Physiographic Drivers of Snow Water Storage – Modeling the Spatial Distribution of Our Water & the Suitability of Our Monitoring Network

Kelly Gleason, Department of Geosciences, Oregon State University
GEO 580 – June 1, 2011
Measured SWE at Santiam Junction on April 1 (Elevation 1143 m)

Less snow – more uncertainty?

Decline = 8 mm / year ***
Water Volume Loss in a 500-m Elevation Band = 0.5 km³
NRCS SNOTEL sites miss the high elevation snow.
Average SWE and Snow Covered Area in April 1, 2009

Created by Kelly Gleason - May 2011
Data Source – SNOTEL (NRCS) & SWE (SnowModel – Courtesy of Eric Sproles)
Average SWE and Snow Covered Area in April,

Created by Kelly Gleason - May 2011
Data Source – SNOTEL (NRCS)
& SWE (SnowModel – Courtesy of Eric Sproles)
Questions

• What are important physiographic drivers of snow accumulation processes in the Western Oregon Cascades?

• Can a landscape-based Binary Regression Tree model be used to predict snow distribution, depth, and variability in the McKenzie River Basin (3,000 km²)? N. Santiam River Basin? Willamette River Basin (30,000 km²)?

• Can this characterization be used to distribute a representative monitoring network to capture the future spatial variability in snowpack?
Objectives

• Use physiographic variables to develop a landscape-based model to characterize SWE within the McKenzie River Basin.
• Use that model to classify SWE in nearby watersheds.
• Randomly select objective and representative monitoring network.
ArcGIS Methods

• Import physiographic and modeled SWE data
• Zonal statistics with elevation
• Extract physiographics and SWE in Mckenzie River
• Develop BRT snow classification model based on landscape characteristics
• Use this BRT to develop GIS analysis model to predict SWE using landscape physiographics
• Select representative sampling locations
• Test on N.Santiam River and extrapolate to Willamette River
Binary Regression Tree

R = 0.95 **
RMSE = 0.11

<table>
<thead>
<tr>
<th>Landscape Class</th>
<th>Elevation</th>
<th>Veg Class</th>
<th>Other</th>
<th>Landscape Class</th>
<th>Elevation</th>
<th>Veg Class</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><-1121</td>
<td>Forest</td>
<td></td>
<td>11</td>
<td>>1332.5</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>>1121</td>
<td>Forest</td>
<td>%CC <20</td>
<td>12</td>
<td>>1426.5</td>
<td>Forest</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>>1121</td>
<td>Forest</td>
<td>%CC >20</td>
<td>13</td>
<td>>1426.5</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><-977</td>
<td>Open</td>
<td></td>
<td>14</td>
<td>>1545</td>
<td>Open</td>
<td>Y >4878574</td>
</tr>
<tr>
<td>5</td>
<td>>977</td>
<td>Open</td>
<td>Slope <-26.84</td>
<td>15</td>
<td>>1545</td>
<td>Open</td>
<td>Y <4878574</td>
</tr>
<tr>
<td>6</td>
<td>>977</td>
<td>Open</td>
<td>Slope >26.84</td>
<td>16</td>
<td>>1791</td>
<td>Y >1919.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>>1198.5</td>
<td>NDVI <-2063</td>
<td></td>
<td>17</td>
<td>>1919.5</td>
<td>NDVI >2039</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>>1198.5</td>
<td>NDVI >2063</td>
<td></td>
<td>18</td>
<td>>2039</td>
<td>NDVI <2371</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>>1255</td>
<td>NDVI >2788</td>
<td></td>
<td>19</td>
<td>>2371</td>
<td>Y >2887</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>>1332.5</td>
<td>Forest</td>
<td></td>
<td>20</td>
<td>>2887</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molotch and Bales, 2006
Observed SNOTEL SWE (m) & BRT Expected SWE (m) at Sampling Points & Total SWE Volume across Willmette River Basin, Oregon
Not all areas land available – used criteria selection model

• In Raster Calculator:

\[(\text{binary public}) \times (\text{buff 500 - buff100}) = \text{available land for sampling sites}\]

• Used output to extract by mask BRT Classes area
• Created random raster w/in extracted BRT area to determine random location that meets criteria
Binary Selection Model to Select Public Land & 200-500 m of Road

Federal Lands in the McKenzie River Basin

500 meter Buffer of Roads in the McKenzie River Basin

100 meter Buffer of Roads in the McKenzie River Basin

×

−

Public Land within 200-500m of Road in the McKenzie River Basin

Legend

- SNOTEL
- Hwy
- Yes
- No
- Meets Criteria
- McKenzie

Created by: Kelly Gleason - May 2011
Data Source: Willamette National Forest
DEM - SRTM, SNOTEL - NRCS
BRT Snow Classes within Available Land
(Public Land within 200-500m of Road)
in the McKenzie River Basin

Legend
- SNOTEL
- Hwy
- BRT Classes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
mckenzie

Created by: Kelly Gleason - May 2011
Data Source: Willamette National Forest
DEM - SRTM, SNOTEL - NRCS
Randomly Selected Sampling Locations within Each BRT Snow Class

Legend
- BRT Points
- SNOTEL
- Hwy
- BRT Classes
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15

Created by: Kelly Gleason - May 2011
Data Source: Willamette National Forest
DEM - SRTM, SNOTEL - NRCS
Conclusions

• BRT landscape classification shows promise for characterizing snow zones – but difficult to validate using point based SNOTEL information.
• Current underestimation of SWE by model to be further calibrated & validated using fractional snow covered area remote sensing model.
• Present-day snow monitoring sites will not be in representative locations in the future – need an objective approach to monitor climate impacts.
Questions?