A Look Under the Hood
How the JPL Tropical Cyclone Information System Uses Database Technologies to Present Big Data to Users

Brian Knosp, Michael Gangl, Svetla Hristova-Veleva, Richard Kim, Peggy Li, Joe Turk, and Quoc Vu

Jet Propulsion Laboratory, California Institute of Technology
The JPL Tropical Cyclone Information System

• The TCIS brings together different types of data related to hurricanes:
 – Satellite Observation Data
 – Airborne Campaign Observation Data
 – Model Forecast Data
 – Simulated Instrument Data from Model Forecasts

• Our goal is to collect data to give users a full picture of what happens before, during, and after a tropical cyclone
 – Ultimately, to aid in future model improvements
The TCIS supports different types of data portals:

1. Global data archive of storm-centric observations *for the creation of robust statistics*

2. Mission/Campaign specific interactive portals *for near real-time conditions and for post-campaign analyses*
Data File Retrieval & Database Ingestion

- Data is retrieved from data providers (e.g. a NASA DAAC) in hourly, daily, etc. intervals

- Data is subsetted and plotted to the geographical and temporal domains configured by the portal
 - Only the subsetted data and plots are stored (saves on storage)
 - Data does not have to be plotted on-the-fly (saves on user access time)

- Subsetted files and plots are ingested into the database and associated with each other
 - One plot matches with one data file
 - The MySQL database stores the metadata about the files

©2015 California Institute of Technology; Government Sponsorship Acknowledged
NRT Portal Database Configuration

- TCIS NRT portals rely on the `campaigns` MySQL database
- The front end queries the database for all the information required to build the portal and display the plots

©2015 California Institute of Technology; Government Sponsorship Acknowledged
Data Analysis Tools

• Some data products can be used for on-the-fly analyses

• The TCIS offers the following analysis tools:
 – Joint Probability Density Function (Joint PDF)
 – Wave Number Analysis
 – Automated Rotational Center Hurricane Eye Retrieval (ARCHER)
 – Data Cross-Section Slicer
 – Subsetting functions
Selecting Data for Analysis

Users select portions of the plots they see on their screens

-then-

The analysis tool queries the database for the data files that created the selected area, finds them, runs the analysis, and return results.
Swath Data Challenge

Some data arrives to us as one daily file

1 plot = 1 data file

Other data comes to us in multiple (swath) files throughout the day and are made into composite images

1 plot = X data files

©2015 California Institute of Technology; Government Sponsorship Acknowledged
Geospatial Search Implementation

- Decided to store swath footprints in the database to make them searchable
 - Goal was to have a system that is both **FAST** and **ACCURATE**

- Developed a custom Python script to extract footprints from satellite swaths, and ingested them into the database as polygon objects

- Created a table in MySQL with geospatial keys on the footprint field so that we could have an index of them

- We noticed some issues with query inaccuracies:
 - Python footprint extractor did not always include enough points
 - MySQL v5.5 used the Minimum Bounding Rectangle (MBR) method for searches

 Needed to update our database to improve query speed and accuracy
Database Benchmarking

- Decided to test the geospatial functions of four different DBMSes in the TCIS environment

- Worked with the NASA PO.DAAC team to integrate their L2 Footprint Generator tool to improve footprint accuracy
 - Uses WKT format
 - Easy to configure for different types of data
 - Easy to adjust number of points you need in the footprint

- Created a test data set of 2.1 million polygon object entries to run queries against in each DBMS

<table>
<thead>
<tr>
<th></th>
<th>Entries</th>
<th>Disk Space (GB)</th>
<th>Memory (GB)</th>
<th>Data Length (GB)</th>
<th>Index Length (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MySQL</td>
<td>2108505</td>
<td>1.40</td>
<td>0.00</td>
<td>1.11</td>
<td>0.29</td>
</tr>
<tr>
<td>Solr</td>
<td>2108505</td>
<td>2.10</td>
<td>1.20</td>
<td>2.1</td>
<td>N/A</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>2108505</td>
<td>2.50</td>
<td>0.00</td>
<td>1.27</td>
<td>1.10</td>
</tr>
<tr>
<td>MongoDB</td>
<td>2106886</td>
<td>78.00</td>
<td>78.00</td>
<td>2.93</td>
<td>77.59</td>
</tr>
</tbody>
</table>

©2015 California Institute of Technology; Government Sponsorship Acknowledged
Database Architecture Update

• Benchmarking tests showed that Solr was consistently the fastest tool for the data in our environment

• Moved to implement a MySQL + Solr architecture

• Needed fine tuning to make sure we were accurately storing and indexing footprints. This included:
 – Finding an optimal number of footprints points for each data set
 – Finding the optimal distance error percentage in the Solr RPT field that stored the footprints
Future Portal Expansions

• Currently, we have three NRT portals:
 – GRIP Field Campaign Portal
 – HS3 Field Campaign Portal
 – RapidScat Mission Portal

• Could be used for upcoming field campaigns

• Could expand portals for other campaigns and missions outside of “hurricane science”
Website

http://tropicalcyclone.jpl.nasa.gov

Contact

E-Mail: Brian.Knosp@jpl.nasa.gov
Twitter: @that_knosp