Constructing, Editing, and Visualizing Integrated Models of Earth Structure

(A view to the future)

G. Randy Keller

School of Geology and Geophysics

University of Oklahoma

GEON
The Geosciences Network

NASA
earthscope
NSF
OU
EarthScope - A facility that includes transportable and fixed seismic instrumentation, a network GPS units and strainmeters, and magnetotelluric instrumentation.

Integrated analysis to derive 4-D models of the lithosphere is a major science driver in EarthScope.

USArray will cover the entire USA.
Some major goals

Develop a distributed, services-based system that enables geoscientists to publish, share, improve, integrate, analyze, and visualize their data, ontologies, tools, workflows, applications, and models.

Conduct and facilitate highly integrated scientific studies on targets of opportunity in two test beds in concert with the geosciences community.
The ultimate goal in geophysics is.. Construction of 3-D volumes with as many physical properties as possible assigned to each volume element.
Discontinuities are also important, and we need to be able to insert them and manipulate them.

We also want the results to be compatible with various modeling programs (e.g. groundwater, geodynamics).
A 2-D example from seismology

POLONAISE’97
- 64 shots
- 613 stations
- 5 profiles
- 3-D records
(Guterch et al., 1999)
Tomographic inversion (CAT scan) of first arrivals is the first step in the analysis and produces a smooth voxel-based model of the variations in velocity.
Ray tracing and analysis of synthetic seismograms can be employed to model the velocity discontinuities (interfaces) and the velocity variations.
The final integrated velocity model with velocity variations, interfaces, and geologic constraints

POLONAISE’97, Profile P4 (Grad et al., Jour. of Geophysical Res, 2003)
A number of geophysical techniques can produce 3-D voxel models (e.g., tomography), and others produce interfaces. The big challenges are to include interfaces in voxel-based models and to be able edit and visualize the models as one proceeds.
Dimensionality in the Geosciences

2-D \((x, y) \) Mapping or cross-sections
Components: objects (points, lines polygons), raster grids

2.5-D \((x, y, \text{Height}) \) Adds height (e.g. surface or relief)
Sometimes erroneously called 3-D mapping
Components: Raster grids of elevation (DEM)
A fly-through gives the appearance of time varying but is just a visualization tool. Draping another data layer on the DEM is another visualization scheme.

3-D \((x, y, z) \) Volume mapping and rendering
Components: 3-D Raster grids, 3-D grid cells (Voxel, volumetric elements), iso-volumes. Add cross-sections, horizontal slices, cut-outs, rotation, etc.

4-D \((x, y, z, \text{Time}) \) Adds time variation and possibly animation

Multi-dimensional \((x, y, z, a_1, a_2, \ldots a_n) \) Adds multiple attributes (physical measurements) to 3-D or 4-D
In recent years, government, industry, and academic database efforts have developed a vast array of 2-D data layers. These data represent a powerful scientific tool, but they are 2-D in nature.
Dimensionality in the Geosciences

2-D \((x, y)\) Mapping or cross-sections
Components: objects (points, lines polygons), raster grids

2.5-D \((x, y, \text{Height})\) Adds height (e.g. surface or relief)
Sometimes erroneously called 3-D mapping
Components: Raster grids of elevation (DEM)
A fly-through gives the appearance of time varying but is just a visualization tool. Draping another data layer on the DEM is another visualization scheme.

3-D \((x, y, z)\) Volume mapping and rendering
Components: 3-D Raster grids, 3-D grid cells (Voxel, volumetric elements), iso-volumes. Add cross-sections, horizontal slices, cut-outs, rotation, etc.

4-D \((x, y, z, \text{Time})\) Adds time variation and possibly animation

Multi-dimensional \((x, y, z, a_1, a_2, \ldots a_n)\) Adds multiple attributes (physical measurements) to 3-D or 4-D
Visualizations such as this are really useful but we are still looking only at the Earth’s surface.
Raster representations of other types of data can be draped on a DEM.
Dimensionality in the Geosciences

2-D \((x, y)\) Mapping or cross-sections
 Components: objects (points, lines polygons), raster grids

2.5-D \((x, y, \text{Height})\) Adds height (e.g. surface or relief)
 Sometimes erroneously called 3-D mapping
 Components: Raster grids of elevation (DEM)
 A fly-through gives the appearance of time varying but is just a visualization tool. Draping another data layer on the DEM is another visualization scheme.

3-D \((x, y, z)\) Volume mapping and rendering
 Components: 3-D Raster grids, 3-D grid cells (Voxel, volumetric elements), iso-volumes. Add cross-sections, horizontal slices, cut-outs, rotation, etc.

4-D \((x, y, z, \text{Time})\) Adds time variation and possibly animation

Multi-dimensional \((x, y, z, a_1, a_2, \ldots a_n)\) Adds multiple attributes (physical measurements) to 3-D or 4-D
The USArray component of EarthScope is designed to produce 3-D models of the distribution of seismic velocity in the crust and upper mantle.
Continental Dynamics of the Rocky Mountains Project (CD-ROM)

CD-ROM involved a broad range of geoscience investigations that focus around a transect extending from southern Wyoming to Northern New Mexico. The goal of this project is to understand the assembly, evolution, and disassembly of the lithosphere of southwestern North America.

CD-ROM featured coordinated teleseismic, seismic refraction, and deep reflection experiments whose results have been integrated with a wide variety of geologic data.
Seismic tomography result from the CD-ROM project

Ken Dueker, University of Wyoming

A slice through the best resolved portion of the tomographic volume (z=100 km)
The slice at 100 km displays some interesting correlations with known geologic features.
Vertical slices along the profiles of recording stations are the best resolved.
Data overlays are a useful qualitative type of integration.
Dimensionality in the Geosciences

2-D (x, y) Mapping or cross-sections
Components: objects (points, lines polygons), raster grids

2.5-D (x, y, Height) Adds height (e.g. surface or relief)
Sometimes erroneously called 3-D mapping
Components: Raster grids of elevation (DEM)
A fly-through gives the appearance of time varying but is just a visualization tool. Draping another data layer on the DEM is another visualization scheme.

3-D (x, y, z) Volume mapping and rendering
Components: 3-D Raster grids, 3-D grid cells (Voxel, volumetric elements), iso-volumes. Add cross-sections, horizontal slices, cut-outs, rotation, etc.

4-D (x, y, z, Time) Adds time variation and possibly animation

Multi-dimensional (x, y, z, a₁, a₂, ...aₙ) Adds multiple attributes (physical measurements) to 3-D or 4-D
Innovative integration of geological and geophysical data is needed to produce a 4-D analysis back through geologic time.

Geophysical, Geological & Geochemical Observations

- **Geophysical**: limited to recent times
- **Geological**: limited to shallow depths
- **Geochemical/Petrological**: shallow and deep mantle, early history

Depth-Time Diagram for the Earth

- **Geodynamic Modeling**
 - Explores related physical and chemical processes.
 - Facilitates hypothesis testing of complex systems.
 - Provides context for interpreting a large range of observations.
Interpreting the age of these velocity and density anomalies is an attempt to produce a 4-D result.
Another way to achieve 4-D is through mathematical modeling of geological and geophysical phenomena and processes.
Dimensionality in the Geosciences

2-D (x, y) Mapping
Components: objects (points, lines polygons), raster grids

2.5-D (x, y, Height) Adds height (e.g. surface or relief)
Sometimes erroneously called 3-D mapping
Components: Raster grids of elevation (DEM)
A fly-through gives the appearance of time varying but is just a visualization tool. Draping another data layer on the DEM is another visualization scheme.

3-D (x, y, z) Volume mapping and rendering
Components: 3-D Raster grids, 3-D grid cells (Voxel, volumetric elements), iso-volumes. Add cross-sections, horizontal slices, cut-outs, rotation, etc.

4-D (x, y, z, Time) Adds time variation and possibly animation

Multi-dimensional (x, y, z, a₁, a₂, ...aₙ) Adds multiple attributes (physical measurements) to 3-D or 4-D
The ultimate goal in geosciences is a multi-dimensional model that includes geological interfaces.
How might we go about constructing the desired 3-D model and then make it multi-dimensional?

Obviously if we are to determine Vp, Vs, density, magnetic properties, electrical properties, anisotropy, attenuation (Q), temperature, etc., we must use a highly integrated approach that takes advantage of all the geological and geophysical constraints available.

In most cases, seismology has the potential of providing the greatest resolution, but it is the mostly costly approach and many diverse techniques are available. Thus, an integration scheme for seismic results is an important first step in any study.

Such a scheme logically begins with seismic tomography and there are many possible way to proceed from there seismically.
Integration scheme

40 km

Integration of geological data is also essential
The best starting point would usually be derived from 3-D tomography

Example from Southern Africa provided by Matt Fouch

- $1/3 \, ^\circ \times 1/3\, ^\circ$ lateral grid
- 33 km vertical grid
- 371,176 grid points in this model

Fouch et al. [2004]
Seismic Data Record Section

- P waves (left)
- S waves (right)
- Aligned on first peaks of arrivals
- Relative arrival variations measured

Fouch et al. [2004]
Relative Delay Time Example

[Diagram showing travel time delay and seismic stations on the Earth surface]
Relative Delay Time Example

Travel time delay

Earth surface

seismic stations
Relative Delay Time Example
Relative Delay Time Example

![Diagram showing relative delay time example](image)
Relative Delay Time Example
Regional Southern Africa Tomogram

- P-wave model from Kaapvaal Seismic Array data (150 km slice)

Fouch et al. [2005]
Regional Southern Africa Tomogram

- P-wave model from Kaapvaal Seismic Array data (250 km slice)

Fouch et al. [2005]
Regional Southern Africa Tomogram

- P-wave model from Kaapvaal Seismic Array data (cross-section)
How do we integrate this with other types of data?

We can assign density values to each voxel element based on an established empirical relationship between velocity and density. The trick is what to do if the gravity response does not fit the observed gravity values.

How do we edit and visualize the model?
One way to proceed is to employ GIS technology, and we have developed a conceptual scheme that is based on the recently developed groundwater data model.

Arc Hydro data model

Drainage System Hydro Network Hydrogeologic unit Borehole

Hydrography Channel System Layers Solid

Surface water models Groundwater models

Simulated results

Gil Strassberg
Center for Research in Water Resources, UT Austin
Some Elements of the GeoData Model

- **GeoPoint** (Sample locations, GPS control point, instrument location)
- **Well** (Location of a drill hole)
- **GeoLine** (Fault, joint, axis of a fold, lineament, flight line)
- **BoreLine** (Multinode (x,y,z) ine; nodes are interface intersections)
- **GeoArea** (Outcrop of a geologic unit, fault surface, geochemical zone)
- **GeoSection** (Cross-section along a plane with an arbitrary orientation)
- **WaterArea** (An area such as a lake)

Items matched to the groundwater data model
Some Elements of the GeoData Model

- **GeoSurface** (A raster representation of a geologic surface - 2.5 D)
- **GeoImage** (A raster image of geological interest)
- **GeoVolume** (A closed surface in 3-D; igneous body, ore body-Multipatch)
- **GeoRaster** (A grid of voxels with physical properties as attributes - 3D)
- **GeoBoundary_T** (A TIN representing a geological surface)
- **GeoBoundary_M** (A Multipatch representing a geological surface)
- **GeoUnit** (A geological unit defined as the region between 2 GeoBoundaries)

Additional items (GeoVector - GPS, plate motion, fault slip; Geo???)
We want to add interfaces to 3-D models.
Geovolume

Salt domes
AFRICA

Isosurface Vp Anomalies = -0.5 %

GeoVolume
We also want to slice the data volumes along arbitrary surfaces.
This type of GIS capability does not exist yet, but it is on the way. It is certainly one way to be able to edit voxel-based models and insert interfaces. A model such as this could be expanded and updated as more data become available.
Integrated modeling scheme

2.5 or 3-D, P-wave tomography (active source, local earthquakes)

Assign densities via Vp - ρ relationship
Calculate gravity response

Joint receiver function and surface wave inversion

Joint P-wave tomography and receiver function inversion

Independent constraints (drill holes, geology, etc.)

Magnetic modeling of upper crust

Other seismic properties (e.g., attenuation, anisotropy)
Integration via visualization is also a useful qualitative option.
Mount St. Helens example of the visual integration of seismic tomography and earthquake hypocenters

The animation was constructed using the GEON IDV using data provided by Greg Waite of the USGS.