High-speed On-board Data Processing for Science Instruments

Dr. Jeffrey Beyon

NASA Langley Research Center
Hampton, VA 23681

December 18, 2015
High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

Dr. Jeffrey Beyon

NASA Langley Research Center
Hampton, VA 23681

December 18, 2015
Outline

• Introduction
• Accomplishments
• Approach
• Key Milestone History
• Integration of HOPS into Science Projects
• HOPS – Concept to Flight
• HOPS Collaboration
• Key Contributors
• Acknowledgment and Q&A
Introduction

• Funded by NASA’s ESTO (Earth Science Technology Office) AIST (Advanced Information Systems Technology) program.

• Period: April, 2012 – April, 2015

• Entry TRL 2, Exit TRL 5.

• Goals
 – Develop a high-speed, on-board reconfigurable and scalable data processing platform for science instruments
 – Demonstrate HOPS capabilities to address computationally intensive ASCENDS and 3-D Winds algorithms.
 • ASCENDS: Active Sensing of CO2 Emissions over Nights, Days, and Seasons
 – Demonstrate HOPS is reconfigurable and scalable.
Accomplishments

- HOPS Hardware (HW) offers high performance, scalable and re-configurable real-time data processing capabilities to high data volume missions.

- 6U HOPS HW offers 20 GB/sec of FPGA-memory bandwidth and 4 GB/sec of inter-board bandwidth.

- HOPS HW is path-to-flight while reducing the risk in the transition to TRL 6.

- HOPS HW reduces the power and mass by more than one order of magnitude than SOA radiation tolerant hardware.

- HOPS HW costs $20K, and its flight radiation tolerant HOPS cost estimate is 1-2 orders of magnitude less than SOA radiation tolerant hardware for equivalent processing capacity.

- HOPS HW prototype using COTS successfully completed two flight campaigns on the HU25B and the DC-8 demonstrating the real-time on-board processing capabilities. Such an end-to-end demonstration is equivalent to the demonstration of HOPS HW.

- HOPS HW enables ASCENDS and 3-D Winds to perform real-time on-board data processing while reducing the data volume up to 99%. HOPS HW is 30 to 700 times faster in 64K FFT computing than SOA radiation tolerant hardware.
Accomplishments

On-board processing enabling real-time processing

Reduced downlink data volume and terrestrial data processing time
Approach

- Select representative algorithms for requirement definition and demonstration.

- Develop a software-based HOPS model that simulates timing, functions, and data volume accurately.

- Develop a HOPS prototype using COTS products and verify timing and functionality.

- Develop the final HOPS hardware derived from the software-based model and the COTS prototype.

- Demonstrate selected algorithms.
Key Milestone History

<table>
<thead>
<tr>
<th>Key Milestones</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define high-speed computing architecture and model.</td>
<td>09/2012</td>
</tr>
<tr>
<td>Demonstrate algorithms on software-based HOPS model.</td>
<td>03/2013</td>
</tr>
<tr>
<td>Prototype HOPS with COTS hardware. Develop VHDL for algorithm.</td>
<td>09/2013</td>
</tr>
<tr>
<td>Test algorithm on COTS hardware and architecture refinement.</td>
<td>12/2013</td>
</tr>
<tr>
<td>Design and build HOPS hardware. VHDL porting.</td>
<td>03/2015</td>
</tr>
<tr>
<td>Test, verify data processing algorithms on HOPS hardware.</td>
<td>04/2015</td>
</tr>
</tbody>
</table>
Integration of HOPS into Science Projects

LaRC

HOPS HW

Time-critical, computation-intensive algorithm

* Notational only

Sensor Input

Data Processing

HOPS

Time-critical, computation-intensive High-speed computation

Output

A/D

Digitizer

Storage

Serial Controller

Downlink Controller

Standard form factor chassis, GP processor board, and power supply*
HOPS – Concept to Flight

SystemC

HOPS COTS (3U)

HOPS HW (6U)

(Superset of HOPS COTS in operations and functionalities)
HOPS Collaboration

- LaRC science teams: ACES, ASCENDS, and DAWN (3-D Wind)

- LaRC Engineering Directorate branches: Thermal and Mechanical

- Other NASA centers and contractors
 - Exelis Inc. HOPS COTS flight demonstration with MFLlL instrument.
 - Kennedy Space Center (KSC): Joint proposal effort discussion

- Academia
 - University of Florida (UF) in Gainesville: NSF CHREC (Center for High-Performance Reconfigurable Computing)
 - University of Michigan (UM) in Ann Arbor
 - Summer intern students: 1 in 2013 and 3 in 2014 (UF and UM)
Summer Students.

From left to right:

Dorothy Wong (U of FL – Gainesville)
Aaron Crasner (U of MI – Ann Arbor)
Kazumitsu Onishi (U of FL – Gainesville)
Key Contributors (in random order)

Dr. Tak Ng
Co-I. FPGA.
HOPS Architecture.

Jordan Davis
Board Design.
Flight Op. IT.
HU-25 & DC-8.

James Adams
PCB Design.
PRs. HU-25 & DC-8.

Mark Hutchinson

Kevin Somerville
Mentor for Davis.
Board Design.

Steve Bowen
HOPS Signal Conditioning for DC-8.

Charles Antill
HOPS Signal Conditioning for HU-25 & DC-8.

Jim Fay
Flight Op. IT.
DC-8.

Dr. Michael Obland
PI for ACES.
HU-25.

Byron Meadows
PM for ASCENDS.
DC-8.
We are very grateful for the support from

NASA Science Mission Directorate (SMD),

NASA SMD Earth Science Technology Office (ESTO),

and the ESTO Advanced Information System Technology (AIST) program.
Acronym List

- ACES: ASCENDS CarbonHawk Experiment Simulator
- AIST: Advanced Information Systems Technology
- ASCENDS: Active Sensing of CO2 Emissions over Nights, Days, and Seasons
- CHREC: Center for High-Performance Reconfigurable Computing
- COTS: Commercially Off The Shelf
- ESTO: Earth Science Technology Office
- FPGA: Field-Programmable Gate Array
- GP: General Purpose
- HOPS: High-Speed On-Board Data Processing for Science Instruments
- HOPS HW: HOPS Hardware. aka HOPS custom board. Final deliverable.
- IT: Integration and Testing
- MFLL: Multifunctional Fiber Laser Lidar
- PI: Principal Investigator
- PM: Project Manager
- TRL: Technical Readiness Level
- UF: University of Florida
- UM: University of Michigan
- VHDL: VHSIC Hardware Description Language