Multi-Scale Change Detection Research of Remotely Sensed Big Data in CyberGIS

Jin Xing and Renee Sieber Department of Geography, McGill University, Montreal, QC, Canada

Scale is Important in Land Use/Cover Change (LUCC) Study

DMTI, 2006, Ile des soeurs, Montreal, RGB, 0.6m

Landsat 8, 2015, Ile des soeurs, Montreal, Multispectral, 30m

The Many Meanings of Scale in CyberGIS and LUCC

- CyberGIS
 - Scale of big data, which drives much of CyberGIS
 - Scaling of computing resources (e.g., distribution of data to VMs) & performance (e.g., I/O)
- LUCC
 - Increased amount & speed that means finer grained spatial & temporal change (also the need to move beyond pixels)
 - (the more difficult issue) Spatial & temporal scales at which phenomena, patterns and processes emerge

Approach

- A LUCC-CyberGIS approach, via a seamless integration of cloudbased geospatial cyberinfrastructure (GCI), LUCC analysis, and data handling, that accommodates multiple considerations of scale
- The LUCC-CyberGIS approach to explore the spatial and temporal contingency of LUCC

An Example of Stommel Diagram

• The LUCC-CyberGIS contains a feature scope layer, using Stommel Diagram to coordinate spatial and temporal scales.

GCI Structure

Domain Specific Analysis Layer

Spatial Computation Domain Representation

Computing resource utilization, in its spatial computation domain representation is expressed as (Wang and Armstrong, 2009):

Multiscale Spatial Computation Domain Representation and VM Resource Allocation

We allocate the number of virtual cpu core and memory as (cloud provider dependent)

$$CPUNumber(s) = \frac{1}{2s}CPUNumber(s_0) \qquad Memory(s) = \frac{1}{2s}Memory(s_0)$$

Experiment Datasets

Our case is urban-rural change detection in the Greater Montreal Area (2006-2015, 36,000km²).

Year	Platform	Spatial Resolution (m)	Spectral Resolution
2006	DMTI	0.6	RGB (sharpened & fused)
2007	IKONOS	1	Panchromatic (450mm- 900mm)
2009	DMTI	0.6	RGB (sharpened & fused)
2010	Quickbird	0.6	Panchromatic (450mm- 900mm)
2012	DMTI	0.6	RGB (sharpened & fused)
2015	Landsat8	30	11 bands (0.43mm-12.51mm)

Wavelet-based Image Scaling

We scale images using the Undecimated Discrete Wavelet Transformation (Melgani, Moser, and Serpico, 2002) in a cascade manner. The pixel number is equal at each level, but the details in level s is (2^s) times coarser than S₀.

S=0

S=2

Parallel Image Scaling + Graph-Cut Image Segmentation

2006 Montreal

S=0

S=2

LUCC-CyberGIS Built on Azure

We use Microsoft Azure to build our LUCC-GCI

Scale	# of VMs	Memory (GB)	CPU (Core)	I/O	Azure VM Type
S=0	10+6	28.0	8	Standard	D4
S=1	10+6	14.0	8	Standard	A4
S=2	10+6	7.0	4	Standard	A3
S=3	10+6	3.5	2	Standard	A2
S=4	10+6	1.8	1	Standard	A1
S=5	12+8	1.8	1	Standard	A1

Results

• Forest and building (2006-2012) changes are extracted in the case study.

	Forest Changes (in %)			Building Changes (in %)				
	TT	TF	FF	FT	TT	TF	FF	FT
S=0	1.2	14.7	63.4	20.7	4.3	1.6	81.9	12.2
S=1	2.4	15.8	67.5	14.4	3.6	7.9	76.4	12.1
S=2	3.0	14.6	70.9	11.6	6.0	2.1	77.7	15.1
S=3	2.7	11.7	76.7	8.8	8.4	6.4	56.1	29.0
S=4	3.3	2.5	89.1	5.1	11.6	16.0	40.8	31.5
S=5	2.7	8.2	80.7	8.4	13.0	22.4	25.5	39.0

Conclusion

- We investigate LUCC in CyberGIS, which expands CyberGIS
- The resource allocation in CyberGIS need to communicate with the domain specific layers
- We need to continue exploring the spatial and temporal contingency of LUCC

Questions & Answers

Thank you!

Email: <u>jin.xing@mail.mcgill.ca</u> @McGillCyberInf

Social Sciences and Humanities Research Council of Canada

References

- DMTI, 2006, 2009, 2012. Montreal Satellite StreetView, 3_1-9_7_MONTREAL-S3XM, Markham ON: DMTI Spatial Inc., 2006, 2009 and 2012.
- Melgani, F., Moser, G., & Serpico, S. B. (2002). Unsupervised change-detection methods for remote-sensing images. Optical Engineering,
- Stommel, H. (1963). Varieties of oceanographic experience. Science, 139(3555), 572-576.
- Wang, S., & Armstrong, M. P. (2009). A theoretical approach to the use of cyberinfrastructure in geographical analysis. International Journal of Geographical Information Science, 23(2), 169-193.
- Wang, S. (2010). A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. *Annals of the Association of American Geographers*, *100*(3), 535-557.

