
Computers & Geosciences 29 (2003) 523–530

Delete and insert operations in Voronoi/Delaunay methods
and applications$

Mir Abolfazl Mostafavia,*, Christopher Goldb, Maciej Dakowiczb

aGeomatics Department, Laval University, Quebec City, Quebec G1 K 7P4, Canada
bDepartment of Geo-Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received 27 March 2001; received in revised form 1 November 2002; accepted 22 November 2002

Abstract

This paper presents simple point insertion and deletion operations in Voronoi diagrams and Delaunay triangulations

which may be useful for a wide variety of applications, either where interactivity is important, or where local

modification of the topology is preferable to global rebuilding. While incremental point insertion has been known for

many years, point deletion is relatively unknown. The robustness and efficiency of a new algorithm are described.

A variety of potential applications are summarized, and the included computer program may be used as the basis

for many new projects.

r 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Insertion; Deletion; Algorithms; Voronoi; Delaunay triangulation

1. Introduction

Delaunay triangulations have been well known in the

geosciences for many years, as are triangulated terrain

models. Somewhat less known are the applications of

Voronoi diagrams, although there are many scientists

who consider them to be ‘‘a fundamental geometric data

structure’’ (Aurenhammer, 1987)—for example the work

of Sambridge et al., (1995). The Voronoi and Delaunay

structures are the duals of each other (see Fig. 1), and so

the construction of one automatically creates the

structure of the other—although the advantages of each

are not necessarily apparent when working in the other

mode.

While the ‘‘batch’’ construction of the Delaunay

triangulation of a set of data points, for example, is

well known, the ability to insert and delete individual

points at will is often desired, but not usually available.

In computer science terminology, we would be using

‘‘dynamic’’ data structures and algorithms, as modifica-

tions to the structure could be made without recon-

structing the whole thing each time. It should be noted

that this use of ‘‘dynamic’’ does not mean that the points

are considered to be moving—that is another property,

usually known as ‘‘kinetic’’ (Guibas et al., 1991).

The need to modify the set of data points is most

obvious in the case of an on-screen interactive demon-

stration, and that is the illustration given in this paper.

The accompanying computer program is written in

Delphi (essentially visual object-oriented Pascal) as we

have found this to satisfy our research needs better than

the other choices—it compiles very fast, executes as fast

as C/C++, has an excellent visual interface and

development environment, and is considerably easier

to master than C++—unless one is a professional

programmer! Our second choice would have been Java,

but at present this is still too slow. In both these cases

the object-oriented structuring is ideal for dynamic data

structures. The popularity of Delphi varies widely, being

less in the US and more in South America and Europe.

$Code on server at http: //www.iamg.org/CGEditor/

index.htm

*Corresponding author.

E-mail addresses: mir-abolfazl.mostafavi@scg.ulaval.ca

(M.A. Mostafavi), christophergold@voronoi.com (C. Gold).

0098-3004/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0098-3004(03)00017-7

http://www.iamg.org/CGEditor/index.htm
http://www.iamg.org/CGEditor/index.htm

Nevertheless, it is largely self-documenting, and we hope

that the methods presented here may either be used

directly, or be readily translated.

Whereas a variety of algorithms exist to create a

Delaunay triangulation in ‘‘batch’’ mode (for an

excellent evaluation see Shewchuk, 1996) the incremen-

tal algorithm is both one of the earliest and one of the

most robust, although not the fastest. It also forms the

basis of a dynamic algorithm, consisting of insertion and

deletion of individual points. Insertion consists of

finding the triangle enclosing the new point (often by

walking through the existing triangulation), splitting this

triangle into three, and recursively checking if each edge

(or pair of triangles) conforms to the Delaunay criterion.

If not, the diagonal of the triangle pair is swapped, and

checking continues. Deletion is largely the reverse of

insertion, but has a variety of specific difficulties.

For very large data sets the least efficient step is to

find the enclosing triangle. Gold et al. (1977) first

described the simple ‘‘walk’’ algorithm, which is

expected to use sqrt(n) time for each point, where n is

the number of points. Improved methods can reduce

this—the most practical being to store a small propor-

tion of the points, search them to find the closest to the

new point, and use this to make an initial estimate of the

nearest triangle. For this paper we have limited ourselves

to the simple walk.

Lastly, the code presented here does not attempt to

partition a very large triangulation into smaller portions

for storage on disk if there is insufficient memory. This is

a messy problem, and beyond the scope of this paper.

2. Background and implementation

The Delaunay triangulation was introduced by

Voronoi (1908) for sites that form a lattice and was ex-

tended by Delaunay (1934) for irregularly placed sites by

means of empty circle methods. There is an excellent intro-

duction to the Delaunay triangulation and its properties

in Aurenhammer (1991) and Okabe et al. (2000).

There are several useful properties of the Delaunay

triangulation, which make it distinct from other

triangulation methods. If we consider a set of points in

two-dimensional Euclidean space, the Delaunay trian-

gulation of the set of points is the triangulation of

the point set with the property that no point falls in the

interior of the circumcircle of any triangle in the

triangulation. If we connect the centres of these circles

between pairs of adjacent triangles we get the Voronoi

diagram, the dual of the Delaunay triangulation, with

one Voronoi edge associated with each Delaunay edge.

The Voronoi diagram consists of cells around the data

points such that any location in a particular cell is closer

to that cell’s generating point than to any other.

A variety of algorithms for Voronoi/Delaunay con-

struction have been described in the literature—see

Aurenhammer (1991) and Okabe et al. (2000). The most

efficient of these are ‘‘batch’’ methods, where the point

set is known in advance—for example see Fortune

(1992). In many applications, however, the diagram

must be adjusted interactively, and the simple incre-

mental insertion algorithm is more appropriate. The

best-known paper describing the algorithm is Guibas

and Stolfi (1985), although Lawson (1977), Green and

Sibson (1977), Gold et al. (1977) and others used similar

techniques.

Of particular interest is Guibas and Stolfi’s use of the

‘‘Quad-Edge’’ data structure to store the network, rather

than the alternative of a set of triangles with pointers to

their three vertices and adjacent triangles. Shewchuk

(1996) has shown that, not only does the Quad-Edge

structure take approximately twice the storage of the

triangle structure, but also the updating of the structure

may take twice the time. We have stayed with the Quad-

Edge structure for its elegance and simplicity, and

because it manages the primal and dual representations

simultaneously. Shewchuk also discusses the awkward

problem of the robustness of algorithms due to the

computer’s finite-precision arithmetic, but in our experi-

ence this appears to be a problem only when working

with constrained triangulations. For the simple point

insertion case, the only robustness issue appears to be to

avoid inserting two points at the same (or near-identical)

location. A simple tolerance check (a visible disk in our

program) is usually used after finding the enclosing

triangle.

In the insertion algorithm, an initial ‘‘frame’’ triangle

is created, and points are inserted individually by:

(1) Performing a ‘‘walk’’ from some previous triangle

to the triangle containing the new point P;
(2) Splitting that triangle into three new triangles, each

having P as a vertex; and

(3) Ensuring that each edge is Delaunay by recursively

testing each edge (triangle pair) and switching the

diagonal if necessary.

Fig. 1. Delaunay triangulation and dual Voronoi diagram.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530524

Fig. 2 illustrates point location, point insertion, and

edge switching. Fig. 3A shows the case of vertex D being

inside the circumcircle of triangle ðA;B;CÞ; and thus
being a neighbour of B; and Fig. 3B shows vertex D

outside—with the result that the diagonal ðB;DÞ has
been switched and D is no longer a neighbour of B:
The walk operation uses the determinant D (Eq. (1))

to test if the point P is to the left of directed edge AB of

some initial triangle. If so, the next clockwise edge from

B is used, if not the next clockwise edge from A—and the

test is repeated until three successive edges have P on

the left. This is, theoretically, the least efficient part of

the algorithm, and more efficient search algorithms may

be used for extremely large data sets.

DðA;B;PÞ ¼

xA yA 1

xB yB 1

xP yP 1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

: ð1Þ

3. The storage data structure

Our algorithms for insertion and deletion of points in

the Delaunay triangulation and the Voronoi diagram

use the Quad-Edge data structure of Guibas and Stolfi

(1985) as it is simple to implement and allows us an

edge-to-edge navigation through the mesh by means of

its algebraic operations. As there is no distinction

between the primal and dual representations we can

represent Delaunay and Voronoi edges simultaneously

with the same data structure. The main disadvantage of

the method is that storage costs are relatively high,

although this is becoming less of a practical issue than

it used to be. Shewchuk (1996) discussed this in some

detail.

The Quad-Edge data structure captures all the

topological information of the subdivision of a surface.

Each complete Quad-Edge is composed of four

branches, which in our object-oriented implementation

are connected together in anticlockwise order by means

of the R (or Rot) field. Each branch has two additional

pointers: the V (or Vertex) field points to geometric or

attribute objects (a vertex or face) and the N (or Next)

field points to the next anticlockwise edge around any

vertex or face. The low-level operations that use the R;
N and V fields (Fig. 4A) are:

(a) ‘‘Sym’’, which moves the pointer from the current

edge Q to the edge that faces in the opposite

direction. Thus Q Sym ¼ QRRðQ Org ¼ QV ; the
vertex connected to Q; and QDest ¼ QRRV ; the
vertex opposite Q).

(b) ‘‘Onext’’ moves the pointer from the current edge Q

to the next edge anticlockwise around QOrg: Thus
QO next ¼ QN:

(c) ‘‘Oprev’’ moves the pointer from the current edge

Q to the next clockwise edge around QOrg: This
can be achieved by saying that QOprev ¼ QRNR:

(d) ‘‘Lnext’’ moves the pointer from the current edge Q

to the next clockwise edge around Q.Dest. Thus

Q Lnext ¼ Q SymOprev ¼ QRRRNR:
(e) ‘‘Lprev’’ moves the pointer from the current edge Q

to the next anticlockwise edge around QDest: Thus
Q Lprev ¼ Q SymOnext ¼ QRRN :

To create and modify the graph only two basic

functions are used: ‘‘Make-Edge’’ and ‘‘Splice’’. Make-

Edge (Fig. 4B) is used to create a new edge ready to be

connected into the current graph. Splice (Fig. 4C) is used

to connect edges together or disconnect them from each

other and takes two edges ða; bÞ as arguments. In the first
case, going from right to left in Fig. 4C, Spliceða; bÞ
connects two separate loops around the common node,

Fig. 2. Steps to insert new point in Delaunay triangulation after ‘‘Walk’’ operation: (A) initial triangulation; (B) splitting enclosing

triangle; (C) ‘‘Swap’’ operation.

A

C
B

D• •

•
•

•
•

••

(A)

A

C
B

D

(B)

Fig. 3. Empty circumcircle test.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530 525

joining the two nodes together, and at the same time

splitting the loop around the common face. In the

second case, going from left to right in Fig. 4C,

Spliceða; bÞ splits the common node and at the same
time merges the faces at the left side of the edges. Calling

Splice twice with the same arguments results in the initial

configuration. For more details see Guibas and Stolfi

(1985).

4. Our algorithm for point deletion from Delaunay

triangulation

We mentioned that one of the properties of a dynamic

data structure is that it allows deletion of objects from

the structure with only local updating. The problem of

removing points from the Delaunay triangulation is

mentioned briefly in the literature as the inverse of the

incremental insertion algorithm, but only Heller (1990)

had previously described it. In his method the set of

neighbouring points of the point P to be deleted are

examined, as triples, (or potential triangles) in anti-

clockwise order. The potential triangle with the smallest

circumcircle is removed by swapping the edge (the

inverse of the insertion algorithm described previously)

to reduce the set of neighbours of P by one, and the

process is repeated until only three triangles are left.

Again as the inverse of the insertion algorithm, P is

removed and the three triangles merged into one.

In our own work we considered the empty circumcir-

cle property of a Delaunay triangulation, and deduced

that any triangle removed by the above method (often

called an ‘‘ear’’) must be empty of other vertices except

P (which is being removed). (An ear is a triple of

adjacent neighbouring vertices to P which is convex

outwards from P:) Thus any ear that has no points in its
circumcircle may be removed immediately. Our work

was described briefly (not the full algorithm) in a

preliminary report in 1998 and was published in Gold

(2000). Concurrently, Devillers (1999) showed that

Heller’s test was wrong, and devised an ear elimination

algorithm based on the power of a point with respect to

a circle that was able to order the vertices in the

sequence required for their elimination. As will be

described below, our algorithm is simpler, but becomes

less efficient as the number of neighbours increases.

However, for most data sets the two approaches are

equally efficient. Despite the fact that point deletion

often has the potential to break down in degenerate

cases due to the limitations of floating-point precision,

we have tested our method with a variety of nasty cases

(such as 1000 points in a circle, with point P inserted and

deleted in the centre!) without problems.

The algorithm goes as follows:

(1) Locate the point to be deleted using the ‘‘Walk’’

operation mentioned previously.

(2) Each triple of vertices connected to P is considered

as a ‘‘potential triangle’’ T ; with vertices v1; v2 and
v3: T is rejected immediately if Dðv1; v2; v3Þ (as
defined above) is negative (meaning that T forms a

re-entrant, not an ear, of the polygon formed by the

neighbours of P). It is also rejected if Dðv1; v3;PÞ is
negative (meaning that T encloses P).

(3) If the ear satisfies these conditions, the remaining

neighbouring points of P are tested to see if they

fall inside the circumcircle of T ; using the test that
Hðv1; v2; v3;PÞ > 0: (Eq. (2)) If none of the remain-
ing neighbours fall inside then the ear will be

Delaunay, and may be removed by switching the

diagonal.

HðA;B;C;DÞ ¼

xA yA x2A þ y2A 1

xB yB x2B þ y2B 1

xC yC x2C þ y2C 1

xD yD x2D þ y2D 1

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

: ð2Þ

(4) Steps (2) and (3) are repeated until only three

neighbours remain, in which case the three triangles

are merged into one and P is deleted.

Fig. 4. Quad-Edge data structure: (A) Navigation operations, (B) Make-Edge and (C) Splice.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530526

This method is effective in all cases where no more

than three neighbours of P are cocircular. However, due

to the limitations of floating-point arithmetic, points on

this circle may have very small positive values of H;
leaving us with more than three neighbours at the

termination of the algorithm (Fig. 5). Fortune (1992)

showed that the flipping algorithm for point insertion

could be implemented using floating-point arithmetic to

produce an ‘‘approximate Delaunay triangulation’’.

This means that the triangulation has almost-empty

circumcircles: any site lying inside a circumcircle is only

‘‘slightly’’ inside. The meaning of ‘‘slightly’’ depends

upon the relative error of floating-point arithmetic, the

number of sites, and the distance of the sites from

the origin, but not on any geometric properties of the

configuration of the sites.

Following Fortune (1992) we imagine that the

circumcircle is shrunk by a very small amount, which

can be achieved by testing if H>epsilon, where epsilon

is a very small positive value (currently 10�18 in function

‘‘Incircle’’). While using a tolerance in operations of this

type is undesirable, its very small value has no effect on

the operational robustness of the algorithm. Fig. 6

shows the result of deleting point P from a small

triangulation.

5. Algorithm comparison

Devillers (1999) showed that ears might be removed

from the set of neighbours of P in order of the power of

P (Aurenhammer, 1987) with respect to the circumcircle

of the ear. The power of P with respect to the ear with

vertices v1; v2 and v3 is simply Hðv1; v2; v3;PÞ=
Dðv1; v2; v3Þ: Since it is necessary to select the ears for
removal in order of their power, a priority queue data

structure is required. This data structure saves ears in

the order they are supplied, and returns them in the

order ‘‘smallest first’’. He showed that the ear that has

the smallest power is guaranteed to be Delaunay, and

may thus be removed. The algorithm may then be

stated as:

(1) Put the valid ears around the point in the priority

queue in ascending order of their power.

(2) While the number of ears in the priority queue is

greater than three, take the first ear from the list

and swap the diagonal to form a triangle.

(3) Remove the ears previous to and next to the treated

ear from the priority queue.

(4) Compute the power for the two new ears.

(5) Update the priority queue for these ears.

(6) Repeat steps 2 to 5 until three ears remain in the

list.

(7) Splice the point from the three remaining points.

(8) Free the point.

For more details see Devillers (1999). It can be seen

that the method is somewhat more complex to imple-

ment, but the use of the priority queue improves its

efficiency from Oðk2Þ to Oðklog kÞ; where k is the

number of neighbours of P: Once we were aware of
Devillers’ work we made comparisons of the number of

incircle tests in our method with the number of power

tests in Devillers’. The results are shown in Fig. 7. As

expected, our approach was significantly less efficient for

large numbers of neighbours, but for up to seven or

eight neighbours there was little difference. The average

C

P
B

D

A

Fig. 5. Degenerate case where points A;B;C and D are on same

circle.

Fig. 6. Delaunay triangulation and Voronoi diagram before

(A) and after (B) deleting point P:

Comparision

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neighbours

In
c

ir
c

le
o

r
p

o
w

e
r

te
s

ts

Devillers Method

Our Method

Fig. 7. Comparison between our method and Devillers’

method for point deletion.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530 527

number of neighbours is always six, excluding boundary

conditions, but where data is in strings, such as lines or

circles, the number of neighbours of an intermediate

point between two lines, or at the centre of a circle, may

be much larger. We conclude that for most applications

our method suffices and is simpler, and we hope that the

accompanying code is found useful for many applica-

tions. However, in applications where data is highly

anisotropic in spatial distribution, such as along ships’

tracks, (Fig. 8), it is advisable to implement Devillers’

method.

6. Applications

In practice, dynamic Voronoi/Delaunay techniques

are of interest in a variety of applications. Simple

insertion techniques are appropriate for basic geological

mapping problems, where each data point has the value

of the observed rock type, for example. Removal of the

boundaries of adjacent Voronoi cells with the same rock

type produces a preliminary geological map (Okabe

et al., 2000). Surface runoff and groundwater flow

modelling, using the Integrated Finite Difference Meth-

od (IFDM), may be based on flow between the Voronoi

cells (Lardin, 1999), as the approach may be appropriate

for both object and field data. Gold et al. (1996) used the

Voronoi/Delaunay relationships to develop a rapid

digitizing method for polygonal data. A simple test

based on the work of Amenta et al. (1998) and Gold

(1999), and improved in Gold and Snoeyink (2001),

allows the extraction of the skeleton, or medial axis

transform (Blum, 1967) from Voronoi/Delaunay dia-

grams constructed from contour data, as well as the

extraction of connected curves from unordered input

points. This led to improved terrain modelling (Thibault

and Gold, 2000), where the skeleton points along ridges

and valleys may have elevations estimated, based on

circumcircle ratios. The crust and skeleton, as well as

circumcircles, are provided as display options in the

accompanying program.

Point deletion, as described here, extends the range of

available operations. Most obviously, the data set may

be modified as well as created by adding and deleting

individual points. This is often extremely useful to

maintain the connectivity of features, for example, when

they were originally insufficiently sampled. ‘‘Area-

stealing’’ or Sibson’’ or ‘‘Natural-neighbour’’ interpola-

tion (Sibson, 1981; Gold, 1989 and others) has been

shown to be an effective method for precise interpola-

tion, especially for highly anisotropically distributed

data points, such as those in Fig. 8. In principle it

involves the insertion of a sampling point (P in Fig. 6A)

into the data set; detection of its Voronoi neighbours

and the calculation of their areas; deletion of point P

(Fig. 6B) and the recalculation of the areas. This gives

the areas stolen by P from each of the neighbours—

which form the weights used to estimate P’s elevation,

using a simple weighted average. (See Gold, 1989 for

details.) This method gives a continuous smooth surface

that precisely matches the data elevations. With an

efficient point deletion function this is now easy to

perform.

The work of Thibault and Gold (2000) describes a

method for shape generalization (as in curve smoothing)

based on the crust and skeleton, and then retracting the

minor branches. This relies on our point deletion

algorithm, and re-insertion, to simulate the movement

of points towards the smoother curve. Gold and Condal

(1995) describe the use of the moving-point Voronoi

diagram to simulate the movement of a boat, for

collision detection. This can also be achieved by point

deletion and insertion—and depth soundings, based on

the area-stealing method, may be performed at the same

time. Finally, we are currently completing work on

simulating global tides (Mostafavi and Gold, 2002) by

the movement of individual Voronoi cells representing

fixed-mass packets of water, using the Free-Lagrange

approach of Fritts et al. (1985).

The software provided with this article is intended to

illustrate some interactive applications, in the hope that

the reader may be motivated to extend this to fit his/her

own needs, using the functions provided. The basic

system gives the ability to insert and delete points, while

maintaining the Delaunay triangulation—and, at the

same time, displaying the dual Voronoi diagram. This

tool, in our experience, is a sufficiently interesting ‘‘toy’’

to allow the development of new ideas and applications.

The operation is simple—a left-button mouse click adds

a point at that location, and a right-click deletes the

closest point (i.e. the point whose Voronoi cell contains

the cursor). One final display option is given: following

Fig. 8. Voronoi diagram for set of linearly distributed points.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530528

Gold (1999), the Delaunay and Voronoi edge-pairs may

be classified as ‘‘crust’’ or ‘‘skeleton’’, allowing the

generation of connected curves of points, and the

display of the medial axes between them—useful for

generalization and terrain representation.

7. Conclusions

Simple point Voronoi diagrams and Delaunay trian-

gulations have many properties that are highly desirable

for spatial analysis and modelling applications. Their

relatively low usage may be attributed partly to

unfamiliarity, partly because incremental modification

is rarely available, and partly by the unavailability of

simple, robust code. We hope that the code and

algorithms presented here, together with the examples,

will encourage greater exploration of the properties and

applications of this approach to spatial analysis and

data structures.

Acknowledgements

This research was made possible by an operating

grant from Natural Sciences and Engineering Research

Council of Canada, and from the Ministry of Culture

and Higher Education of Iran. The authors gratefully

acknowledge the assistance of Mr. Hugo Ledoux in

program development and testing.

References

Amenta, N., Bern, M., Eppstein, D., 1998. The crust and the

beta-skeleton: combinatorial curve reconstruction. Graphi-

cal Models and Image Processing 60, 125–135.

Aurenhammer, F., 1987. Power diagrams: properties algo-

rithms and applications. SIAM Journal of Computing 16,

78–96.

Aurenhammer, F., 1991. Voronoi diagrams—a survey of a

fundamental geometric data structures. ACM Computing

Surveys 23, 345–405.

Blum, H., 1967. A transformation for extracting new descrip-

tors of shape. In: Whaten Dunn, W. (Ed.), Models for the

Perception of Speech and Visual Form. MIT Press, MA,

Cambridge, pp. 153–171.

Delaunay, B., 1934. Sur la sph"ere vide. Bulletin of the Academy

of Sciences of the U.S.S.R. Classe des Sciences Math-
!ematiques et Naturelle, Series 7 (6), 793–800.

Devillers, O., 1999. On deletion in Delaunay triangulations.

15th Annual ACM Symposium on Computational Geome-

try, pp. 181–188.

Fortune, S.J., 1992. Numerical stability of algorithms for 2D

Delaunay triangulations. Proceedings of the Eighth Annual

ACM Symposium on Computational Geometry, pp. 83–92.

Fritts, M.J., Crowley, W.P., Trease, H.E., 1985. The Free–

Lagrange Method: Lecture Notes in Physics, Vol. 238,

Springer, Berlin, 313pp.

Gold, C.M., 1989. Surface interpolation, spatial adjacency and

GIS. In: Raper, J. (Ed.), Three Dimensional Applications in

Geographic Information Systems. Taylor and Francis,

London, pp. 21–35.

Gold, C.M., 1999. Crust and anti-crust: a one-step bound-

ary and skeleton extraction algorithm. Proceedings,

ACM Conference on Computational Geometry, Miami,

pp. 189–196.

Gold, C.M., 2000. An algorithmic approach to a marine GIS.

In: Wright, D., Bartlett, D. (Eds.), Marine and Coastal

Geographical Information Systems. Taylor & Francis,

London and Philadelphia, pp. 37–52.

Gold, C.M., Condal, A.R., 1995. A spatial data structure

integrating gis and simulation in a marine environment.

Marine Geodesy 18, 213–228.

Gold, C.M, Charters, T.D., Ramsden, J., 1977. Automated

contour mapping using triangular element data structures

and an interpolant over each triangular domain. In: George,

J. (Ed.). Proceedings: Siggraph ‘77. Computer Graphics

11(2), 170–175.

Gold, C.M., Nantel, J., Yang, W., 1996. Outside–in: an

alternative approach to forest map digitizing. Inter-

national Journal of Geographical Information Systems 10,

291–310.

Gold, C.M., Snoeyink, J., 2001. A one–step crust and skeleton

extraction algorithm. Algorithmica 30, 144–163.

Green, P., Sibson, R., 1977. Computing Dirichlet tessellations

in the plane. Computing Journal 21, 168–173.

Guibas, L., Stolfi, J., 1985. Primitives for the manipulation of

general subdivisions and the computation of Voronoi

diagrams. Transactions on Graphiques 4, 74–123.

Guibas, L., Mitchell, J.S.B., Roos, T., 1991. Voronoi diagrams

of moving points in the plane. In: Proceedings, 17th

International Workshop on Graph Theoretic Concepts

in Computer Science: Lecture Notes in Computer Science,

Vol. 570, Springer, Berlin, pp. 113–125.

Heller, M., 1990. Triangulation algorithms for adaptive terrain

modelling. In: Proceedings, Fourth International Sympo-

sium on Spatial Data Handling, pp. 163–174.

Lardin, P., 1999. Application de la structure des donn!ees

Voronoi "a la simulation de l’!ecoulement des eaux souter-

raines par diff!erences finies int!egr!ees. M!emoire de ma#ıtrise

en sciences g!eomatiques, Facult!e de foresterie et de

g!eomatique, Universit!e Laval, Qu!ebec, 159p.

Lawson, C.L., 1977. Software for C 1 surface interpolation. In:

Rice, J.R. (Ed.), Mathematical Software III. Academic

Press, New York, NY, pp. 161–194.

Mostafavi, M.A., Gold, C.M., 2002. A global kinetic

spatial data structure for marine simulation. International

Journal of Geographical Information Science (IJGIS),

accepted.

Okabe, A., Boots, B., Sugihara, K., 2000. Spatial Tessellations:

Concepts and Applications of Voronoi diagrams, 2nd

Edition. Wiley, Chichester. 671p.

Sambridge, M., Braun, J., McQueen, H., 1995. Geophysical

parameterization and interpolation of irregular data using

natural neighbours. Geophysical Journal International 122,

837–857.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530 529

Shewchuk, J.R., 1996. Triangle: engineering a 2D quality mesh

generator and Delaunay triangulator. First Workshop on

Applied Computational Geometry, Association for Com-

puting Machinery, Philadelphia, Pennsylvania, pp. 124–133.

Sibson, R., 1981. A brief description of natural neighbour

interpolation. In: Barnett, V. (Ed.), Interpreting Multi-

variate Data. Wiley, New York, pp. 21–36.

Thibault, D., Gold, C.M., 2000. Terrain reconstruction

from contours by skeleton retraction. GeoInformatica 4,

349–373.

Voronoi, G., 1908. Nouvelles applications des param"etres

continus "a la th!eorie des formes quadratiques, deuxi"eme

memoire, recherche sur les parallello"edres primitifs. Journal

f .ur die Reine und Angewandte Mathematik 134, 198–287.

M.A. Mostafavi et al. / Computers & Geosciences 29 (2003) 523–530530

	Delete and insert operations in Voronoi/Delaunay methods and applications
	Introduction
	Background and implementation
	The storage data structure
	Our algorithm for point deletion from Delaunay triangulation
	Algorithm comparison
	Applications
	Conclusions
	Acknowledgements
	References

