
7 political access, have disproportionately more street tree canopy. Another example Groups can also see’how they contribute to the city’s' Releases I L -
Height (ft) is the founder’s effect. Trees rarely survive new construction, and thus one of the overall goal Inventory [ | Medium
| <39 first things a developer or homeowner does on a new property is plant trees. These ' Stream 18 ] d ; 5
' trees will yield robust canopies many decades after the house is built. In areas Someor B Low [ N I ; | Miles
where the houses were constructed at a similar time, tree canopy will exhibit a E:Eg"d‘ 3 Water s o m"ﬁ;m;mmgmwmﬁ;m;mm
characteristic “rise and fall” as trees reach peak canopy at a similar time, followed ™1 City Boundary Gregory Bayor  spnaniemawangsahake | e v by a1

by a sudden drop as the trees die. The integration of land cover with property parcel
data and assessor’s records can provide predictive analytics that allow cities to
target landowners ahead of time, reminding them that they need to plant new trees
now if they wish to sustain their tree canopy in the long term.

Tree canopy prioritization map reflecting the mission mandates of specific stakeholder groups.

it 209 163
‘é 5 94 9 8 > émzmﬂ:\._" UTC assessment infographic developed for decision makers to

help them understand who in the city has the most land available
(termed possible tree canopy) for establishing new tree canopy.

Canopy hei/ght information derived from lidar provides insight into the structure of a RESIDENTIAL
community’s urban forest.
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“Residential has the most area
for possible tree canopy.”
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Markets

UTC assessments provide baseline information often used for goal setting, and UTC
prioritizations provide an implementation plan that identifies key areas for planting
and common goals across organizations or institutions. However, residents across
low- to high-priority neighborhoods have different motivations, capacities, and
interests in urban and community forestry initiatives. A goal of UTC market analyses
is to understand how participation in existing programs varies by geodemographic
segment or market group. This data is typically used to understand purchasing
behavior and to market consumer goods. However, previous research has shown
that the amount of existing and possible tree canopy varies not just by household
income but also by family structure such as marital status or number of children
living at home.

Our market analyses help us compare where trees are being planted, through which
planting program, who lives where the trees are planted, and how much tree canopy
exists in that area. The results reveal how current programs are reaching—or not
reaching—different social groups and how much tree canopy is currently available.
The idea is to find out where alternative approaches could benefit additional tree
planting based on the demographics and lifestyles of residents in different areas.
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Example of the land cover mapping carried out in support of San Diego’s tree canopy assessment. More than 1 billion pixels of data were analyzed.
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Odds ratios and 95 percent confidence intervals for urban greening programs on pri-
vate residential land by Esri Tapestry LifeMode®.

Monitoring

For cities that have completed an assessment, set a goal for tree canopy, prioritized
areas for tree plantings, and implemented strategies to protect existing tree canopy
and establish new tree canopy, the next logical step is to assess the change in tree
canopy over time. Mapping tree canopy change is even more challenging than the
initial land cover mapping. Estimating tree canopy change over time from remotely
sensed data requires that the amount of change measured falls outside of the
margin of error. For example, if the two tree canopy estimates, produced at different
times, have a margin of error of +/- 2 percent, one cannot conclude that there is a 2
percent increase. The chief obstacle in tree canopy change is the source data.

The various imagery and lidar datasets used for monitoring tree canopy change are
collected with other use cases in mind and different acquisition parameters, and
then processed to different specifications. Even if individual tree canopy mapping
done at two different time periods was perfect, the process of differentiating the two
tree canopy datasets would result in false change due to the issues mentioned earlier.
To accommodate the challenges, we developed mapping protocols that minimize
errors associated with mapping tree canopy change over time by mapping three

. Loss
- No change

categories at the tree scale—no change, loss, and gain. The assissment starts again
with monitoring. The UTC used monitoring data to generate its assessment metrics.
These assessment metrics provide information on changes at various geographical
units. This information, in turn, is used to draw conclusions on driving factors.

Monitoring helps to reveal changes that can go unnoticed from the ground.
UTC monitoring helped one community understand that despite its substantial
investment in street tree maintenance and planning, tree canopy was declining in
the community due to losses in residential backyards. These mostly unseen areas
contained most of the city’s tree canopy. In another city, monitoring revealed that
neighborhoods in the lowest income quintiles lost the most tree canopy over a
five-year period, even though they had the least tree canopy as a percentage of
land area to begin with. This discovery had important environmental justice and
land management implications. Monitoring does not always reveal bad news. A
consistent finding is that existing tree canopy will continue to expand. Planting new
trees can be expensive, and monitoring has helped cities understand that preserving
what they have can result in greater gains at a lower cost per unit.

Monitoring tree canopy change in New York City. The data on the left is overlaid on a lidar surface hillshade from the first time period and the data on the right is overlaid on a lidar
surface from the second time period. Purple represents no change in tree canopy, orange represents loss, and green represents gain.

The Urban Tree Canopy
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UTC IN ACTION

What started as a pilot project in Baltimore, Maryland, has expanded to more
than 80 communities in the United States and Canada. As of this writing, UTC
assessments cover 8.5 million acres and include approximately 37 million people.
UTC assessments are driving green decision-making in urban areas. Cities are
setting tree canopy goals and building UTC mapping into their standard mapping
updates alongside parcel and planimetric mapping. We are now in the era of UTC
data informatics: the integration of UTC data with other citywide data that is
used to measure the sustainability and resilience of neighborhoods and cities. This
integration is possible because of data hooks associated with a parcel. These data
hooks might include latitude and longitude for some data, such as maps of urban
heat islands or flood zones, and an address for other data, such as crime, health,
and water and energy use. These data hooks are the critical, unique connectors that
make data interoperable and UTC data informatics possible. UTC data informatics
and synthesis continue to increase in value because the amount of digital data
about cities continues to grow at phenomenal rates. Data informatics and synthesis
provide the basis for expanding how we understand the benefits and services of
trees and canopy. In other words, because we can expand the types and number
of environmental, social, economic, and health data that can be integrated with
UTC data, we can employ a variety of techniques—hypothesis testing, machine
learning, and time-series analysis—to gain novel insights into the effects that trees
and canopy have on cities.

Tree canopy change %

B >1%
L <1%
C1<0% :
'E 2o, Tree canopy (%) Surface temperature (Fahrenheit)
| <- 0 {
W <-7% Sy it et | S == — —
0%-11% 12%-25% 26%-41% 42%-66% 67% -100% 77-84  85-89 90-92 93-97 98-113
Pottstown, PA Lancaster, PA State College, PA
— — X Tree canopy change summarized by 100-acre hexagons for the city of Virginia Beach
Existingtree [ Possible tree ) for 2012-2018. Tree canopy decreased in the urbanized portions of the city to the Trees provide important ecosystem services, such as reducing the urban heat island. Tree canopy mapping from high-resolution imagery combined with surface temperature map-
canopy [[_l canopy . i north and increased in the natural areas, which tend to be in the central and southern ping derived from Landsat satellite thermal imagery can illustrate the benefits that trees provide to a community.

portions of the city.

With tree canopy assessments carried out for more than 100 communities across the
nation, the data can be used to help resource managers find communities with similar A k | d
tree canopy characteristics from which they can share strategies for maintaining and CKnowie gments

increasing their urban tree canopy. We extend our gratitude to the US Forest Service and the dozens of communities

throughout North America that collaborated with us on Urban Tree Canopy
Assessments during the past decade.
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MONITORING DISASTERS

Responding to major natural and human-caused hazards, the NASA Earth Applied Sciences Disasters Program
collects, synthesizes, and shares data collected from dozens of Earth-orbiting satellites.

By Jeremy Kirkendall and Garrett Layne, NASA Disasters Program
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NASA EARTH SCIENCE

The NASA Disasters Program within Earth Applied Sciences is part of NASA's overall
Earth Science Division (ESD), which is charged with delivering the technology,
expertise, and global observations required to help scientists map the myriad of
connections between Earth’s vital processes and the effects of ongoing natural and
human-caused changes.

Using observations from satellites, instruments on the International Space Station,
airplanes, balloons, ships, and on land, ESD researchers collect data about the
science of our planet’s atmospheric motion and composition; land cover, land use
and vegetation; ocean currents, temperatures and upper-ocean life; and ice on land
and sea. These datasets, which cover even the most remote areas of Earth, are freely
and openly available to anyone.

Of particular interest to the GIS and disasters mapping communities are the data
coming from the Earth-orbiting satellites depicted here.
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NASA's Earth Science group processes data from a fleet of orbiting satellites that continually image Earth across the complete electromagnetic spectrum.

Mission-specific platforms like ERRA/AQUA and the MODIS instrument, plus a wide variety of emerging “microsatellites,” produce data applicable to serious GIS analysis.
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MISSION OF THE NASA DISASTERS PROGRAM

The NASA Disasters Program promotes the use of Earth observations for disaster
management and risk reduction. The program coordinates data and information
among its members to minimize the impact of disasters in collaboration with
emergency management organizations, government officials, the private sector,
humanitarian actors, and others. The program, through the development and
contribution to actionable Earth science research, aims to enhance situational
awareness and empower decision making before, during, and after disasters. The
program develops data products based on a solutions-oriented approach to identify
vulnerabilities and assess risk factors to promote planning and mitigation, improve
response, hasten recovery, and build resilience.

This holistic approach offers the ability to see the bigger picture and identify more
valuable, expansive uses of data previously siloed by a specific research question or
hazard type. NASA develops and combines data in new, innovative, and unique ways to
fill gaps in information and support the needs of communities, properties, or economies
deemed most vulnerable. Whenever possible, the program responds to direct requests

MASA Earth § .

DlSASTERSngi

o LATEST ORGANIZATION

S X

About the NASA
Disasters Program
i s Applications area
of Earth
o o improve prediction of,
preparation for, response to, and
recovery from natural and
technological disasters, Disaster
applications and applie arch on
natural hazards support emergency
E n developing

warning systems, and providi
information and maps to dis,
response and recovery teams.

Learn More

View the NASA Disasters
Mapping Portal

Accessible through disasters.nasa.gov, NASA Disasters Program serves as a virtual near
real-time“news desk” providing a variety of information from across NASA's teams.

for relevant data; opportunities to apply, advance, and evaluate disaster science and
technology; potential transitions of science to operational users and collaborators; and
advancement of science understanding and NASA capabilities.

The NASA Disasters Mapping Portal serves as a publicly accessible focal point
to make usable, integrated, and visualized disaster GIS data available for further
analysis by anyone. The portal provides context to data to demonstrate their value
and potential individually and in combination with other products. Anyone can
stream the products at no cost. The portal hosts event-specific products for disasters
such as a tropical cyclone or earthquake, and it hosts near real-time products, many
of which have global coverage.

One such product used to monitor hurricanes and other large-scale weather events
is the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
(IMERG)—essentially a measurement of precipitation accumulation. The following
large-format composite depicts the siuation during Hurricane Willa in 2018.
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® NASA Disasters Mapping Portal
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The Mapping Portal—built on the ArcGIS platform—offers a map and data-centric view
of currently unfolding and historical disasters, accessible at maps.disasters.nasa.gov.
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m’ on October 23, 2018, during Hurricane Willa (off the coast of
Mexico at the time this image was recorded).




MEASURING RAINFALL AND PREDICTING LANDSLIDES FOR HURRICANE WILLA

The NASA Disasters Program updates image data products E‘
like IMERG automatically on a continuous basis in time |
intervals ranging from 30 minutes to daily or even weekly,

depending on many factors related to each satellite’s orbital

path, coverage, angle of view, and so forth. These products
contain the most recent images “mosaicked, or stitched
together, into a continuous global view. The time stamps of these
cataloged images become a critical aspect of how the imagery is
actually applied.

The Global Precipitation Measurement (GPM) mission (highlighted on
the Hurricane Willa GPM map) is an international network of satellites that
provide global observations of rain and snow. The IMERG product combines the
GPM data into precipitation accumulation products, including 30-minute and
one-day intervals. These products can provide precipitation data in areas where
ground-based radar is not available, such as over the ocean. These datasets help
identify areas that may be vulnerable to flooding and can be combined with other
datasets to identify additional hazards, such as landslides.

Landslide susceptibility data

Globally, landslides cause billions of dollars in damage and numerous fatalities
each year. While the underlying mechanisms are understood, predicting the
potential for landslides in near-realtime has been difficult. Combining geographic
information and remote sensing data allows researchers to develop a global model
to predict the near real-time potential for landslides.

Landslides tend to occur where subsurface conditions are already unstable. To
identify landslide-prone terrain, the landslide susceptibility map was created
by combining slope, geology, road networks, and forest loss data, as shown in
ArcGIS ModelBuilder.” This static basemap is then used in conjunction with other
datasets to create near real-time landslide products.

Rainfall most commonly triggers landslides, so the Landslide Hazard Assessment
for Situational Awareness (LHASA) model was developed to combine IMERG
precipitation data with the landslide susceptibility map, updating every 30 minutes
to provide a near real-time product. A one-day cumulative raster of the LHASA
landslide nowcast is also provided to give a broader situational awareness. The
LHASA landslide nowcast is created by using the last seven days of GPM IMERG
data with the last 24 hours having the most impact. These data are then compared to
the long-term precipitation record. In places where precipitation is unusually high,
the model then uses the LHASA susceptibility map to determine whether the area
is vulnerable to landslides. If the area is vulnerable, the model produces a nowcast
identifying the area as having a high or moderate likelihood of landslide activity.

When Category 3 Hurricane Willa approached the Mexican state of Sinaloa on
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This landslide susceptibility map where
Hurricane Willa made landfall on the
west coast of Mexico shows a large area’
with an elevated likelihood of landslides.

Landslide susceptibility
I Verylow

1 Low

1 Moderate

1 High

I Very high

October 23, 2018, as much as 15 inches of rain fell
across the region, causing the nowcast to show
a widespread risk of landslide. When comparing
the one-day precipitation accumulation to the
landslide susceptibility map, the areas of overlap
between the heaviest precipitation and highest
landslide probability result in the landslide
nowcast.

The nowcast system has been evaluated by
comparing the nowcasts to each of 3,989 landslide
event points in the Global Landslide Catalog.
Since most landslides occur in places with no
observations, it was not possible to verify that the
global LHASA nowcast is accurate in all locations.
However, it does provide a near real-time global
summary of landslide hazards that may be useful
for disaster response agencies, international aid
organizations, and others who would benefit from
situational awareness of potential landslides in
near real-time.

In the future, the LHASA model will be evaluated
using the Cooperative Open Online Landslide
Repository (COOLR), which combines data from
the Global Landslide Catalogand data from citizen
scientists in an effort to reduce inconsistencies in
how landslides are reported in different regions.
Anyone can view landslides as well as report
a landslide event using the Landslide Viewer
and Landslide Reporter GIS web applications.
Growing this global landslide database will help
validate and improve LHASA, as well as enable
the landslide community to advance landslide
research and understanding of where and when
landslides are occurring.
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This landslide susceptibility model created in ModelBuilder™
combines slope, geology, road networks, and forest loss data to
create a cohesive global picture of hazards."?

A) IMERG 30-minute precipitation accumulation product for Hurricane Willa on October 23, 2018; B) the Landslide Susceptibility Map of where Willa made landfall shows a large
area with an elevated probability of landslide; C) IMERG one-day’s precipitation accumulation product for all of October 23; D) the landslide one-day’s nowcast for the date Willa
made landfall shows areas of moderate and high landslide likelihood caused by the storm’s heavy rainfall."?
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HURRICANE DORIAN: OPTICAL AND SYNTHETIC
APERTURE RADAR (SAR) COMPARISON

Category 5 Hurricane Dorian struck the northern Bahamas on September 1, 2019,
and stalled there for more than 40 hours, causing heavy rain and catastrophic
storm surge. By combining multiple days of GPM data, NASA created a total rainfall
product to highlight hardest-hit areas, with some locations experiencing more than
4 feet of rain.

The National Oceanic and Atmospheric Administration’s Geostationary Operational
Environmental Satellite (GOES-East) satellite provided rapid, highly detailed
imaging so that forecasters would have critical information about the storm’s
movement. However, the optical sensor could not detect flooding beneath the
clouds while the storm moved slowly over the Bahamas.

In the evening hours of September 2, 2019, the Copernicus Sentinel-1 satellite also

passed over the Bahamas, with a synthetic aperture radar (SAR) system capable

of imaging the land surface through Dorian’s clouds and rainfall. The SAR data,

provided by the European Space Agency (ESA), were then processed into a Flood

Proxy Map (FPM) by the Advanced Rapid Imaging and Analysis (ARIA) team at . |\ ' -
NASA’s Jet Propulsion Laboratory in collaboration with the Earth Observatory of ] e o | GPMTotal 2-day storm rainfall

i e. P High: 1255.05 mm
Singapore The GPM total rainfall for Hurricane Dorian from August 30 !

to September 4, 2019, shows some areas of the Bahamas

To help communicate the benefits of SAR during these cloudy conditions, the i - ,
p unt ! uring udy conditior received more than 4 feet of rain. By Low:416mm

NASA Disasters Mapping Portal built an interactive web app to display the FPM
layer beneath GOES East imagery from the same time as the Sentinel-1 overpass.
By moving the spyglass widget, users can view flooded regions, shown in blue, as if
they were peering beneath the clouds. The yellow box indicates the extent of the
SAR data collected, showing the limitation of SAR’s narrower but higher spatial-
resolution swath. Thanks to SAR’s cloud-penetrating capabilities, flooding could
be assessed before the storm and associated clouds cleared, allowing emergency
responders to act more quickly than if only relying on optical-based imagery.

Z“’:";'"' Seeing Through The Clouds
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' ; : o I , { hours after ignition, this Landsat 8 image shows how
~ far the Camp Fire north of Sacramento, California had
! spread by 10:45 a.m. By that evening, the fire had burned
| over 18,000 acres and remained zero percent contained.
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This web application uses a spyglass widget to let users see beneath the NOAA GOES- This flood proxy map image, captured on September 4, 2019, shows heavy flooding
East optical imagery of Hurricane Dorian, revealing a Copernicus Sentinel-1 SAR- (in blue) at the Grand Bahama International Airport (near the top of the image) and
derived flood proxy map that identifies areas likely flooded by the storm. The optical throughout the city of Freeport.

imagery and proxy map shown here were captured within minutes of each other.




SOIL MOISTURE AND EVAPORATIVE STRESS INDEX

Before disaster strikes, satellites sometimes can observe warning signs to assess
changes in risk. Monitoring soil moisture and evapotranspiration can help detect
when and where vegetation dries out, which creates additional fuel for wildfires.
The Camp Fire in November 2018 saw dry conditions for an extended period of
time because of persistent high pressure over the western United States. The
vegetation dried out in the weeks before the fire, helping to fuel the destructive fire,
which devastated the Northern California town of Paradise and surrounding rural
communities, killing scores of people.

The Land Information System (LIS) relative soil moisture products from NASA's
Short-term Prediction Research and Transition (SPoRT) Center uses the Noah
land surface model, real-time Suomi NPP (National Polar-orbiting Partnership)
green vegetation fraction, and radar- and gauge-derived precipitation estimates
to generate daily modeled analyses of soil moisture at 0-10 cm and 0-2 m depth.
Values of zero percent indicate no moisture in the soil, and values of 100 percent
indicate complete saturation. The near-surface 0-10 c¢m layer responds quickly
to heavy rainfall, while the deeper 0-2 m layer
represents longer-term water storage.

The Evaporative Stress Index (ESI) is a four-week
composite product updated weekly and reveals
regions of drought where vegetation is stressed due
tolack of water. EST observes reduced rates of water
loss through the use of land surface temperature
(LST) before it can be observed through decreases
in vegetation health, or “greenness”’ When the
lack of water stresses plants, they reduce their
transpiration to conserve water by closing their
stomata, leading to elevated leaf temperatures
that can be observed from space. Healthy
green vegetation with access to plenty of
water generally warms at a much slower
rate than dry and stressed vegetation.
Based on observations of variation
changes in land surface
temperature, the ESIindicates
how the current rate of
evapotranspiration
compares to normal
conditions.

This image of relative soil moisture from the Land Information System (LIS) on October
8, 2018, shows the top 2 meters of soil were very dry weeks before the Camp Fire, which
could have lead to more stressed vegetation and an increase in available fuel load.>4"#

160 GIS for Science

Pre-fire analysis

The 0-2 m relative soil moisture product on October 8, 2018, shows little moisture
across most of California, which remained dry for weeks before the Camp Fire on
November 8, 2018. The shallow 0-10 cm relative soil moisture product shows some
soil moisture that progressively dried out by October 22. The ESI shows mixed
areas of low-to-high evaporative stress throughout October, but after weeks of dry
soil weather, the vegetation quickly became stressed across the state, as shown on
November 11. The combination of so much dry vegetation, warm temperatures,
and dry winds contributed to the quick spread of the Camp Fire. Authorities and
decision makers could use these kinds of soil moisture and evapotranspiration
datasets in combination with other forecasts and models. This information would
provide a more comprehensive picture to identify areas of concern and determine
where to carry out mitigative actions and preparedness efforts.

These images show the relative soil moisture for the top 10 centimeters of soil from the
Land Information System (LIS) on October 8 and 22, 2018, and the Evaporative Stress
Index (ESI) for the weeks ending on October 8 and November 11, 2018. As the top

level of soil moisture dried out evapotranspiration decreased, which could have lead to

more stressed vegetation and an increase in available fuel load.#>¢7#

During-event and post-fire analysis

As the Camp Fire spread across Butte County, California, in November 2018, the
ARIA team at NASAs Jet Propulsion Laboratory used SAR to pierce through the
dense smoke and detect areas that were likely damaged by the fire. A Damage
Proxy Map (DPM) is derived from SAR images from the two Copernicus Sentinel-1
satellites, operated by the European Space Agency. The color variation from yellow
to red indicates increasingly more significant ground surface change. Copernicus
Sentinel-1 uses a C-band SAR, which cannot penetrate dense tree canopies, so
underlying structural damage may not be detected in more heavily forested areas.

The California Department of Forestry and Fire Protection (CAL FIRE) provided
ground-truthing data during the event, as shown by the colored houses in the figure,
allowing NASA to calibrate observations used to create a more accurate DPM. As
the fire continued to burn, additional DPMs helped CAL FIRE identify areas that
required reinspection. The DPMs are designed to increase situational awareness
of potential damage over large spatial areas. The ability to “see” through smoke,
clouds, and at night increase the amount of potential information sources during
and post-event. Responders can quickly identify critical infrastructure and assets
that may have been damaged using the Intersect tool with a vector version of the
DPM. These maps are a form of change detection, measuring differences in the pre-
and post-event SAR images that represent ground surface disturbance.

The NASA Damage Proxy Maps helped CAL FIRE validate their damage inspection
data and isolate areas that needed to be re-inspected. The layers were shared and
added to maps in ArcGIS Online and compared to a field-based damage inspection
layer for discrepancies. CAL FIRE plans to continue sharing data with NASA during
large scale disasters using the same ArcGIS Online framework in the future.

w K i _
This Damage Proxy Map shows areas where property was likely destroyed by the
Camp Fire. Color variation from yellow to red indicates increasingly more significant
ground surface change, which may not be detected under dense tree canopies. The
field-collected damage inspection layer from CAL FIRE depicts individual structures as
houses, with yellow and red indicating partial or total damage; green indicates
undamaged homes, with precious few showing in this view over Paradise, California.?

This false color Landsat 8 image of the Camp Fire on November 8, 2018, used the thermal infrared band to show areas that were on fire at the time or had been recently burned.
Dense smoke obscures the optical sensor-based image, so SAR was needed during the fire to evaluate conditions on the ground.
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2019 MIDWEST FLOODING

Starting in early 2019, much of the US Midwest across the Missouri River and
Mississippi River basins experienced widespread flooding that continued through
the summer and into the fall in some locations. Many areas saw record or near-
record high water marks, with some gauges above flood stage for more than four
consecutive months. Because of the long duration of the flooding and the large
geographic area affected, satellite data proved to be invaluable in monitoring and
documenting the extent of flooding throughout the event.

Scientists at NASA Marshall Space Flight Center (MSFC) and Goddard Space
Flight Center (GSFC) produced water extents and flood maps using optical sensors
(MODIS, Sentinel-2, Landsat 8) and SAR (Sentinel-1) to create a composite image of
flooding from March through June 2019. Using a collection of different sensors with
different spatial and temporal resolutions provided a more complete view of the
flooding on days when clouds obscured flooding and when the higher-resolution
sensors did not pass over the affected areas.

As the flooding continued through the spring, NASA scientists produced water
extent maps that were given to partner organizations such as the Federal Emergency
Management Agency (FEMA), the National Guard Bureau, and US Department of
Agriculture (USDA). These updated water extents allowed response organizations to
understand where and how the flooding evolved, what roadways and infrastructure
were inundated, and where they needed to send new aid.

One of NASAs main partners was the USDA National Agricultural Statistics
Service (NASS), which used the water extent raster data to help produce its own
products addressing the impact of the flooding on croplands in the region. With
flooding inundating so much cropland through spring, these water extents helped
organizations make decisions related to food security and crop management.
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Flooding on the Mississippi River on March 22, 2019, captured using three different
views from Copernicus Sentinel-2. Left: True color. Center: Natural color.
Right: Modified Normalized Difference Water Index (MNDWI).
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Composite map of all water extents created by NASA scientists showing anomalous
water based on the month the images were captured. Composite map used data from
Copernicus Sentinel-1 and Sentinel-2, Landsat-8, and MODIS. Images are from March,
May, and June 2019. Note: this map is not a complete view of all flooding that occurred
over the time period. Some areas may not have been mapped or may have been ob-
scured by cloud cover when satellites passed overhead.

Before and after comparison of flooding on the Missouri and
Platte Rivers south of Omaha, Nebraska using Copernicus
Sentinel-2 natural color RGB.

Left: March 21, 2018. Right: March 21, 2019.
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HURRICANE MARIA: BLACK MARBLE HD

Hurricane Maria made landfall on Puerto Rico on September 20, 2017, as a Category
4 hurricane, causing widespread destruction across the island, including its
infrastructure. Because of the island’s terrain and the magnitude of damage to the
electrical grid, much of the island suffered from power outages lasting more than
six months in some areas, as seen in the large map shown here. Prolonged power
outages can result in disruptions of vital services such as medical treatments and

procedures, access to medical records, communication, and the storage of goods
that require refrigeration.

Black Marble HD, developed by Dr. Miguel Roman and a team of NASA scientists
from Goddard Space Flight Center (GSFC) and Marshall Space Flight Center
(MSFC), uses Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band
(DNB). These data were processed and corrected to filter out stray light from
the moon, fires, airglow, and any other sources that are not electric lights. Their
processing techniques also remove as much other atmospheric interference—such
as dust, haze, and thin clouds—as possible. To make the VIIRS data more useful to

first responders, the team scaled the observations onto a basemap and incorporated
high-resolution GIS data from OpenStreetMap to emphasize locations of streets and
neighborhoods.

Ongoing research and development of the Black Marble HD continues under the
guidance of Dr. Miguel Romadn, director of the Earth from Space Institute at the
Universities Space Research Association, where the product continues to show value
in other recent disaster response and recovery scenarios.

Understanding what areas of Puerto Rico were still experiencing power outages can
help decision makers monitor the long-term recovery efforts across Puerto Rico. This
understanding helps responders to identify locations that need additional resources,
have compromised logistical infrastructure leading to lack of fuel and supplies, are
more at risk from cascading effects such as food insecurity, and are vulnerable to
impacts from compounding hazards, such as earthquakes or additional hurricanes.
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AUSTRALIA FIRES: SMOKE PLUME DATA

On December 16,2019, NASA's Terra satellite flew over the eastern coast of Australia,
capturing the height of smoke plumes emanating from the fires with its Multi-angle
Imaging Spectroradiometer (MISR) instrument. The original 2D raster showed
heights up to 4.5 km above Earths surface, but the structure of the plumes was
difficult to visualize.

For the first time, MISR data were converted to 3D and visualized in an interactive
web application by extracting point values from the 2D raster into a comma-
separated values (CSV) file and plotting the point data in 3D. This conversion
allowed users to view the plumes from many different angles to see how they varied
in structure.

These Earth-observing satellite data provide researchers and disaster management
agencies with the “big picture” of the location and intensity of fires in the region and
give an idea of where the smoke is being transported. The data can also be used to
initialize air-quality and chemical transport models. In particular, plume elevation
data from MISR can greatly improve the accuracy of models in predicting where the
smoke will go and what regions may be affected downwind.

While the data were visualized after the event, the Australian Bureau of Meteorology
(BOM) is incorporating MISR data and other NASA data sources into its air-quality
models to improve accuracy for future forecasts.

The plume heights in this image are represented as spheres, with progressively lighter colors for higher ele-
vation. The height has been visually exaggerated 20 times to better see the details in the data. The 2D raster
is shown on the ground for comparison. In addition, “hot-spot” data from the Terra satellite’s MODIS instru-
ment are shown as red spheres on the ground, indicating areas of active fires. The base layer of natural-color
imagery is from MISR's nadir-viewing camera.

GIS for Science

ENDNOTES

1. Stanley, T., and D. B. Kirschbaum (2017), A heuristic approach to global landslide
susceptibility mapping, Natural Hazards, 1-20, doi:10.1007/s11069-017-2757-y.

2. Kirschbaum, D. and Stanley, T. (2018), “Satellite-Based Assessment of Rain-
fall-Triggered Landslide Hazard for Situational Awareness. Earth's Future.”
doi:10.1002/2017EF000715

3.Yun, S., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., Gurrola, E., Mani-

pon, G., Liang, C., Fielding E., Milillo, P,, Hua, H., Coletta, A., “Rapid Damage Map-
ping for the 2015 M7.8 Gorkha Earthquake using Synthetic Aperture Radar Data

from COSMO-SkyMed and ALOS-2 Satellites”, Seismological Research Letters, Vol.
86(6), 1549-1556, doi: 10.1785/0220150152, 2015.

4. Anderson, M. C., C. R. Hain, B. Wardlow, J. R. Mecikalski, and W. P. Kustas (2011),
Evaluation of a drought index based on thermal remote sensing of evapotranspira-
tion over the continental U.S., Journal of Climate, 24, 2025-2044.

5. Blankenship, C. B., J. L. Case, W. L. Crosson, and B. T. Zavodsky, 2018: Correction
of Forcing-Related Spatial Artifacts in a Land Surface Model by Satellite Soil Mois-
ture Data Assimilation. /EEE Transactions on Geoscience and Remote Sensing,15(4),
498-502. doi: 10.1109/LGRS.2018.2805259

6. Case, J.L., 2016. From drought to flooding in less than a week over South Caroli-
na. Results in Physics, 6, 1183-1184.

7. Case, J.L., Zavodsky, B.T., 2018. Evolution of 2016 drought in the southeastern
United States from a land surface modeling perspective. Results in Physics, 8,
654-656.

8. Case, J.L., White, K.D., Guyer, B., Meyer, J., Srikishen, J., Blankenship, C.B., Za-
vodsky, B.T., 2016. “Real-time land information system over the continental U.S. for
situational awareness and local numerical weather prediction applications.” 30th
Conf. Hydrology, New Orleans, LA., Amer. Meteor. Soc., 3.3.

9. Romadn, M.O. et al. (2019) Satellite-based assessment of electricity restoration
efforts in Puerto Rico after Hurricane Maria. PLoS One, 14 (6).

10. Roman, M.O. et al. (2018) NASA's Black Marble nighttime lights product suite.
Remote Sensing of Environment. 210, 113-143.

Image credits

Page 167-168—Hurricane Florence: NASA Earth Applied Sciences Disasters Pro-
gram) IMERG); NASA Precipitation Measurement Missions (PMM) Science Team,
The Global Precipitation Measurement (GPM) Mission, NASA, Japan Aerospace
Exploration Agency (JAXA)
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Page 175—Spyglass Application: Sentinel-1 data were accessed through the Coper-

nicus Open Access Hub. The image contains modified Copernicus Sentinel data
(2018), processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team.

Pages 173-174—Rainfall Accumulation: NASA Precipitation Measurement Mis-
sions (PMM) Science Team, The Global Precipitation Measurement (GPM) Mis-
sion, NASA, Japan Aerospace Exploration Agency (JAXA) Text contribution by Jim
Schultz

Page 175—Flood Proxy Map: Sentinel-1 data were accessed through the Coper-
nicus Open Access Hub. The image contains modified Copernicus Sentinel data
(2018), processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team.

Page 176-178—Landsat-8 Camp Fire Image and Northern California Camp Fire:
NASA Earth Observatory image by Joshua Stevens, using Landsat data from the
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Worldview.

Page 178 —ARIA Damage Proxy Map (DPM): Sentinel-1 data were accessed
through the Copernicus Open Access Hub. The image contains modified Coperni-
cus Sentinel data (2018), processed by ESA and analyzed by the NASA-JPL/Caltech
ARIA team. This research was carried out at JPL funded by NASA.

Page 179—MODIS Flood Map: NASA GSFC Flood Mapping Project

Pages 179-180—Midwest Flooding 2019: The Sentinel data used in this derived
product contains modified Copernicus Sentinel data (2019), processed by ESA,
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Space Flight Center. Landsat-8 imagery courtesy of the U.S. Geological Survey
(USGS) and NASA Marshall Space Flight Center
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The blue catfish is an invasive species that is wreaking havoc in the Chesapeake Bay. Scientists are using drone imagery, artificial \§ =
intelligence (Al), and GIS as they probe to understand the full scope of the problem. \
By William Shuart, Virginia Commonwealth University; and Rohit Singh, Lain Graham, and Gerald Kinn, Esri. - Image captured from video made during blue catfish drone survey. The green rectangles
N represent individual catfish recognized by the full-motion video (FMV) software in processing.



WHY Al AND DRONES?

The application of small unmanned aerial vehicles (UAVS; also known as drones)to
geospatial investigations has exploded in just a few years’ time. The new ability to
place a camera several hundred feed above the surface is much less costly thmman
using traditional aircraft and delivers data in extraordinarily high resolution. Drones
are highly maneuverable and can carry a wide variety of imaging sensors. Thus, they
return accurate and actionable information and can solve time-sensitive problems
that require high resolution.

This is a story about blue catfish and how to count them using drones. A notorious
invader to the Chesapeake Bay region, the species has had an outsized impact on
that watershed’s ecosystem. In the context of this chapter, we will go “back to the
future;” introducing geospatial data collected via drones. These extremely large
datasets are big data, and distilling them requires machine learning, artificial
intelligence, and GIS software.

In this example, instead of attempting to collect and count fish from a boat in real
time or even take low-angle photos to count from later, researchers achieved a

literal birds-eye view using drones. Specifically, drones view and capture data that
researchers can process and review back in a lab for accuracy. Gathering these data
has become a simple and repeatable process, but the sheer volume of data presents
a new issue. But the ease in gathering so much data so often also requires new
methods for reviewing it all. Fortunately, automated intelligence—specifically the
fusion of GIS, Al, and GeoAl—unlocks these massive datasets for review, resulting
in deeper understanding,

The term GeoAl is used to describe the use of artificial (and automated) intelligence
to solve a geospatial problem. This chapter discusses the problem of catfish as
an invasive species outside of their native watershed. To address this geospatial
problem, researchers examined the size of a catfish population in place and time.

This emerging application of drone-based imagery has a new name: computer vision.
It leverages images and video to train computers to see what the human eye can see,
with the goal of achieving higher-level understanding.

The blue catfish (Ictalurus furcatus) is the largest species of North American catfish. The

fish is considered an invasive pest in some areas, particularly the Chesapeake Bay. Because

blue catfish tolerate brackish waters, it can colonize inland waterways in coastal regions.
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INTRODUCED SPECIES

Species migration and colonization of new habitats through natural dispersion or
movement processes have allowed species to expand their range and colonize new
ecosystems for millions of years. The ability for plant seeds to be dispersed, fish to
tolerate flooding and salinity changes, and birds to fly thousands of miles enables
species to limit competition for resources and increase populations. However,
during the past 200 years, humans have accelerated this process—sometimes
purposely transporting species from one location to another. Examples include
introducing an animal for harvesting (nutria), birds and frogs for controlling bugs
(European starling and cane toad), plants for adorning gardens (kudzu), and fish for
sport fishing and food (blue catfish).

When a species is moved or is found outside of its normal range, it is referred to
as introduced. Species that are introduced into a new location or environment
may have the ability to outcompete native species or possess abilities to change or
modify that new habitat or environment. This is referred to as an invasive species.
Species introductions sometimes can be unintentional, or passive, such as when

ships take on ballast water for buoyancy in one location, travel to another location,
and then deposit that water (and everything in it) with potentially new and invasive
organisms into a new location and environment. This process and mechanism are
how zebra mussels (Dreissena polymorpha) were introduced into the Great Lakes
and have dramatically changed the Great Lakes ecosystem in many negative ways.
The introduction of non-native (and usually invasive) species is sometimes referred
to as biological pollution. The US map of non-native species highlights the extent of
that distribution showing the number of occurrences in each county of introduced
species.

However, humans have also performed strategic introductions of species into new
environments, for example to control other species—some that are even introduced
themselves. For example, grass carp (Ctenopharyngodon idella) were introduced
in the 1960s in New Zealand to control invasive aquatic vegetation and have since
been used in 45 of the 50 US states. We also introduce species for food sources
through aquaculture processes and for recreational purposes.

% Many introduced species,
~ but they aren't widespread

Vet iy e

Definite and unsurprising
patterns emerge when
invasive species are mapped
across the contiguous
United States.
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INVASIVE CATFISH

Blue catfish are native to the Mississippi, Missouri, and Ohio River basins of the
central and southern United States, where it supports both recreational and
commercial fisheries (see catfish range map). Beginning in 1974, the Virginia
Department of Game and Inland Fisheries introduced more than 300,000 juvenile
blue catfish into coastal rivers of Virginia to establish self-sustaining recreational
and commercial fisheries, starting with the James and Rappahannock rivers, and
ending in 1985 with introductions into the York River system. Because blue catfish
can live longer than 20 years, weigh more than 100 pounds, grow longer than four
feet, and have a unique taste, they have been introduced into many rivers, lakes, and
estuaries throughout the United States.

Blue catfish have a vast salinity tolerance of almost half seawater (15 parts per
trillions for 72 hours) enabling them to survive and reproduce in freshwater riverine
and estuarine systems. They are opportunistic predators, and familiar prey include
macroinvertebrates, blue crabs, and many other fish species. Studies have shown
that blue catfish have taken the apex predator spot, feeding higher on the food
chain than striped bass and other predators in the Chesapeake Bay since their
introduction.

GIS for Science

Blue catfish also support important recreational fisheries, including a nationally
recognized trophy fishery in the James River, Virginia, where one-third of total
recreational fishing effort for freshwater species is directed at catfish. The species
represents a large support base for recreational fishing and income for the agencies
managing the fishery stocks. Blue catfish mature at about two-feet long or about
three years of age. They have a high reproduction rate and continue to grow in
length and weight as long as they live.

Recreational fishing license sales increased in Virginia, and commercial harvests
also increased dramatically since the 1970s. However, the introduction of the
species significantly altered the ecosystems of the estuaries and lower Chesapeake
Bay rivers.

All the reasons why blue catfish were originally stocked in Virginia are also the
reasons why the species has become invasive in the Chesapeake Bay ecosystem.
Since the introduction of blue (and flathead) catfish, an additional trophic layer was
added, because these introduced predators feed off several different groups.

Locations Blue Catfish Outside of Range
| USA State

Native Range of Blue Catfish

THREATENING NATIVE SPECIES

The introduction of blue catfish into the Chesapeake Bay brought thousands of fish
native to the Mississippi River into the Rappahannock and James Rivers. But the
nutrient-rich habitat was too good for the blue catfish. They became abundant and
navigated into waters where they had never been recorded before.

The term, trophic position, refers to the position an organism occupies in the food
web. Blue catfish eat almost anything—including blue crabs, insects, plants crabs,
that native fish need to survive, and they also eat other fish. For these and other
reasons, their relatively high trophic position in the Chesapeake Bay watershed
threatens the ecology and economy of the highly valued waters. The Maryland
Biological Stream Survey and the Virginia Healthy Waters Program have identified
and mapped these waters and the threats to the ecosystem brought on by the
explosion of blue catfish populations.

The intentional introduction of the blue catfish
for sport fishing in the 1970s has degraded the
Chesapeake Bay marine ecosystem by greatly
reducing the presence of many native species.

Invasive species threaten healthy ecosystems.
This map shows the high-valued aquatic
ecosystems in Maryland and Virginia and the
current extent of blue catfish.

Drones and GeoAl for Environmental Monitoring
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TRADITIONAL DATA COLLECTION

Catfish are demersal—they live near the bottom—and collecting data on catfish
involves several different kinds of equipment and methods. Trawling involves
dragging a net behind a boat at a certain depth, bringing the net up, and then
sorting the different species and counting the individual catfish. While this method
works, you can't target just one or two species of interest. You must bring up all the
fish, including potentially threatened and rare species.

This method stresses all fish and takes time to sort out the species. A newer method
is called low-frequency electrofishing, which despite the name is harmless to fish.
With specialized equipment and a special power generator on board, a boat crew
can place low-frequency and low-voltage current in the water. Because catfish live
on the bottom, they respond to the electric current by swimming off the bottom to
the surface. Scientists then use nets to pull fish onto the boat. Electrofishing allows
scientists to target only catfish rather than other types of fish species, limiting
interactions with other potentially threatened and endangered species.

Commercial and recreational fisheries

A current effort in Virgina allows low-frequency electrofishing to harvest blue
catfish. This effort has proved very effective and profitable while not harming other
species. Commercial landings of blue catfish throughout the past 30 years have
increased.

Because blue catfish are now the apex predators in the Chesapeake Bay estuary, they
are also susceptible to environmental contamination and biomagnification. Several
harmful environmental disasters have occurred in the James River that released
polychlorinated biphenyl (PCBs), Kepone (an insecticide), and other chemicals
that biomagnify— increase in concentration—as the trophic level increases. Blue
catfish have shown increased levels of these and other contaminants. The Virginia
Department of Health has set a limit on how much blue catfish an individual can
consume: fewer than two servings per month, and in some areas they recommend
not eating them at all. However, many recreational fishers consume blue catfish as
part of their sustenance. “Catfish Fry” gatherings are an enduring regional tradition.

Population size, age, and weight

After collecting the fish, researchers record the length and weight of each fish and
create ‘growth curves” for individual species. If researchers collect enough data,
they can estimate the health of specific fish populations. Each species has a unique
curve, which can change depending on location, diet, and stress. For example, blue
catfish can weigh upward of 90 pounds (the Virginia record is 143.3 pounds), but
they are not very long fish. Fish weighing 50 to 80 pounds are not uncommon.

To determine the age of a fish, researchers can also count annulus rings on either the
spine or the inner ear bone (called an ozolith). This method uses the same principles
as counting the rings to age trees. The data collection is labor-intensive. Every
fish must be examined. Historically this method has been the only way to collect
the data required to make informed decisions about fish stocks. Compounding
the collection problem, researchers cannot achieve accurate results because it is
difficult to catch, measure, and weigh a certain individual fish species in an area of
interest. Electrofishing causes catfish to rise to the surface over a wide area, but the
boat can cover just a small portion of that area.

Enter the drone.
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INTEGRATING DRONES IN FIELD SCIENCE

A drone flying at low altitude can capture images of surfacing catfish with relative
ease, technically speaking. The challenge is to convert that raw imagery into
quantifiable data.

For this groundbreaking effort, a proof of concept used two different UAV
platforms—the 3DR Solo equipped with a GoPro Hero camera and a DJI Mavic Pro
2 with a built-in camera—to obtain videos that can be multiplexed with the plug-in
ArcGIS Full Motion Video. Multiplexing in this context is the process of combining
the two files containing the video and metadata files to, in effect, georeference the
video frames.

Videos of commercial electrofishing and fish collection were formatted and then
multiplexed to insert the timestamp, location, and orientation into the videos.
Researchers can then read, play, and digitize the multiplexed movies in ArcGIS Pro.
Researchers can count, measure, and do other kinds of things frame by frame and
save those edits to a geodatabase. But thousands of fish are seen every second in
the video, so they had to come up with a different way to analyze them: filtering. To
borrow from Esri’s latest campaign, “see what others can't” also implies only seeing
what you want or need from a dataset. In this case, researchers were interested in
catfish, not birds or waves or the boat.

But even the process of counting and measuring each fish manually on a computer
took too much time to be efficient. Fortunately, Al and machine learning have made
rapid progress in recent years. Computer vision—the ability for computers to see—
isnow real, cost effective, and viable. Researchers can use deep convolutional neural
networks (deep learning) to automate the task of detecting catfish from the drone
videos and provide estimates of their size, and hence their age and growth statistics.
In computer vision, this process is known as object detection. Deep-learning-based,

Video
(FMV)

Collecting and formatting the video and flight metatdata are two important steps to ... ?

object-detection models can detect objects of interest in imagery and report their
location in terms of bounding boxes. Researchers can use bounding boxes to
estimate the size of each fish, and the number of boxes represents their population.
Since the video is geospatially enabled with the flight log, sensor dynamics, and field
of view (FOV) information, researchers can translate these measurements from
image space to map space, thereby enabling analysis within the correct geographical
context.

Deep learning “learns” by looking at multiple examples of objects that it needs to
recognize. The team used ArcGIS Pro to mark the location and size of each catfish
in several frames of the georeferenced video. This process served to train the deep
learning model.

However, these data cannot be directly fed into the deep learning model. Training
deep convolutional neural networks with millions of parameters is computationally
expensive and is typically performed on GPUs that have limited memory capacity.
So the training data are fed into the models and processed on the GPUs in small
batches, consisting of sub-images, also known as image chips, along with their
labels, that is the attribute about the objects contained within those chips and their
bounding box locations.

The team used the Export Training Data For Deep Learning tool in ArcGIS Pro
to export training samples in the PASCAL_VOC_rectangles (Pattern Analysis,
Statistical Modeling, and Computational Learning, Visual Object Classes) format.
This PASCAL VOC dataset is a standardized image dataset for object class
recognition. The label files are XML files and contain information about image
name, class value, and bounding boxes.

Count and size
) fish detected
Training Data.\‘
within

ArcGIS Pro

Drones and GeoAl for Environmental Monitoring

175



TRAINING THE CATFISH DETECTOR

In the next step, researchers used Jupyter Notebooks and the arcgis.learn module
in the ArcGIS API for Python to train the catfish detection model. The arcgis.learn
module (not to be confused with the teaching site ArcGIS Learn) is built on top
of fast.ai and PyTorch and enables the training of highly accurate models with a
few lines of code. The type of model trained here was the SingleShotDetector, so-
called because of its ability to find all objects in an image (chip) in one pass of the
convolutional neural network through the image. We customized the model by
having it use a ResNet101 backbone, as opposed to a standard ResNet34 backbone.
This convolutional neural network is more powerful, consisting of 101 layers that
allowed the team to train a more accurate model.

Additional scripting applied data augmentation techniques, such as randomly
zooming, rotating, and flipping the images, which enabled the training of a model
with limited data and thus better generalizing over unseen images.

Deep learning models must be initialized with a learning rate. Researchers must set
the value of this important hyperparameter before the learning process begins. The
learning rate determined how the researchers adjusted weights for their network
concerning loss gradient. The ArcGIS.learn module leverages fast.ai’s learning rate
finder to find an optimal learning rate for training models. They trained the model
over 300 epochs (or passes through the entire training dataset), using the suggested
learning rate. The trained model could then detect catfish fairly well, as seen in the
side-by-side visualized results.

Three_distinct tecﬁno/oqies—electroﬁshing, machine learning, and UAVs—
combine to turn chaotic video into quantifiable blue catfish population data.
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Visualizing results of catfish detector. The “ground” truth is shown on the left, and
the model's predictions on the right. In some cases, the model has detected catfish
that were inadvertently missed while labeling them.

DETECTING CATFISH

Researchers used the trained model to detect catfish in georeferenced video frames
using the Detect Objects Using Deep Learning tool in ArcGIS Pro. Python API
additionally can apply the trained model to a video and save the detected features as
Video Moving Target Indicator (VMTI) graphics in the multiplexed full-motion video
(FMV). This enabled the team to visualize the detected catfish in their geographical
Additionally, a CSV file containing the location and size of the detected catfish in
each frame of the video was created, enabling the performance of downstream
analysis tasks, such as estimating the catfish population and inferring their age and
growth statistics.

Time and resources

Once the drone video is multiplexed and brought into ArcGIS Pro, users can perform
many functions, such as measuring and adding points to a geodatabase. From this
video at 30 frames per second and a length of 8 minutes, a researcher would have
to examine 14,400 frames to count and measure individual fish. The GeoAl process
provides a method that gives results in a few hours compared to several people
spending potentially weeks on the same video. Now, the actual science process can
keep up with data acquisition as opposed to videos sitting in storage and not being
maximized.

Going back to the future

The population estimates for fisheries species are only as good as the data
that researchers and managers are able to produce. Researchers at Virginia
Commonwealth University have studied blue catfish populations and their impacts
on the Chesapeake Bay ecosystem for more than 30 years. The studies found declines
in native fish species and replacement by other species, bioaccumulation of heavy
metals in blue catfish, and other impacts, yet recreational and commercial fishing
thrives. The challenge has always been to produce an accurate estimate of the size
and age of catfish populations in order to provide baseline data on which to base
management decisions.

Drones now serve as a tool to supplement the current work of accurately detecting,
counting, and sizing of catfish. Using a combination of accurate hands-on work
with the latest technologies, researchers can use data developed from the GeoAl
process to determine the abundance and growth of blue catfish in the ecosystem.
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DIRECT DATA. WHY DOES IT MATTER TO STAKEHOLDERS?

Researchers

Academic and agency
biologists, ecologists, and
environmental managers

Information: basic biology and ecology; ;

invasive species biology; interactions
with native species; and restoration
potential of invasive species removal by
commercial harvest.

Recreational fisheries

Fishing guides; licensed recreational
fishers; ecotourism and non-consumptive
users; related economic interests

Information: avoiding user conflict
with commercial fishers; population
growth and size structure; effect of
fishing regulations; effect of invasive
species on native fishes.

Federal and state
government ggencies

Natural resource (fisheries) biologists,
managers, and planners

Information: Statistics on fishery effort; catch,
harvest, recruitment, and population growth;
ecological benefits from invasive species.

Seafood industry

Seafood processors, marketers, distributors

Information: potential demand; product
quality and sustainability; marketing as an
environmentally friendly product.

Non-governmental organizations

Environmental education and awareness,
citizen science, environmental advocacy

Information: effects of invasive predators
(e.g., blue and flathead catfish) and fishery
policies on Chesapeake Bay living resources.

Commercial fisheries

Commercial fishers, regulating agencies,
related economic interests

Information: blue catfish seasonal and geographic
distribution; relative abundance; gear efficiency
and bycatch; effect of regulations on profitability

and sustainability; effect of invasive species on
commercially important native fisheries.
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Blue catfish have been moved to other riverine systems because:
- They are fun to fish

+ Grow really big (50lb is not uncommon)

- Tasty (the small ones)
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PART 4
TECHNOLOGY SHOWCASE

This book has already shown how science goes hand in hand with technology (engineering). One of the
most exciting trends of the modern age is how science leverages the exponential power and assistance
of artificial intelligence (Al) to help address the unprecedented challenges facing humanity and the planet,
including climate change, water scarcity, global health crises, food security, and loss of biodiversity. GIS
technology is no different; it extends our minds by abstracting our world into knowledge objects that
we can create, replicate, and maintain. These knowledge objects include data, imagery, and models that
explain process and workflows, as well as maps that communicate and persist in apps. Enjoy this section
of vignettes on GIS technologies that help create new systematic frameworks for scientific understanding.

e

The world according to Spilhaus. Currents derived from maps.com
“Major Ocean Currents” source feature layer Living Atlas.
Basemap from NASA Visible earth bathymetry and natural earth land features.



THE SPILHAUS WORLD OCEAN MAP

~

The Spilhaus world ocean map in a square presents Earth's
oceans as a singular, uninterrupted body of water—which they
truly are. This unique, ocean-centric perspective of our world
was first published in November 1979 by Athelstan F. Spilhaus,
a South African-American geophysicist and oceanographer,

in collaboration with Robert Hanson and Erwin Schmid, two
geodesists of the former US Coast and Geodetic Survey.
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A MAP THAT DEPICTS THE OCEANS AS ONE CONTINUQUS BODY OF WATER

Bojan Savri& John Nelson, and David Burrows, Esri

To see the oceans, slice up the land

Most maps portray Earth's surface so that the edge of the map slices some features. Because maps commonly focus on the land and
its features, they often portray oceans on the edges and split them. For example, pseudocylindrical world maps centered on the
Greenwich Prime Meridian divide the Pacific Ocean into two parts, depicted along the left and right edges. Oceanographer Athelstan F.
Spilhaus wanted exactly the opposite, with all the oceans in the middle, sharing a global coastline. To accomplish his goal, projection
interruptions must occur over land. For the suitable edge, Spilhaus delineated half of a great circle starting in South China at 115°E and
30°N, ending in Argentina at 65°W and 30°S, and passing near the Bering Strait (which Spilhaus considered to be “so shallow and narrow
that it constitutes no real oceanic connection.”). These start and end points represent the “poles” projected into the diagonally opposite
corners of the projection square and absorbing much of the areal distortion. This edge also interrupts waters in the Sea of Okhotsk, the
Bohai Sea, the Gulf of Mexico, near the Gulf of Panama, and along the Peru-Chile Trench. Hence, these areas are repeated at the ocean’s
perimeter when they are crafted into the Spilhaus World Ocean Map.

An oblique aspect of the Adams Projection of the World in a Square Il

Spilhaus never published exact projection equations for his map, unfortunately. To implement it in GIS software, forward and inverse
equations are needed, not only for spherical Earth models, but also for ellipsoidal models, such as World Geodetic System (WGS) 1984.
Spilhaus created his World Ocean Map using an oblique aspect of the Adams Projection of the World in a Square II. Oscar S. Adams
introduced this projection in 1929, which has remarkable similarities to the Spilhaus map. Both are conformal and portray the world in
a square, and both greatly distort areas near the two diagonally opposite corners. Distortions in the other two corners are smaller. Just
like the Spilhaus map, the Adams projection can also be mosaicked into an infinitely continuous map of the world.

The Adams projection can be used to reverse-engineer Spilhaus’s exact configuration by setting the edge of the map near the Bering
Strait. Adams derived the equations for his projection first by conceptually shrinking the world into a hemisphere while maintaining
conformality. Then he applied elliptic functions previously used by Charles S. Peirce and Emile Guyou to project the curved surface
onto a plane. Adams presented the forward equations for spherical Earth models only (and also only in an equatorial orientation).
However, most of today’s geospatial data is defined based on ellipsoidal models, such as WGS 1984 or Geodetic Reference System (GRS)
1980. In modern GIS, one also needs the ability to convert projected data back to geographic coordinates, requiring inverse equations.
The forward and inverse equations for ellipsoidal Earth models can be achieved by converting geodetic coordinates to a conformal
sphere, conformally shrinking the model to a hemisphere, and resolving a complex elliptic integral of the first kind. Esri developed these
equations for the Adams Square II projection, available in the latest version of ArcGIS.

The Spilhaus projected coordinate system and the map

The Spilhaus World Ocean Map in a Square or “Spilhaus projection” is also available in the latest ArcGIS software as the WGS 1984
Spilhaus Ocean Map in Square projected coordinate system. Its well-known ID is 54099. The projection parameters are derived from the
edge of the map passing through the same three points used by Spilhaus, starting in South China, passing across the Bering Strait, and
ending in Argentina. The only difference is that the edge does not represent a great circle on a sphere but rather a carefully crafted curve
on the surface of the WGS 1984 ellipsoid passing exactly through all three points of the edge.

Creating a continuous world ocean map

The WGS 1984 Spilhaus Ocean Map in a Square projected coordinate system cannot repeat areas, so a single instance of the map will
appear to be clipped along the edge of the Gulf of Mexico and the Bering Strait. A visually pleasing layout without apparent clipped
edges can be crafted in ArcGIS in three steps. First, duplicate an already-styled map four times within a layout and position them at each
of the four edges of the center map. Second, rotate each of the four perimeter maps such that its coastal edge aligns with its neighbor.
The repeated portions of water along the edge provide a sense of continuity. Finally, and optionally, overlay a visual graphic to occlude
the overly redundant areas in the layout, or simply position the underlying layout to clip the perimeter maps to your preference. The
result is an uninterrupted world ocean map. Understanding its areal distortion, and therefore limitations for thematic mapping, the
unique perspective of the Spilhaus World Ocean Map in a Square justifies its use for important, highly visual messages about the largest
ecosystem of our planet.



Dashboard and map, coronavirus outbreak, March 9, 2020, by Johns Hopkins University, Center for Systems Science and Engineering.
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EXPLORING SPATIO-TEMPORAL PATTERNS

MAPPING HARMFUL RED TIDE DATA

Ankita Bakshi, Esri

When harmful red tides form off the coast of Florida, the state’s Fish and Wildlife
Research Institute (FWRI) is there to collect data and document the phenomenon.
A red tide, or harmful algal bloom (HAB), occurs when colonies of algae grow
in abnormally high concentrations and produce toxins that can harm marine
ecosystems and public health. In Florida and the Gulf of Mexico, the species that
causes most HAB events is Karenia brevis, which in high concentrations discolors
water a reddish-brown hue, hence the name red tide. By understanding the spatial
and temporal dimensions of the red tide observations, the FWRI can implement
targeted monitoring research strategies to reduce the cost and improve the
efficiency of sampling efforts.

Understanding red tide data spatially

Identifying areas of high values (hot spots) and low values (cold spots) using the
ArcGIS Hot Spot Analysis® tool is one of the most common ways to start exploring
and analyzing data spatially. Using the Getis-Ord Gi* statistic can identify
statistically significant clusters of high and low red tide observations. Applied to the
FWRI red tide data, this technique found a statistically stronger presence of HAB
along the southwestern Florida coast extending all the way to the embayment area
in the northwest.

Visualizing the red tide data temporally

The duration of algal blooms varies based on physical and climatic conditions. We
can leverage the data clock temporal chart to understand these patterns and the
data in time. A data clock visually summarizes temporal data into 2D and reveals
seasonal or cyclical patterns and trends over time. The temporal distribution of red
tide in this chart reveals a higher frequency of red tide observations in the months
of fall. The blooms mostly occur from September to November. In some years, the
bloom’s stay was short-lived, but in most years the red tide continued into the
winter months.

This data clock shows higher
frequencies of red tide observations
along Florida's coasts in September
and November.
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Mapping the red tide data in space and time

Powerful 2D and 3D visualization techniques and integrated trend analysis help
us visualize and analyze the presence of blooms simultaneously in space and time.
The Create Space Time Cube. By Aggregating Points tool in ArcGIS Pro summarizes
a set of points into a netCDF data structure that can be thought of as a 3D cube
made up of space-time bins. A common way to aggregate points spatially is to
aggregate them to a regularly shaped grid (either a fishnet or hexagon shape).

. om ia 7 i 1 ! J o = a

3D map (detail) of red tide observations over time along Florida’s western coast.

A space-time cube was created by annual aggregation of red tide observations to
hexagon bins with a spatial extent of 10 square kilometers. Any missing data, which
is common in monitoring and sampling data, were filled with the average value of
space-time neighbors. The map shows a 3D visualization of the space-time cube in
which each bin represents the number of red tide observations in a year for each
location. ArcGIS Pro includes many display options, all with preset symbology
and range and time sliders that make the exploration of the space-time cube and
analysis results intuitive.

To quantify and understand the patterns in these thousands of stacked bins, we can
visualize the cube in 2D and calculate trend analysis. Trends analysis in the Visualize
Space Time Cube In 2D tool shows where the red tide observations have increased
or decreased over time using the Mann-Kendall statistic. The dark-green locations
show a downward trend in the observations. The locations in dark purple have an
upward trend of red tide observations with 99 percent statistical confidence. The
results are consistent with the spatial analysis using the Hot Spot Analysis tool. The
areas in southwestern Florida near Tampa Bay mostly show an upward trend. The
embayment areas behind the barrier islands such as the Apalachicola Bay and St.
George Sound, where the tributaries drain nutrient-rich water, also show an upward
trend.

Using visualizations and analysis in space, time, and space-time helps us better
understand the patterns of red tide in Florida's coastal waters. These visualizations
are just a subset of many methods you can use to explore and analyze space-time
data in ArcGIS Pro.
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MODELING RELATIONSHIPS 2

USING LINK ANALYSIS

EBOLA OUTBREAK, SIERRA LEONE 2014-2015 :

Linda Beale, Esri

Link analysis played a strong role in tracking the person-to-person transmission of
the Ebola virus in Sierra Leone in 2014-2015. Link analysis uses graph theory for
evaluating connections or relationships between nodes, where nodes can represent
people, places, objects, and events. You can visualize the results of link analysis
using an association matrix, or more typically, a link chart to evaluate the patterns
of interest. Geographically, flow maps are used to show the movement of objects
from one location to another.

Link analysis

Several different measures of topological centrality are possible with link analysis,
each of which seeks to answer a slightly different question. The degree of nodes
shows the measure of centrality, and normalized centrality measures adjust for
network size.

Degree centrality allows you to see what is flowing through the network and identify
the most influential nodes. The important nodes are identified as those having the
most connections. Degree centrality can have directionality so that nodes with
higher out-degree values are more central, or nodes with higher in-degree are more
important. Degree centrality is a local measure that considers a node’s importance
within its locality, but not any indirect relationships.

Betweenness centrality measures the extent to which a node lies on paths between
other nodes. Nodes with high betweenness are likely to have an important influence
within a network by virtue of their control over information passing between other
nodes. Removal of nodes with high betweenness from the network will have the
greatest disruption on communications or flow across that network as they lie on
the largest number of paths.

Closeness centrality is based on the average of the shortest network path distance
between nodes and identifies nodes as being more central if they are closer to most
of the nodes in the network. Closeness centrality is used to determine which nodes
are most closely associated to the other nodes in the network.

Eigenvector centrality depends on the number of neighbors and the quality of its
connections, with the most central nodes being important nodes that are connected
to other important nodes. Eigenvector centrality is of value to determine the nodes
that are part of a cluster of influence.

Link analysis together with spatial data analysis offer enormous value for
epidemiological analysis of distributions, patterns, and determinants of health
and disease conditions within populations. Understanding the development
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The measure of centrality allows the isolation or
accessibility to be measured. If a link directly connects 8
two nodes, these nodes can be evaluated as transmission

events from individual to individual or place to place. These

relationships indicate potential transmission pathways for

infections between individuals or through populations. @

Interactions between micro-organisms such as bacteria and
viruses cause infectious diseases. Zoonotic diseases are infectious
diseases of animals that can cause disease when transmitted to humans.

A transmission network can be created using individual data of infected people
linked to those from whom they caught the infection and to any others they
infected. This network will show all the links through which infection spread

in the outbreak; however, it will not show interactions that led to infection
transmission. Because nodes represent places at a population level, the nodes
represent locations of high connectivity of infected cases, which together with
population data can help define those areas where population interactions were
highest.

West Africa, Ebola outbreak 2014-2015

Data from the World Health Organization shows Ebola cases in Sierra Leone
from the 2014-15 Ebola outbreak in West Africa. Ebola, a zoonotic disease,
spreads in the human population through human-to-human transmission.
Home, infection, and death locations for known cases show the geographic
spread, with the node sizes showing the degree centrality value of those locations.

Research shows that during the 2014-2015 West Africa outbreak, the majority of @
transmission events occurred between family members. The link chart shows the

relationships to known contacts with people diagnosed with Ebola. Understanding

traditional practices and Ebola transmissions pathways ultimately led to changes in @
behaviors related to mourning and the adoption of safe burial practices.



- SMART MAPPING AND ARCADE

TRANSFORM YOUR THEMATIC THINKING

Mark Harrower and Jim Herries, Esri

ArcGIS® Arcade is a simple scripting language for data in your maps. Arcade frees
you to explore anyone's published data, no download required, saving valuable
hours of time. The expressions created in Arcade run on the fly, meaning you do
not have to own the layer to calculate what you need for your map style, pop-up, or
label.

Smart mapping is built into ArcGIS Online as a simple workflow for exploring your
data, trying various styles of maps that might suit your data, and polishing the map's
final appearance. Smart mapping takes the guesswork out of making great thematic
maps by using data-driven styling and intelligent defaults. But how do these two
capabilities in ArcGIS change how you understand and map your data?

Arcade lets you explore and even extend the data without having to own it on a
hard drive. Working with the data, you begin to see what you need for your map's
symbols, pop-ups, and labels.

Arcade expressions can be as simple as calculating a percentage, or converting a
year from a string to a number. Other expressions use if-then logic to look at several
attribute fields in each record and return an evaluation of that record’s data. Many
of the map styles available in smart mapping are rooted in Arcade expressions that
find relationships and patterns hidden among the columns of attribute data.

Crafting good maps traditionally requires authors to make dozens of inter-related
decisions: what renderers, scales, basemaps, and colors to use; how many labels to
use; how to classify the data; and whether the map needs boundaries, and if so, how
to draw them.

Smart mapping taps into that desire for an easier but also useful pathway. Once
you choose one or more attributes or Arcade expressions to map, smart mapping
examines the types of attributes you chose (text, numbers, date) and suggests map
styles for you to use. It doesn't force you to use these settings. You can override the
settings as needed.

Iteration and exploration are founding principles of geographic visualization. Why?
Because data are complex and no single depiction of the data can answer every
question. Sometimes we start a project thinking we know what kind of map or
treatment we need, only to find, after some exploration, there are more productive
avenues to explore. Using Arcade makes it easier to uncover new patterns and share
hidden insights within your data.
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In Eagle River Union Airport, a
decrease of -6 degrees (F) is expected
in the next 24 hours at station KEGV.

Accuweather information as of 3/2/2020, 8:57
AM

After settling on a map style, you then bring your expertise or research into play.
The best maps use some kind of standard of comparison to communicate what's
"normal” and what's not. You change the default colors and sizes to emphasize
what's important and de-emphasize what is less important—just as a roadmap
clearly distinguishes major highways from residential streets and filters out dirt
roads altogether.

Zoomto Get Directions

Let's consider some real examples. Say you are a climate scientist and want to
compare average air temperatures for two different years for a bunch of cities.
You could make one map for each year and scan back and forth to try and spot
differences. But Arcade allows you to calculate the difference in temperature
between two years—on the fly—and makes it easy to see which cities are getting
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The 2018 Woolsey Fire burned in Los Angeles and Ventura Counties, California. Responders used deep learning with
GIS to quickly perform feature extraction from imagery to identify damaged and undamaged buildings. This analysis
enabled first responders to find damaged and destroyed structures and deploy the appropriate help and resources.

2018 Woolsey Fire

Fire perimeter

Damaged building
B Undamaged building
Imagery by DataWing Global.
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Ling Tang and Simon Woo, Esri

Wildfires can spread quickly and destroy thousands of acres of land. In California,
where many urban areas infringe on shrublands, these fires often threaten homes and
and lives. The 2018 Woolsey Fire—a notably fierce and fast-moving blaze—killed three
people, destroyed more than 1,600 structures, forced nearly 300,000 residents from
their homes, and burned in total nearly 100,000 acres.

During a disaster, time is essential for response and recovery efforts. Slow response
times can result from the lack of timely data and manual interpretation of this data. In
these situations, first responders must quickly and accurately identify urban structures
fires have destroyed or otherwise spared. This information is vital to first responders,
government agencies, and insurance adjusters. The use of drone imagery and Esri’s
deep learning tools efficiently processes and analyzes imagery for timely decision
support.

As firefighters extinguished flames, drones flew over the burned areas to assess
damage. DataWing Global, an aerial data services company and Esri partner, captured
40 gigabytes of on-demand, high-resolution imagery over the Woolsey area. To manage
this vast amount of data, a mosaic dataset was created, which allowed responders to
display, analyze, and share a collection of images.

Once the data is managed within a mosaic dataset, users can perform deep learning
analysis. Deep learning is a subset of machine learning, in which learning is based
on an algorithm known as an artificial neural network. Artificial neural networks
are computing systems that recognize and learn patterns. Training and deploying a
deep learning model involves three steps: creating training samples, training the deep
learning model, and running the model inference, which yields a classified map of
features.

First, training samples must be created to categorize the damaged and undamaged
structures. Building footprints from the Los Angeles County GIS Data Portal were
draped over the orthorectified, high-resolution drone imagery, and a new “ClassValue”
field was added to the building footprint feature class. Firefighters used this field to
identify label buildings as ‘damaged” or "undamaged.” These categorized features
were exported using the Export Training Data For Deep Learning tool in ArcGIS® Pro.
Training a deep learning model in ArcGIS Pro requires users to set up the Python
environment with the necessary deep learning libraries, including PyTorch, Fastai, and
library dependencies.

The Train Deep Learning Model tool in ArcGIS Pro used the labeled training samples
to train a building damage classification model. The model type is preconfigured
as “Feature Classifier” based on the metadata format of the training samples. This
geoprocessing tool calls the third-party deep learning application programming
interfaces (APIs)—like PyTorch or Fastai—to perform the model training tasks. This
tool provides optimal model training parameters for training the damage classification
model. The model was trained using a ResNet architecture to classify all buildings in
the imagery as either damaged or undamaged. During the model training process,
messages regarding training loss, validation loss, and accuracy are generated after
each training step. This process allows users to monitor the training progress.

IMAGERY FEATURE EXTRACTION TO IDENTIFY DAMAGED STRUCTURES

Once the training was complete, the manually assigned ground-truth labels were
compared to the model classification results to assess model performance. The results
show that the accuracy rate of identifying damaged and undamaged structures was
more than 99 percent. The saved model includes the model binary file and the Esri
model definition (.emd) file, which can be used to perform model inference in ArcGIS
Pro. A zipped deep learning model package (DLPK) file can be shared on the ArcGIS
Portal and deployed in ArcGIS Enterprise. Raster analytics (RA) tools can use a DLPK,
an item type on Portal for ArcGIS. A DLPK is a compressed file, portable, and easy to
use and share.

The Classify Objects Using Deep Learning tool in ArcGIS Pro was used to perform
model inference and classify the buildings. Both post-disaster imagery and the
building footprint feature class were used as inputs. The result is an updated feature
class of the building footprints, with a new ClassLabel field to assign each building as
either damaged or undamaged. By running inferencing inside ArcGIS Enterprise using
the model and classify objects function in ArcGIS API for Python arcgis.learn module,
inferencing can be scaled for large projects by leveraging the RA capability on ArcGIS
Image Server.

More than 9,000 buildings were automatically classified. Of those, more than 1,300
buildings were deemed as damaged or destroyed by the fire. The resulting map shows
the damaged buildings as red and the undamaged buildings as green. With a 99 percent
accuracy rate, the deep learning model is as accurate as a trained adjuster and much
faster. What usually takes a week was performed in a few hours.

Using the ArcGIS Infographics Add-In, first responders combined analysis with
demographic data to further identify at-risk populations, such as children and the
elderly. The Infographics report can be generated to quickly provide statistics and other
information to assess the magnitude of the situation and help deploy the proper help.

2018 Woolsey Fire
Property damage and demographics

48,524 17,828 263 47 229, 63% 17% 43.8

Incame.

Fousing: Yaar Buill
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This report was created with the ArcGIS Infographics Add-In.
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Annual SST change over time
(1981-2019)
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Sea-surface temperature trend raster map (1981-2019).

ANALYZING TIME-SERIES DATA

Hong Xu, Esri

More than 70 percent of Earth’s surface is ocean, so sea-surface temperature play a
major role in regulating Earth’s climate system and serves as an important indicator
of climate change. The ocean absorbs vast quantities of heat from greenhouse gas
emissions, leading to rising ocean temperatures and changing ocean circulation
patterns that transport warm and cold water around the globe. The National Oceanic
and Atmospheric Administration (NOAA) reports that the average global sea-surface
temperature has increased by approximately 0.13 degrees Celsius (32.23 degrees
Fahrenheit) per decade during the past 100 years. Increasing sea-surface temperatures
will substantially affect climate, marine species, and ecosystems. Researchers
predict that rising temperatures are already contributing to species extinctions and
extirpations, rising seas, and flooded ecosystems, for example.

Modern remote sensing technology and high-resolution time-series data help scientists
study changing sea-surface temperatures. They use geographic information systems
(GIS) and statistical regression methods to better understand spatial variations in sea
temperature change over time.

194 GIS for Science

The method of modeling annual and seasonal trends

Many Earth science variables exhibit periodicity. For example, temperatures are high
in summer and low in winter each year. You can use a linear regression to model
the general trends of recurring phenomenon, but linear regression is not suitable to
describe the seasonality of the variables. Scientists use a method called harmonic
regression, which tends to exhibit periodic rhythms, to model annual long-term trends
and seasonal changes over time.

The Generate Trend Raster tool in ArcGIS® integrates statistical regression methods
into the multidimensional raster data model. The multidimensional raster contains
multiple rasters along representing data at different time (or other dimensions). The
tool computes a regression model using the harmonic algorithm for each pixel array
along time and output a trend raster that contains the regression models of each time
series. The regression model coefficients and the statistical terms such as root mean
square error (RMSE), p-value, and R-squared are stored as bands in the output trend
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raster which can be used to visualize seasonal trend, map the annual trend, evaluate
model performance, and predict future data. The Generate Trend Raster tool and
Predict Using Trend Raster tool built based on harmonic regression will be used in
analyzing sea-surface temperature.

Data preparation

The data used in this analysis are from NOAASs daily SST data (1981-2019) with a
spatial resolution of 0.25 x 0.25 degrees. The data consist of 39 Network Common Data
Form (NetCDF) files (one file per year) and represent 13,931 images. First, a mosaic
dataset is created from the NetCDF files. Next, the mosaic dataset is converted to a
multidimensional cloud raster format (CRF), which stores multidimensional rasters
for optimal time-series image analysis and multidimensional raster computing. Next,
daily SST data was aggregated into monthly SST data by averaging the pixel values of
each month. Finally, analysts built a transpose for the multidimensional CRF to speed
up the across-time dimension computing.

The sea-surface temperature trend map

The team created a trend raster using the Generate Trend Raster tool. In the output
trend raster, the band named Slope is used to map the long-term trend as shown,
where positive (purple) indicates sea-surface temperature increases annually with
time while negative value indicates a decrease (green).

The trend map shows that the sea-surface temperature changes dynamically in
the different parts of the ocean. While most of the domain exhibits an increase
trend, the increase varies spatially. The darker purple indicates a greater increase
rate. For example, some regions of the North Atlantic show greater increases
than in the North Pacific. The long-term annual trend at a location of the North
Atlantic Ocean has a slope of 0.00008, and the seasonal trend at that location
is also clearly modeled by the harmonic regression. The ocean in the Southern
Hemisphere also shows temperature increase in general except the decrease trend
in the East Pacific Ocean off the coast of South America, where the occurrences
of El Nifio and La Nifia cause the temperature to change dramatically and cause
a negative slope in the harmonic model. Analysis of the model’s accuracy using
the R-squared band of the trend raster shows that this regression model fits well
overall except in some areas close to the equator or polar regions, where sea-
surface temperature does not have obvious seasonal effect.

Finally, a layer was generated from the R-squared band using raster function to
select and mask out pixels with less model accuracy (R-squared < 0.6). The Predict
tool was used to generate a predicted SST of the next 30 years from the trend
raster. Calculated from the predicted SST, the average SST will increase from 31.57
in 2019 to 32.01 by 2050.

Data source: NOAA/OAR/ESRL PSD, www.esrl.noaa.gov/psd.



SPACE-TIME PATTERN MINING

EMERGING HOT SPOT ANALYSIS OF POLLUTION DATA

Lynne Buie, Esri

From massive wildfires that darken the skies over a
continent to volcanic eruptions that leave big cities
coatedin ash, weregularlyhear about—and sometimes
experience—major pollution events. However, it’s
not always easy to evaluate whether the pollution
from these events is actually worse than anywhere
else. The news media may over-report the news in a
particular region and largely ignore what happens in
another. Or a singular event may leave the impression
that an area is heavily polluted when in reality, it may
have clean air most of the time. What we do know is
that pollution is harmful to human health. Pollution
often contains microscopic particulate matter PM2.5,
inhalable particles 2.5 micrometers or smaller in size,
or about 30 times smaller than the width of a strand of
human hair. Elevated levels of PM2.5 have been linked
with increased infant mortality, and cardiovascular
and pulmonary diseases such as asthma, lung fibrosis,
and hardening of the arteries. Aside from the human
costs, these and other pollution impacts from PM2.5
have an estimated financial impact of $225 billion per
year globally in lost labor.

To get a clearer picture of pollution events, we can
use data from Earth observation satellites to measure
atmospheric and surface phenomena. One of those
measurements is called aerosol optical depth (AOD),
where the absorption or scattering of light in the
atmosphere serves as a proxy for the presence and
quantity of PM2.5. Van Donnkelaar et al. (2018)
collected theannual AOD from three Earth observation
satellites from 1998 to 2016. The researchers combined
and refined the data using a chemical transport model
and geographically weighted regression (GWR) with
ground-based PM2.5 observations.

The global time series of annual PM2.5 pollution data
across 19 years is a perfect candidate for space-time
pattern mining using ArcGIS® Pro, which applies
rigorous statistical tests to space and time data to
find statistically significant patterns. The basis of
the space-time pattern mining analysis is the space-
time cube data structure—a method of representing
temporal data as a multidimensional array appropriate
for analysis.

With the PM2.5 pollution data in a space-time cube,
researchers can apply the space-time pattern mining

technique called emerging hot spot analysis. This
analysis allows researchers to objectively assess
areas of high and low pollution by finding hot and
cold spots in the global pollution data. A hot (or
cold) spot is an area with high (or low) values
of pollution and surrounded by other areas of
high (or low) values. Researchers assess each
location in each time slice independently
using the Getis-Ord Gi* statistic to
determine whether the time slices are
statistically significant hot or cold spots.
To incorporate the temporal component,
researchers then apply the Mann-
Kendall trend test to each location to

assess the trend of hot or cold spots.

This test results in nine different types

of hot and cold spots, depending on the

pattern of each location through time.

The results of applying emerging hot spot
analysis show that when compared to
the rest of the world, much of Southeast
Asia and Sub-saharan Africa are hot spots
of pollution (shown in shades of red). Cold
spots (shown in blue) are found in North
Africa, Australia, some coastal parts of South
America, and many of the most northern
latitudes. The map legend shows the nine
different types of hot and cold spots. Persistent
hot spots, seen for much of Asia and Africa, have
been a statistically significant hotspot for 90 percent
of the time-step intervals, with no discernible trend
indicating an increase or decrease in the intensity of
clustering over time. New hot spots, seen in limited
areas of Asia, Africa, and South America, are locations
that have statistically significant hot spots for the
final year in 2016 and have never been a statistically
significant hot spot before.

Sporadic cold spots, seen in large areas of Alaska
and northeastern Russia but also in small quantities
worldwide, are locations that are on-again, off-
again cold spots. Diminishing cold spots, again seen
worldwide but particularly in South America and
Australia, are locations that have been a statistically
significant cold spot for 90 percent of the time-step
intervals, including the final year.In addition, the
intensity of clustering of low counts in each time step
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is decreasing overall, and that decrease is statistically
significant for diminishing cold spots. These four types
of hot and cold spots, and all the others seen in the
legend, help us understand differences in the global
pollution patterns through time. Applying emerging
hot spot analysis is an effective way to objectively
understand space-time patterns in scientific data.

Using this analysis, we can better understand whether regions that experience extreme pollution events, such as the wildfires that
raged across Australia starting in late 2019, have worse pollution than regions that may receive less attention and analysis for one
reason or another.

Reference: van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR
and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, New York: NASA.; Data sources: NASA Socioeconomic Data and Applications, Center Global Annual PM2.5
Grids from MODIS, MISR, and SeaWiFS Aerosol Optical Depth (AOD) with GWR, v1 (1998-2016).



TIME IN SPATIAL SCIENTIFIC WORKFLOWS

Time-series clusters
show counties with similar
patterns of population growth or
decline from 1969 to 2018. Three distinct
patterns emerge. The areas shown in red
include the Great Plains and Mississippi Delta, where
declining populations result partly from the transition from small,
family-based farms to large, mechanized agrobusiness. These areas also
include parts of Appalachia, where the decline of the coal industry and low
birth rates contribute to net migration loss. The areas shown in green include a
majority of counties where population has steadily increased. In the areas shown in
beige, the population has remained stable throughout the period. A small number
of counties shown in gray either had significant changes in their boundaries or were
missing data and thus excluded from the analysis.

TIME-SERIES CLUSTERING OF POPULATION
GROWTH AND DECLINE

Kevin Butler, Esri

Highly dynamic Earth changes on temporal scales range from minutes in the case of earthquakes to decades in the
case of deforestation. To fully understand our planet, scientists must discern patterns across space—a powerful
capability of GIS—and across time. Modern geographical information systems increasingly integrate new methods
and techniques for analyzing temporal data. One important aspect of analyzing temporal data is detecting and
quantifying patterns. Do different locations have similar patterns of an observed or modeled variable across time?
One method for exploring patterns across time is time-series clustering.

Time-series clustering

Time-series clustering partitions a collection of time series based on the similarity of time-series characteristics. In
the context of GIS, the collection of time series comes from individual time series at different locations in space. Time
series can be clustered so they have similar values in time or similar behaviors or profiles across time (increase or
decrease at the same points in time). The ArcGIS® Time Series Clustering tool identifies locations that are most similar
and partitions them into distinct clusters, where members of each cluster have similar time-series characteristics.

The goal of clustering is to partition the locations into groups where the time series within each group are more
similar to each other than they are to the time series outside the group. However, time series are composed of many
numbers or values across time, so it is not completely clear what it means for two time series to be similar. For
individual numbers, a useful measure of similarity is the absolute difference in their value. For example, the difference
between 10 and 13 is 3. You can say that 10 is more similar to 13 than it is to 17 because the absolute difference in
their values is smaller. For time series, however, the similarity is less obvious. For example, is the time series (5, 8, 11,
7,6) more similar to (4,9, 13,4, 9) than it is to (5, 11, 6, 7, 6)? To answer this question, you must measure how similar
or different two time series are. Each of the several ways to measure similarity depends on which characteristics of
the time series you consider important. You can cluster time series based on the raw values of the time series, the
correlation between time series, or the shapes of cyclical patterns in the time series.

Increasing similarity

When you cluster based on raw values, the similarity between time series is quantified by the sum of the squared
differences in value across time (Euclidean distance in data-space). When you cluster based on correlation, time
series are considered similar if they tend to stay in consistent proportion with each other and increase and decrease
in value at the same time. To cluster time series that have similar smooth, periodic patterns in their values across
time, the time series are decomposed into basis functions from the Fourier family and are represented by oscillating
sine and cosine functions with varying periods; these periods are sometimes called cycles or seasons. Time series
are considered similar if the periods of their dominant basis functions are similar. All three methods return a single
number that measures the difference between two time series. This difference is calculated for every pair of locations
in the study area and is summarized as a dissimilarity matrix. This matrix is then clustered using the k-medoids
algorithm. This algorithm finds clusters within the matrix in which members of the clusters are more similar than
members of other clusters. This algorithm is random in nature, and it works by choosing random locations to serve
as representatives of each cluster. These representatives are called medoids, which are analogous to the median of a
univariate dataset. Initial clusters are created by assigning every other location to the cluster whose medoid is most
similar. The algorithm then swaps medoids within each cluster and reevaluates the similarity within the new clusters.
If the new clusters are more similar than the initial clusters, the medoids are swapped, and the process repeats until
there are no swaps that will increase the similarity of the clusters.
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DATAIN THE CLOUD

MODELING GLOBAL SOIL MOISTURE

Kevin Butler, Esri

The practice of science has changed. Scientists increasingly acquire data instead of just
directly measuring or observing the data. While independent field observations continue
to be important, the familiar leather-bound field notebook has given way to massive central
repositories of scientific data often remotely sensed by satellites, automated cameras,
autonomous buoys, and drones. The availability of these massive repositories has impacted
the spatial scale at which scientists work. These changes in the practice of science are
particularly noticeable in the domains of the atmospheric, ocean, and solid earth sciences.

0PeNDAP and THREDDS

Open-source Project for a Network Data Access Protocol (OPeNDAP) makes data stored
on a remote server accessible to you locally, in the format you need, regardless of its
format on the remote server. Many authoritative data providers, such as The National
Oceanic and Atmospheric Administration (NOAA) and NASA, provide their data product
through OPeNDAP data servers. A key value of the OPeNDAP approach is its ability to pull
data subsets from the server to get only the data that is relevant to you. ArcGIS® provides
support for OPeNDAP through the Make OPeNDAP Raster Layer tool.

The University Corporation for Atmospheric Research (UCAR) has created and freely
distributes a web server specifically designed for the dissemination of scientific data. The
Thematic Realtime Environmental Distributed Data Services (THREDDS) Data Server
(TDS) is a web server that provides metadata, web-based catalogs of data and data access
protocols for scientific datasets. In addition to OPeNDAP, THREDDS can deliver data as
OGC WMS and WCS services, HTTP, and other remote data access protocols.

Storing data in NetCDF

Conceptually, Network Common Data Form (NetCDF) stores the data as multidimensional
arrays. Intuitive arrays of data enable efficient access to data along different dimensions.
For example, using the same dataset, you may want to draw a 2D map of temperature at a
particular altitude and time or create a line graph of temperature values through time at a
single location for a specific altitude. In the netCDF file, the data would be represented as
a 4D array: temperature (x, y, altitude, time).

The Open Geospatial Consortium (OGC) has adopted NetCDF as a core encoding standard.
You can store any type of spatial data in a netCDF file, including atmospheric and oceanic
sciences data. The netCDF has the major benefit of containing metadata information and
a standard way to describe what each variable represents, its measurement units, and the
spatial and temporal properties of the data.

ArcGIS Pro provides a set of tools to represent observations and models as data tables,
points, raster fields, or multidimensional raster layers. These tools read netCDF files and
format their contents into the corresponding GIS structures, including animations and
time-series analysis.

This map shows the long-term monthly mean soil
moisture for January. The data used to model this
phenomenon is from NOAAs OPeNDAP server. Soil
moisture estimates play an important role in long-range
temperature forecasts and hydrological studies.

Mean soil moisture for January
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Charmel Menzel and Lain Graham, Esri; and Timothy L. Hawthorne, PhD, University of Central Florida

Do you need to capture high-quality, time-sensitive data? Every researcher we
know would say, "Of course!" To meet the data and analysis needs required for
research, scientists are harnessing the power of drone technology and everyday
citizen scientists. In this case, researchers and citizen scientists collected drone
imagery using ArcGIS Drone2Map°, to convert drone data into images while in the
field, together with Site Scan, 3DR’s unmanned aerial systems flight planning and
processing software. Collaborative geospatial technologies allow people who don't
own drones to participate in the project, share their time and local knowledge, and
support the research.

Ateam from Citizen Science GIS, aninternational research organization at University
of Central Florida, has worked with citizens in Belize to support data collection and
use in various communities. The team uses spatial thinking, interdisciplinary and
community-based approaches, Esri products, and drone technologies® to 1) make
science more accessible and 2) ensure that society not only informs science and also
benefits from scientific discoveries.

Drone imagery collection

The use of drones has made remote sensing available as a personal technology.
Esri technology allows users to collect, process, analyze, and share drone imagery.
Drone imagery provides current, high-resolution basemaps and can support change
detection, feature identification, classification, and analysis. Since 2016, the Citizen
Science GIS team and community partners have captured drone imagery of Hopkins
Village annually, extending the flight plans each year to collect data in areas of local
interest.

As more people undertake training and get certified as drone pilots, the quality of
the data is increasingly reliable. In-field processing tools within ArcGIS Drone2Map
ensure quality data capture, including verification that the area coverage and desired
accuracy have been achieved. The last thing a project leader wants is to return to
the office from the field hundreds or thousands of miles away and learn that the
data is not adequate. In this case, while in Belize, a 2D orthomosaic was created
from the drone images and shared with citizens. Community members provided
valuable feedback during the review process, suggesting that the drone imagery
collection add additional areas outside the original flight plan, which are important
for context and the village’s ecosystem. After reviewing the high-resolution drone
imagery, participants recommended additional analysis that previously had not
been considered.

Citizen scientist participation

Now that drone imagery has been captured, how does the community use the data?
Hopkins Village answered this question easily now that it had the data: address
flooding concerns. Hopkins Village residents answered this question easily using
accurate digital data to supplement community perception data in addressing
known flooding concerns. Storm surge, sea-level rise, and development contribute
to the flood risk that threatens Hopkins Village, which is located between the
Caribbean Sea on the east and a lagoon on the west. So the community needed to
better understand its flooding risk and vulnerability with additional data based on
the drone-imagery. Prior to drone-imagery data collection, the village did not have a
current and reliable GIS dataset of the coastal area, community structures, and road
networks. The drone imagery provided a base to create feature datasets. Citizen
scientists and students received training to capture data about each structure
digitized from the accurate drone imagery, including building material, roof type, use
of structure, number of floors, and elevation. They used structure data to calculate
vulnerability for each building as described in the journal article, “Integrating sketch
mapping and hot spots analysis to enhance capacity for community-level flood and
disaster risk management” and depicted here.

The involvement of community members helped them better understand the data
and use the information to support decision making. In the spirit of open science,
the public, community leaders, and researchers can access the open data portal,
which includes drone imagery and basic data about culverts and drainage, flooding,
and street networks hosted on ArcGIS Online. These datasets differ from most of the
larger proprietary or government-controlled datasets in that the local community
helped create them. The annual collection of drone imagery resulted in more
efficient citizen-led projects such as coastal debris cleanup. Additional research
projects include analyzing coastal change over time. The primary advantage of
community-based research is that citizen scientists have an invested interest in
the future viability of their communities. Once they analyze the collected data and
the public sees the results, volunteers are more likely to continue providing useful
location-based temporal data, working together to improve the success of scientific
and community-based endeavors.

Funded by National Science Foundation Grant #1560015.

References: Brandt, K., Graham, L., Hawthorne, T., Jeanty, J., Burkholder, B.,

Munisteri, C., & Visaggi, C. “Integrating sketch mapping and hot spot analysis to
enhance capacity for community-level flood and disaster risk management.” The
Geographical Journal, 10, 2019.
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§ STEPPING UP WITH VOXELS

MODELING SOILS BENEATH THE NETHERLANDS IN 3D

Chris Andrews, Esri

Geologists, geophysicists, petroleum explorers, and mining experts have known
something for years that we have more recently acknowledged in the GIS world.
To understand the real world at high accuracy, you must experience and explore it
in 3D. Our oceans, atmosphere, and the planet underneath us are rich with diverse
volumetric data such as rock or soil types, chemical composition, pollutants,
noise, aquifers, and even the distribution of life. Oceanographers, climatologists,
and geologists collected data using remote sensing techniques that enabled
reconstruction of complex 3D models of real-world systems. Historically, these
datasets have often been limited to the purview of scientists or highly technical
professions with specialist software tooling to allow them to explore these data.

With the explosion of interest in and capability for 3D in GIS, users have asked for
better capability to view volumetric data in their everyday GIS tools. Our users know
that access to volumetric data about the world around them can provide higher-
accuracy analysis and better understanding of conditions that they can't physically
experience. Access to 3D data in a GIS allows users to easily communicate with

non-specialist stakeholders and even enables new types of analyses and workflows
that they cannot with traditional 2D GIS. Using 3D in GIS eliminates the need to
use complicated recipes and multiple tools to migrate data from the geophysical,
marine, or atmospheric world in GIS experiences or to be used with other GIS
content.

Many of the data sources and collection techniques for volumetric data are discrete
or discontinuous, resulting in data that may be sparsely distributed throughout a
physical space. Techniques exist for filling in, or interpolating, gaps in the volume
to enable scientists and engineers to infer the characteristics of any 3D point within
the volume. ArcGIS® includes a geoprocessing tool for one such technique, called
3D empirical Bayesian kriging.

In 2D, a cell in a grid of raster data is referred to as a pixel. In 3D, we can group
interpolated regions into a 3D raster grid. We refer to the cells in this grid as
volumetric elements, or voxels. Voxelization techniques can generate extremely large
datasets that are difficult or impossible to view in traditional GIS applications.
Academic institutions, petroleum exploration companies, and scientific
organizations typically use highly specialized software and hardware systems to
view massive voxel datasets. Groups with casual interest in the content, and even
less-specialized stakeholders in the same company or organization, often cannot
use these expert applications.

ArcGIS can consume volumetric content derived from scientific analysis and remote
sensing technology and allow users to display that content alongside any other
GIS data. In the ArcGIS workflow, users can read specific types of georeferenced
volumetric information, and ArcGIS Pro will convert that data into a "voxel layer”
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that they can view in a standard ArcGIS Pro 3D scene. Voxels often have a pixelated
or step-like appearance, but users can symbolize them to appear as more analog
volumes or continuous gradients.

By consuming voxel data in a GIS, users can combine voxel layers with
other standard GIS data types for visualization, exploration, and analysis.
Innumerable examples illustrate the use of volumetric information. Engineers
and architects see the potential to have rich volumetric information for soils and
rocks in the subsurface under existing or proposed construction. Cities can use
volumetric information to examine subsurface information and above ground
conditions such as airflow, the effects of heat islands, noise propagation, and aerial
pollutants. Marine scientists work in an inherently 3D volumetric space and need
better visualization and analysis tools to explore ocean temperature and salinity,
freshwater mixing, and the propagation of life throughout the oceans. Even tiny
creatures such as plankton occupy massive volumes of water, and ocean currents
control their dispersion and aggregation, driven by convection, lunar gravity, and
other forces operating on a global scale.

Users should be aware that access to volumetric data can still be inconsistent. In
some cases, data simply haven't been collected or created. In other cases, such as in
competitive extractive industries, data may be proprietary or protected. However,
many government and academic agencies have started sharing volumetric data
that may become increasingly useful as more users consume them along with other
geospatial content.

NASA, for example, shares large amounts of atmospheric data from satellite
studies of Earth. The Dutch independent research organization, TNO (Netherlands
Organization for Applied Scientific Research), aggregates and shares massive
amounts of subsurface information for use by academia and industry throughout
the Netherlands. TNO has been instrumental in working with Esri to help push the
limits of what can be done in GIS software.

ArcGIS applications and data types are being used for more comprehensive
visualization, exploration, and analysis of 3D content of all types. ArcGIS can
combine point clouds, 3D building models, engineering data, and more traditional
GIS content. Volumetric data are becoming increasingly relevant in GIS-focused
industries. The engineering and construction market is demanding more accurate
context for future development to sustain human population growth and to protect
the environment. Scientific agencies require more accurate 3D maps of the oceans
and atmosphere to combat climate change. Mineral and energy companies use
GIS and 3D data to improve target exploration with less environmental impact.
Voxel data layers and interactive tools introduce more dynamic, immersive 3D
experiences for users to explore, interact with, and analyze the world around them.
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TNO, an independent Dutch research agency, shares massive 3D
datasets freely online. The data shown here represent TNO's GeoTOF a
detailed 3D model of the top 30 meters of soils beneath the surface of
the Netherlands. This scene was created with ArcGIS Pro. The data are
displayed aboveground at 50 times vertical exaggeration.
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“GIS has become THE foundational tool for all things “This is a geoscience book for the 21st century! Cutting

environmental-from conservation to climate change to edge research examples and gloriously illustrated
environmental justice. This astonishing book beautifully state of the art GIS-enabled techniques come together
displays GIS in all its scientific, artistic, and creative splendor.” to show us how to understand our planet in ways not

possible even a few years ago.”
—Peter Kareiva, Director, UCLA Institute of the
Environment and Sustainability —Margaret Leinen, Director of Scripps

Institution of Oceanography

Applying Mapping and Spatial Analytics

GIS for Science: Volume 2 brings to life a continuing collection of real-world examples of scientists using geographic information
systems (GIS) and spatial data science to expand our understand of the world. They are part of a global effort to find ways
to sustain a livable environment for all life on the planet. At Esri, we called The Science of Where, a concept that merges
our impulse to dream, discover, and understand with the rigor and discipline of the scientific method and the foundation of
geography. As such, GIS provides a framework for applying science to almost every human endeavor as we aspire to transform
the world through mapping analytics.

The stories in this book are written for professional scientists, the swelling ranks of citizen scientists, and anyone interested
in science and geography. The contributors represent a cross section of scientists who employ data gathered from satellites,
aircraft, ships, drones, and myriad other remote-sensing and on-site technologies. This data is brought to life with GIS and
the broader realm of spatial data science to study a range of issues relevant to our understanding of planet Earth and beyond.
Scientists are documenting an array of geographically oriented issues ranging from climate change, natural disasters, and the
loss of biodiversity to political strife, disease outbreaks, and resource shortages.

The examples in this collection show how ArcGIS® software and the ArcGIS Online® cloud-based system work as a comprehensive
geospatial platform to support research, collaboration, spatial analysis, and science communication across many settings and
communities. In these chapters, you'll learn about sustainable precision agriculture, predicting geological processes below the
surface of the earth, leveraging GIS near-realtime disaster response, recovery, resilience and reporting, the latest innovations
in monitoring air quality and much more. These stories, along with the supplementary resources online, present GIS ideas and
inspiration that users can apply across many disciplines, making this volume relevant to diverse scientific audiences.

Dawn J. Wright is a geographer, an oceanographer, and the chief scientist of Esri.
Christian Harder is an author and editor of books about GIS, including The ArcGIS Book and Understanding GIS.

See this book come alive at
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