

Arc Marine as a Spatial Data Infrastructure: A Marine Data Model Case
Study in Whale Tracking by Satellite Telemetry

by
Brett K. Lord-Castillo

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented November 7, 2007
Commencement June 2008

AN ABSTRACT OF THE THESIS OF

Brett K. Lord-Castillo for the degree of Master of Science in Geography
presented November 7, 2007.
Title: Arc Marine as a Spatial Data Infrastructure: A Marine Data Model
Case Study in Whale Tracking by Satellite Telemetry

Abstract approved:

Dawn J. Wright

The Arc Marine data model is a generalized template to guide the

implementation of geographic information systems (GIS) projects in the

marine environment. Arc Marine developed out of a collaborative process

involving research and industry shareholders in coastal and marine

research. This template models and attempts to standardize common

marine data types to facilitate data sharing and analytical tool

development. The next step in the development of Arc Marine is adaptation

to the problems of specific research communities, and specific programs,

under the broad umbrella of coastal and marine research by community

specific customization of Arc Marine. In this study, Arc Marine was

customized from its core model to fit the research goals of the whale

satellite telemetry tagging program of the Oregon State University Marine

Mammal Institute (MMI). This customization serves as a case study of the

ability of Arc Marine to achieve its six primary objectives in the context of

the marine animal tracking community. These objectives are: 1) to create a

common model for assembling, managing, and publishing tracking data

sets; 2) to produce, share, and exchange these tracking data in a similar

format and standard structure; 3) to provide a unified approach for

community software developers extending the capabilities of ArcGIS; 4) to

extend the power of marine geospatial analysis through a framework for

incorporating object-oriented behaviors and for dealing with scale

dependencies; 5) to provide a mechanism for the implementation of data

content standards; and 6) to aid researchers in a fuller understanding of

object-oriented GISs and the power of advanced spatial data structures.

The primary question examined in this thesis is:

How can the Arc Marine data model be customized to best meet the

research objectives of the OSU MMI and the marine mammal tracking

community, in order to explore the relationship of the distribution and

movement of endangered marine mammal species to underlying physical

and biological oceanographic processes?

The MMI customization of Arc Marine is focused on the use of Argos

satellite telemetry tagging. The customized database schema was

described in Universal Markup Language by modification of the core Arc

Marine data model in Microsoft Visio 2003 and implemented as an ArcGIS

9.2 geodatabase (personal, file, and ArcSDE). Tool development and

scripting were carried out predominantly in Python 2.4.

The two major schema modifications of the MMI customization were

the implementation of the Animal and AnimalEvent object classes. The

Animal class is a subclass of Vehicle and models the tagged animal as a

tracked instrument platform carrying an array of sensors to measure its

environment. The AnimalEvent class represents interactions in time

between the Animal and an open-ended range of event types including

field observations, tagging, sensor measurements, and satellite

geolocating. A programming interface is described for AnimalEvent

(AnimalEventUI) and the InstantaneousPoint feature class

(InstantaneousPointUI) that represents observed animal locations. Further

customization came through the development of a comprehensive

development framework for animal tracking in Arc Marine. This framework

implements front-end analysis tools through Python scripting, ArcGIS

extensions, or standalone applications developed in VB.NET. Back-end

database loading is implemented in Python through the ArcGIS

geoprocessing object and the DB-API 2.0 database abstraction layer.

Through a description of the multidimensional data cube model of

Arc Marine, Arc Marine and the MMI customization are demonstrated to be

foundation schemas for a relational database management system

(RDBMS), object relational database management system (ORDBMS), or

enterprise spatial data warehouse. This modeling method shows that Arc

Marine is built upon atomic measures (scalar quantities, vector quantities,

points, lines, and polygons) that are described by related dimensional

tables (such as time, data parameters, tagged animal, or species) and

concept hierarchies of different levels generalization (for example, tag <

animal < social group < population < species). This data cube structure

further shows that Arc Marine is an appropriate target schema for the

application of on-line analytical processing (OLAP) tools, data mining, and

spatial data mining to satellite telemetry tracking datasets.

In this customization case study, Arc Marine partially meets each of

its six major goals. In particular, the development of the MMI application

development platform demonstrates full implementation of a unified

approach for community software developers. Meanwhile, the data cube

model of Arc Marine for OLAP demonstrates a successful extension of

marine geospatial analysis to deal more effectively with scale

dependencies and a mechanism for the expansion of researchers’

understanding of high power analytical methods.

©Copyright by Brett K Lord-Castillo
November 7, 2007

All Rights Reserved

Master of Science thesis of Brett K. Lord-Castillo presented on November
7, 2007.

APPROVED:

Major Professor, representing Geography

Chair of the Department of Geosciences

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of
my thesis to any reader upon request.

Brett K. Lord-Castillo, Author

ACKNOWLEDGEMENTS

First, I want to thank my committee members: Dawn Wright, Bruce

Mate, Jon Kimerling, and René Reitsma, for their advice, encouragement,

and support.

I would also like to thank Dawn Wright for convincing me to come to

Oregon State over her doctoral alma mater. Dr. Wright has provided me

with a continuous education in GIS beyond all of my classroom

experiences. She has been integral to every part of this project, from my

first placement with the Mate lab to my conference experiences and early

versions of GIS for a Blue Planet to pushing me down the stretch to pull

everything together even as I was constantly looking for new directions to

my work. And most of all, thank you Dawn for the weekly meetings that

provided me with direction, balance, confidence, advice, and a deep

understanding of how GIS changes the world.

I want to thank Gordon Matzke and Larry Becker for their insights

into this academic discipline we call Geography, and for a ride to San

Francisco that was also a trip into West and East Africa. Thank you to

Laurie Becker for the opportunity to write the Katrina exercise and all that I

learned as your teaching assistant. That experience is one of the key

reasons I am in emergency management today. A cheerful thanks to Dr. K,

who always made my day brighter even in the middle of an Oregon winter.

Thank you to the staff and faculty of the Oregon State University

Marine Mammal Institute for all the insights, advice, specs, guidelines,

plans, and encouragement. I am especially grateful to Tomas Follett for his

tireless work on the Arc Marine customization, Andy Weiss for his project

management expertise as well as his career advice, Joel Ortega for his

leadership and knowledge, and Bruce Mate for being the one who made

the MMI GIS project happen. I hope you will have continued success and

look forward to sharing more Python tools with you in the future.

A scurvy thank you to Celeste Barthel, Jed Roberts, Michelle Kinzel,

and the rest of the Rogues of Davy Jones’ Locker. Somehow this crazy

crew kept me sane as I descended into the abyss of database design.

Thanks to Lydia Kamaka’eha Wright, the OSU Geosciences Departmental

Dog, for keeping the lab clean of stray snacks.

I want to extend my appreciation to Hamilton Smillie and the NOAA

Coastal Service’s Center for their support of my work through the

Education and Research Opportunities in Applying GIS and Remote

Sensing in Coastal Resource Management program (NOAA Grant #

NA04NOS4730181). I also want to recognize the family of Arthur Parenzin,

providers of the Arthur Parenzin Graduate Fellowship. With their support, I

was able to travel to the 2007 ESRI International Conference and present

my research. My experiences at that conference provided me new insights

that were central to this research work.

Thank you to the students and faculty of the OSU Marine Resource

Management Program for providing me a challenging academic home

outside the world of GIS and Geography. I want to particularly thank

Michael Harte, Richard Hildreth, Robert Allen, Lori Hartline, Chris

Pugmeier, Miller Henderson, Daniel Smith, Cathleen Vestfals, Susan

Holmes, Topher Holmes, and Mel Agapito for making me feel especially

welcome.

Thank you to my family and my in-laws, who have supported Erika

and I throughout our time in Oregon. I am especially grateful to my sister,

Kendra, and her husband, Clarence, and little Dylan for hosting me in

Milpitas while I attended conferences and seminars.

And finally, my eternal gratitude and love to my wife, Erika Lord-

Castillo. She let me move her away from the Midwest so she could put up

with my stress, exhaustion and late nights as I worked on my classes and

my writing. She handled all those little day to day things (which I really

need to get better at) so I could stay focused on school, all while trying to

manage her own career too. And she even put up with two Oregon winters.

Thank you so much Erika, and I look forward to doing the same for you

now as you dive deeper into the world of Suzuki violin.

TABLE OF CONTENTS

 Page

Introduction ...1

The Arc Marine Initiative..4

The Marine Mammal Institute ..8

Advantages of Satellite Telemetry...11

Research Questions..12

Methods ..14

Argos Satellite Telemetry ..14

A Brief Tour of Arc Marine ...16

Programming languages and software..................................19

Extending Arc Marine ..22

Results ..25

Customizing Arc Marine ..25

Animal ..26
Telemetry ...29
Operations ...31
Tag...33
Filtering ..34

Development Framework ..36

Interfaces...43

Discussion...46

Enhancing Satellite Telemetry...46

Defining feature behaviors...48

Defining information services ..52

TABLE OF CONTENTS (Continued)

 Page

Data warehouse...53
Data Stream...54
Client platform..56
Low level access..57
The Client Side ..58

OLTP and OLAP..59

Arc Marine as a data repository...62

Conceptual Multidimensional Model of Arc Marine................66

The Arc Marine Data Warehouse Design Schema................68

The MeasuredData Star ..72

The LocationSeries Point Star...75

Database Abstraction ..76

Conclusion ..79

References Cited ..86

APPENDICES...93

Appendix A. Arc Marine Data Model Diagrams94

Appendix B. MMI Customization Data Model Diagram..........99

Appendix C. GIS Procedures ..105

Loading LocationSeries Point from Excel.........................105
Loading InstantaneousPoint from OBIS-SEAMAP...........114
Point to Path in Third-Party Extensions............................120
Using LocationSeries in Model Builder.............................124

Appendix D. Python Codebase ...127

LIST OF FIGURES

Figure Page

1. The solution pair generated by Service Argos geolocation.15

2. Snowflake schema of the Animal class object.28

3. AnimalEvent and context-dependent sub-dimensions.30

4. Application Framework. ...39

5. Multidimensional data cube. ..67

6. Concept hierarchy for the Time dimension.68

7. Multidimensional model of the Arc Marine MeshFeature class.71

8. MeasuredData data cube model in core Arc Marine..........................73

9. MeasuredData data cube in the MMI customization.74

LIST OF APPENDIX FIGURES

Figure Page

A1. Structure of InstantaneousPoint ..106

A2. Creating a feature class from an Excel table.107

A3. Arguments for Create Feature Class From XY Table108

A4. Attributes of XYDemonstration ..109

A5. XYDemonstration with InstantaneousPoint schema......................110

A6. Executing the loading of InstantaneousPoint.................................111

A7. Field matching in the Simple Data Loader.....................................112

A8. InstantaneousPoint populated from DemonstrationSet.xls............113

A9. OBIS-SEAMAP dataset browsing screen.114

A10. OBIS-SEAMAP dataset download screen.115

A11. Creating a feature class from the CSV file...................................116

A12. Arguments for Create Feature Class From XY Table for any OBIS-
SEAMAP CSV file ...117

A13. “Dataset” OBIS-SEAMAP schema...118

A14. “Owner” OBIS-SEAMAP schema ..118

A15. MMI sperm whale data with datasets from OBIS-SEAMAP.........119

A16. Setting the Definition Query to exclude “bad” points....................121

A17. Using LocationSeries with Hawth’s Tools....................................122

A18. Using LocationSeries with XTools ...123

A19. Animal paths loaded from XTools output into Track.124

LIST OF APPENDIX FIGURES (Continued)

 Page

A20. Three selection paths. ...125

A21. InstantaneousPoint input to the Kernel Density tool.126

A22. LocationSeries input to Standard Distance geoprocessing script.126

Arc Marine as a Spatial Data Infrastructure: A Marine Data Model Case
Study in Whale Tracking by Satellite Telemetry

Introduction

Within the current presidential administration, President Bush’s 2004

Ocean Action Plan (Committee on Ocean Policy, 2004) includes

reauthorization of the Magnuson-Stevens Fisheries Conservation and

Management Act, the designation of the Northwest Hawaiian Islands

Marine National Monument, and the establishment of the Gulf Coast

Regional Plan. Meanwhile, in the current legislative cycle, the United

States Congress will once again address the National Oceanic and

Atmospheric Administration Act (U.S. House, 2007b), authorization of the

Marine Mammal Rescue Assistance Grant Program (U.S. House, 2007a),

and revision of the Marine Mammal Protection Act (U.S. House, 2007c). In

the atmosphere of these major legislative movements, research interest

continues to grow in the designation and management of protected

regions, habitats, and species in the territorial and economic waters of the

United States.

The management of the nation’s marine ecological resources

depends on the constant improvement of scientific methods and

information resources among the researchers of the marine community.

These improvements must come in the form of better information and

better access to information. To this end, the marine community must

 2

develop standard methods of data management and analysis which

provide rapid dissemination of data, easy comparability of research

findings, and simple means to carry out complex analysis. These are

among the goals of the proposed community developed template, the Arc

Marine data model. The research presented here is foremost an evaluation

of the ability of Arc Marine to reach such goals in the context of a standard

methodology in marine ecology research: marine animal tracking.

Marine animal tracking is a central component of research into the

patterns of movement and distribution for endangered and economically

important marine species. These movement patterns and distributions,

coupled with habitat classification, drive the management of marine

ecological resources. Marine animal tracking attempts to answer a series

of question critical to marine resource management.

• What are the spatial and temporal distributions of key animal

populations?

• How do species interact with each other across their ranges?

• What is the relationship between physical and biological processes and

the distribution and movement of critical marine species?

Discovering the answer to these questions has always required an

expertise in the biological sciences. Now though, remote sensing in the

marine animal tracking field is making major contributions to these

questions.

 3

Satellite telemetry through the Argos system (Boehlert et al., 2001;

Le Boeuf et al., 2000) and the Global Positioning System or GPS (Teo et

al., 2004), geolocation through recorded day length (Hill, 1994; Welch and

Everson, 1999; Boustany, et al., 2002; Shaffer et al., 2005; Wallace et al,

2005; Weng et al., 2005), and archival popup tags (Block et al., 1998;

Dewar et al., 2004; Teo et al, 2004; Block et al., 2005) allows researchers

to examine the behaviors of marine vertebrates without time consuming

and costly direct observation. The gathered data are spatially oriented and

globally distributed. The analysis of these data requires a spatial context,

integration of multiple environmental datasets, and examination at a wide

range of extents and grains. Marine animal tracking researchers are

therefore transforming from marine biologists into marine biogeographers.

With the large datasets involved, researchers now turn to geographic

information science to answer to the basic question of how to explore these

data as well as the deeper question of how to find relationships between

animal distributions and oceanic processes. At this time, such questions

are only being explored at the level of data repositories and scattered pilot

projects. Even at the largest such repository, the Ocean Biogeographic

Information System - Spatial Ecological Analysis of Megavertebrate

Populations project (OBIS-SEAMAP), tools exist for mapping and

animation of any dataset, but only four species specific pilot projects have

begun to relate marine biogeographic data to other spatial datasets (Read

 4

et al., 2006). One of the key challenges to the advancement of the

research field is the development of a common set of computational and

data management approaches (Block, 2005).

The Arc Marine Initiative

The focus of this case study is further specialized customization of

the Arc Marine data model to meet the data management needs of the

marine animal tracking community. Arc Marine is a geodatabase schema

created by researchers from Oregon State University (OSU), Duke

University, the Danish Hydrological Institute-Water-Environment-Health

(DHI-Water-Environment-Health), and the Environmental Systems

Research Institute (ESRI), as well as a larger team of reviewers and the

input of the marine GIS community at large. Although Arc Marine is

currently application-specific to ArcGIS, it represents a developing and

evolving community standard for marine research. The data model

facilitates the transition of marine geospatial applications to an object-

oriented data model and data structure such as the geodatabase structure

utilized by the ESRI software package ArcGIS 9 (Wright et al., 2005). With

a formal object-oriented data structure, marine biologists can accelerate

analytical research, facilitate collaboration, and increase the efficiency of

ongoing field research.

 5

Arc Marine is the result of an initiative that began with the first ESRI

marine special interest group (SIG) meeting at the ESRI International User

Conference in July 2001 in San Diego, CA (Breman et al., 2002). The

history of Arc Marine, though, extends back beyond that first meeting to

where the marine GIS community expressed interest in developing a

marine data model. In 1999, ESRI introduced ArcGIS 8, and with it the

geodatabase data model (ESRI, 1999). This data model opened up object-

oriented modeling within ArcGIS, and brought a GIS implementation of

relational database management. The generic geodatabase is, thus, a

foundation for application specific data models; and to encourage these

application specific data models, ESRI created the industry data model

initiative (ESRI, 2000b). Starting with the Water Facilities Model, this

initiative has developed a series of industry specific GIS solutions

developed as extensions to the geodatabase data model (ESRI, 2000a).

Intended to reflect best practices in the field, the data models are built on

community standards. In ESRI’s defined development process, an ESRI

industry manager (for Arc Marine, Joe Breman) organizes a core group

representing public and private sectors, business partners, and user

communities (ESRI, 2007b). More essential than the industry manager is

community interest such as that expressed at that 2001 marine SIG

meeting.

 6

For Arc Marine, the initial working group included representatives of

ESRI, Duke University, Oregon State University, and DHI-Water-

Environment-Health. The core group developed a draft marine data model

with informal input throughout the marine GIS community. This community

includes GIS users in academia, resource management, marine industry,

and government who apply GIS solutions to all marine environments from

the deep ocean to coastal estuaries. Through a series of workshops at

Redlands, CA, in 2002 and 2003, the core group took the input of an

expanded informal review team to refine the marine data model from an

initial draft into a mature industry solution. The model was furthered refined

with the input of initial case studies, technical workshops, and conference

paper sessions. The end result of this phase of development was the

publication of the Arc Marine data model in book form (Wright et al., 2007).

See Wright et al. (2007) for a detailed history and discussion of the

development of Arc Marine.

Though the final data model has been published, this is only the

beginning of community development of the data model. This case study

represents one facet of this community development as an attempt to

customize Arc Marine for the marine animal tracking user group. As such,

this case study begins with the archived and live satellite telemetry

datasets of the Oregon State University Marine Mammal Institute (MMI).

Through the customization of Arc Marine, the assembled data of the MMI

 7

can be linked to any other marine data set conforming to the Arc Marine

standards. Information methods developed in this case study can benefit

not just the research of the MMI, but any research program that utilizes

geolocation to study marine ecology. The Arc Marine data model carries

six specific goals (Wright et al., 2007), which can be adapted to the marine

animal tracking community as follows:

1) Create a common model for assembling, managing, and

publishing tracking sets, following industry-standard methods for

dissemination (such as XML and UML).

2) Produce, share, and exchange these tracking data in a similar

format and following a standard structure design.

3) Provide a unified approach that encourages development teams

to extend and improve ArcGIS for marine applications.

4) Extend the power of marine geospatial analysis by providing a

framework for incorporating object-oriented rules and behaviors into data

composed of animal instance locations and dealing more effectively with

scale dependencies.

5) Provide a mechanism for the implementation of data content

standards, such as the OBIS schema extension of the Darwin Core

Version 2 (OBIS, 2005).

6) Aid researchers in a fuller understanding of object-oriented

geographic information systems (GISs), so that they may transition to

 8

powerful data structures such as geographic networks, regions, and

geodatabase relationships within an easily managed context.

Previous case studies have addressed the general suitability of Arc

Marine for most of these goals (Aaby, 2004; Halpin et al., 2004; Andrews

and Ackerman, 2005; Wright et al., 2007). The OBIS-SEAMAP group at

Duke University produced the first application of marine animal tracking

with Arc Marine (Wright et al., 2007, pp. 45-80). This thesis further

examines the effectiveness of Arc Marine in meeting the six goals in a

marine animal tracking context. Particular emphasis is placed on two

areas: first, the implementation of Arc Marine in on-line analytic processing

and data warehousing to enhance data exchange and provide access to

high level data mining techniques; and second, the definition of a marine

animal tracking specific program interface and application framework to

facilitate the development of back end (data extracting, loading, and

cleaning) and front end (querying and analysis) tools.

The Marine Mammal Institute

Since 1983, the MMI has used satellite telemetry tags to track the

movements of the great whales. These investigations have unlocked the

migratory routes and habitats of Right whales, Blue whales, Humpback

whales, Fin whales, Gray whales, and Sperm whales. By mapping the

distributions and abundance of whales throughout their migration, feeding,

 9

and breeding activities, the Marine Mammal Institute hopes to identify

anthropogenic activities, which stifle the recovery of the species. This

research will thus ultimately lead to solutions to enhanced recovery of the

great whales (Sherman 2006). Over the last three decades, the tagging

program has moved from short-range conventional radio tracking to

satellite based radio tags to track whales and dolphins, primarily along the

Pacific and Gulf coasts of North America (Mate, 1989; Mate et al., 1994).

Through this tagging program, the MMI is discovering the distributions and

movements of endangered species whose critical habitats are unknown for

most of the year.

Since 2000, the MMI has worked with the Census of Marine Life’s

Tagging of Pacific Pelagics (TOPP) project. This pilot program, funded by

grants from the Alfred P. Sloan Foundation, NOAA Office of Exploration,

the Office of Naval Research, and many other sources, seeks to explore

the Eastern Pacific from the perspective of twenty-one selected predator

species divided into seven groups: cetaceans, fish, pinnipeds, sea turtles,

seabirds, sharks, and squid (TOPP 2006). Bruce Mate of the MMI is the

Cetacean Group leader. Four cetaceans of the nine species studied by the

MMI are included in the twenty-one selected species: Blue, Fin, Sperm,

and Humpback whales. Under the guidance of TOPP and the MMI, the

group has filled unknown portions of the life histories of these species

including feeding patterns, breeding areas, and migration routes. As the

 10

dataset continues to expand and develop, it is becoming a necessity to tie

this spatial information to the whales’ environment: the physical, chemical,

and biological components of the marine ecosystem.

The four cetacean species (Tagging of Pacific Pelagics, 2006) in the

TOPP project have been selected in part for their significantly overlapping

ranges. Not only does this aid in data analysis, but these overlapping

ranges also allow for the tagging of multiple species in deployment

operations. The datasets produced by the cetacean group are widely

dispersed chronologically, seasonally, and spatially, and are used with data

from bathymetry and chemical, physical, and biological oceanography.

Though much can be learned just from the descriptive aspects of this

information base, ultimately unlocking answers to this central question will

require the consolidation and aggregation of this array of data into

correlative statistical analysis. To this end, the information must be

integrated into a unified spatial database.

The primary goal of the OSU MMI and TOPP Cetacean group is to

find the environmental preferences that determine the critical habits of

endangered whales (Block, 2005). As this body of knowledge develops, the

group can better address the information demands of policy makers

attempting to designate protected areas for the preservation of these

critical habitats and the species which depend on them.

 11

Advantages of Satellite Telemetry

In pursuing the movement and ranges of the great whales, satellite

telemetry provides four key advantages: timeliness, continuous coverage

(Lagerquist et al., 2000), relationships to environmental data (Block, 2005),

and autonomous profiling of the animal's environment (Boehlert et al.,

2001). Timeliness or responsiveness allows remote sensed observations to

translate into key management information in a matter of hours or even

minutes, as opposed to the months needed to fully realize the returns from

marine surveys. The continuous coverage of satellite telemetry means

knowledge of not only an animal's current location, but also where the

animal was last week, next month, next season, or possibly even next

year. The individual can be followed as it moves from breeding grounds

along migration routes to summer ranges. This not only allows the

identification of key habitats and migration routes, but also the

determination of the timing of migration, feeding, and breeding.

The spatial character of these individual movement paths allows

precise coordination with dynamic environmental datasets (Block, 2005).

This allows a deeper understanding of the natural variability in whale

movements and how this variability relates to season, changing

environmental conditions, and underlying geography. Finally, the tagged

whale is able to act much like an autonomous profiling glider (Boehlert et

al., 2001), moving through its critical habitat and recording the

 12

environmental conditions from the animal's point of view. This autonomous

profiling provides a remotely observed view of the critical factors that drive

the decision processes that determine when and where the individual

whale moves.

Research Questions

Bringing the MMI satellite telemetry program together with Arc

Marine generates the central research question of this case study.

How can the Arc Marine Data Model be customized to best meet the

research objectives of the OSU MMI and the marine animal tracking

community?

This primary question leads to two secondary questions.

1) How can a geographic information system implementation

enhance the key advantages of satellite telemetry?

2) In a marine environment with dynamic environmental conditions

across a three-dimensional space, what is the optimal application

framework to allow multi-level access from multiple users?

Customization of Arc Marine for the purposes and requirements of

the MMI is the first step to addressing these questions. This customization

also provides further insight into Arc Marine as a historical data repository,

or data warehouse. Finally, this case study presents the development tools

of a proposed programming structure, application framework, and

 13

multidimensional data view derived from the MMI customization. These

development tools, in turn, facilitate the development of community-wide

tools for data warehousing, back-end data loading, and front-end analysis

(including data mining) that will speed the adoption of Arc Marine as a

marine GIS community standard.

 14

 Methods

Argos Satellite Telemetry

The central focus of this Arc Marine case study is the creation of a

research repository for satellite telemetry data gathered by the OSU-MMI.

The specific field methods employed in this tagging are outside the scope

of this case study, but are covered in detail (including historical

development of tag hardware and deployment techniques) by Mate et al.

(2007). The most important factor in this case study where field methods

are concerned is the use of the Argos data collection and location system.

Argos platform transmitters resolve location using Doppler shift

principles. Argos consists of a network of four polar-orbiting satellites which

circle the earth every 101 minutes. Using the assumption of a stable

transmission frequency and motionless platform, the system can use

multiple measures of Doppler frequency shift to construct a circular solution

set (intersections of spherical distance) around the satellite’s path of

motion. By collecting multiple transmissions (Service Argos requires a

minimum of four passes), the location of the platform is determined with

greater accuracy, resolving into the intersection of this circular solution with

the elevation sphere of the platform (Figure 1). In an ideal situation, the

satellite passes directly over the platform, creating a single point of

tangency with the elevation sphere, but in most the intersection creates a

true location and a mirror point on the opposite side of the satellite’s path.

 15

Although the algorithm for deriving this set is far more complex than

presented here, there are two critical pieces of information for creating tag

behavior. First, nearly all location sets consist of a true position and a

Figure 1. The solution pair generated by Service Argos geolocation.
Adapted from Liaubet and Malardé (2003).

mirror position. Second, the residual error will vary; more transmissions

received and true location closer to the poles will reduce error. Service

Argos returns a probable solution based on the least residual error,

frequency continuity with the last calculated position, and minimum

movement from the last calculated position (Argos, 1990; Kinzel, 2002;

Liaubet and Malardé, 2003). Thus, the data received consist of a solution

pair with one point designated as the most probable solution. In addition to

the probable solution, many other algorithms exist for selecting between

 16

solution pair points. Austin, McMillan, and Bowen (2003) provide an

overview of three common methods used for this process.

The Argos service also returns information on location accuracy.

This accuracy is reported as a location class based on the number of

transmission messages received from the transmitting platform. For class

A and class B, no location accuracy is available due to too few satellite

messages. For class zero location accuracy is 1500 m; class one 1000 m,

class two 350 m, and for class three 150 m (Argos, 1990). In a sample of

sperm whale locations used to test components of the customization, there

was an average difference of 3.6 km between successive locates. Hence,

location accuracy is a small but significant source of error, especially for

those locations with unknown accuracy.

A Brief Tour of Arc Marine

Much of this case study focuses on the creation of a customized

version, or extension in the terminology of class inheritance, of the Arc

Marine data model to fit the specific research objectives of marine animal

tracking. Arc Marine is, foremost, a schema to support data collection on

dynamic and multidimensional marine phenomena in a manner that models

the real world in an object-oriented geodatabase (Wright et al., 2007). This

schema creates distinct community-wide advantages by increasing data

interoperability, reducing analytic complexity, and facilitating tool

 17

development and dataset exchange. For the purposes of customization,

the most important structural aspect of the data model is the availability of

standardized classes to represent model entities and the relational joins,

built in to the model, which provide guaranteed relationships between data

tables for complex querying.

In this study, as suggested by Wright et al. (2005), the core of the

data model is kept intact. All core classes retain their original attributes to

ensure compatibility with code from other sources. As such, class

inheritance is used to create customized versions of core classes. As well,

customizations added to the data model are made as generic and universal

applicable as possible to encourage reuse of the customization by other

developers from the marine animal users group.

A detailed diagram of the Arc Marine schema is presented in

Appendix A, but of the core Arc Marine objects, the three critical objects to

this customization are the InstantaneousPoint feature class, Vehicle marine

object class, and MarineEvent marine object class. InstantaneousPoint is a

point feature representing a unique observation defined in time and space

by geographic coordinates and a timestamp. LocationSeries, a subtype of

InstantaneousPoint, allows for the spatial and temporal sequencing of a

series of points moving through space. Again, each point represents a

single unique observation. In this study, this subtype holds the critical

geometry of satellite locates from the Argos telemetry messages. Animal

 18

tracks (as Track feature classes) are composited from the interpolation of

movement between points. As such, tracks are calculated as on-the-fly

features and not stored in the geodatabase. Typically, this class combined

with the Series object class would define the movement of an animal.

An animal may be modeled in one of several different forms, taking

on different classes depending on the animal's behavior compared to the

object model. Most often, this representation is either as a

MeasurementPoint representing a single observation of the animal in a

survey or as a Series of LocationSeries points and associated Track

representing the movement of a single animal. Yet in this case study, point

modeling was not deemed appropriate for representing a tagged animal.

Complex multi-dimensional data are difficult to connect to single points,

particularly when the data come from multiple sensors that are collecting

between satellite fixes. Much of these data are associated with a time and

an instrument rather than a specific location.

The Vehicle object class is a less utilized class which generally

stores information about a vehicle used during a survey run. Hence, the

object class relates to both the MeasuringDevice object and Track feature

class. Here, the important characteristic of the Vehicle object class is that it

models a moving, instrument-carrying platform. Generally, this would be a

survey vessel, but in this instance the moving, instrument-carrying platform

is an animal.

 19

MarineEvent is meant to be used for linear referencing of time or

distance mileposts (M-values) along linear features such as coastlines or

ship tracks. As mentioned above, data collected from tag instruments are

often associated with a timestamp rather than a location. Thus,

MarineEvent in a timestamp mode is a natural choice for the dynamic

segmentation of animal movement path’s to create spatial locations for

these timestamped data.

In addition to the information in Appendix A, Arc Marine is also

available as an XML schema view from Rehm (2007), as a GML/XML

ontology from Lassoued (2007), and in various diagram forms (including

the UML diagram in Appendix A from Wright, 2007).

Programming languages and software

Development of the MMI extensions to Arc Marine was carried out

primarily with Microsoft Visio 2003 software, with some use of browser-

based UML viewers. After conceptual development of the new class

objects, the objects were converted into UML. This conversion began with

the core data model UML to avoid repetition of the conceptual design

efforts of the Arc Marine group in defining common marine data types. New

domains were added to the existing Domain layer while new classes were

added to additional layers in the UML. All classes inherit behavior from

ESRI Classes::Object. The Visio UML template does contain additional

 20

notes about the usage of certain fields in classes, but no additional code is

contained in the UML template. Within Visio 2003, the UML is exported to

an XML Interchange file to be used as a database template. This XMI file

can then be used with CASE tools in ArcCatalog to create a new instance

of the extended data model to populate a new geodatabase (personal, file,

or ArcSDE) with classes. Records are populated with developed data

loading scripts. For programmatic interactions, field contents are

transferred from database tables into programmatic objects via loading

functions.

As an important note to the process of database schema building in

UML, this export is carried out using the Visio 2003 UML to XMI export

utility available from Microsoft Corporation(2003) in combination with an

ESRI methodology (ESRI, 2003). Microsoft has not made an UML to XMI

export utility available for Visio 2007. Thus, Visio 2007 cannot be used at

this time to generate modified database schemas for use by ESRI CASE

tools. IBM’s Rational Rose product presents an alternative option for a

supported UML building tool with XMI export.

This case study was developed on ArcGIS 9.2 using SQL Server

2005, ArcSDE on SQL Server, and Microsoft Access. The developmental

databases have been instantiated in personal geodatabases while

production is carried out in ArcSDE and SQL Server. The legacy database

resides on a personal geodatabase in Microsoft Access as well as

 21

additional data in Excel spreadsheets and text files. Based on the ArcGIS

9.2 environment as well as the programming team expertise, the choice of

programming languages for development came down to the .NET

framework (in particular VB.NET) and Python. While there are other

languages to consider including C#, C++, and Java, the easy access to

geoprocessor scripting in these two languages and to geodatabase records

through the geoprocessor made VB.NET and Python the natural options in

ArcGIS 9.2. Existing reusable code base for database querying and the

download of satellite telemetry results further supported these choices.

Python development is based on Python 2.4. Not only is this

consistent with the latest release of ArcGIS, but Python 2.4 also makes

available the datetime module that simplifies comparisons between

timestamps. This module is not available in Python 2.1, the version

supported by earlier versions of ArcGIS. As this is an ArcGIS 9.2

programming environment, python modules use the arcgisscripting

module. Previous to version 9.2, geoprocessing scripts relied upon a call to

COM IDispatch to create a geoprocessing dispatch object

(esriGeoprocessing.GPDispatch.1). While this procedure of accessing the

geoprocessor is still available with ArcGIS 9.2, the dispatch object limits

the script execution platform to Windows operating systems. With the

native arcgisscripting module, the scripts are truly cross-platform, but also

are not backwards compatible with the Python 2.1 and COM IDispatch

 22

based environment of earlier versions of ArcGIS. This creates a significant

advantage over Perl, VBScript, and JScript which still rely on the Windows

platform dispatch object for access to the geoprocessor. Use of the

arcgisscripting module, like the GPDispatch, gives cursor access to

database records and provides access to attributes and methods of

geodatabase tables and feature classes. This means that inheritance can

be used to extend the base data model objects and add custom behavior

to the object classes.

Extending Arc Marine

Data model extension development followed an abbreviated form of

the data model design process (Li, 2000; Wright et al., 2005) from external

design to conceptual design to logical design to physical design. The

external design (the simplification from the real world to application scope)

and the bulk of the conceptual design (development of entity-relation

diagrams to populate the model with objects) are represented by the core

Arc Marine data model and should not be replicated. Rather, this

customization required only rudimentary conceptual design of components

specific to this case study and absent from the core model. In particular, no

new spatial objects were developed. Spatial entities were created as child

classes of core classes, inheriting and extended these generic objects with

additional methods (behaviors) and attributes, but not new geometry. All

 23

new entities added to the model are represented in conceptual design as

object classes related to feature classes and not as feature classes

themselves. This particular step ensures that the new classes will interact

appropriate with any spatial analysis tools developed for Arc Marine.

The bulk of the design process occurred in the logical design phase

as entity-relation components were added to the core Arc Marine UML

schema using Microsoft Visio. All elements of the schema at a higher level

than the extended classes were simply carried over without modification

from the ESRI data model and the core Arc Marine data model, greatly

minimizing the scope of the logical design phase.

This implementation in UML, though, only addresses the attributes

of the new object classes and class extensions. Object behavior was

implemented programmatically with further subclassing in the software

development language. Essentially, while the attribute customization takes

place in the logical design, the behavior customization is dependent on the

hardware and software implementation of the model in the physical design.

While development in VB.Net places behavior implementation

squarely in the physical design for the ArcGIS/Windows operating

environment, Python implementations blur the line between logical and

physical design. The cross-platform compatibility of Python means that the

actual programmatic representation of behavior is platform independent.

Only the physical recording of the outcomes of behaviors are specific to the

 24

physical implementation. Essentially, the Python codes become the

importable schema; a strong argument for separating analytic and

behavioral code modules from code modules dealing purely with reading

and updating database records.

Even though the core of the data model is fully retained without

modification, the customization still employs complex database structures.

The implemented geodatabase is still contains highly normalized tables,

join tables, sub-dimensions, context-dependent joins, indexes, and other

optimizations to allow complex querying and reduce redundancy. Though

in some cases, such as with the Animal object class that extends the

Vehicle class, subclassing is used to extend the attributes of core classes,

most often the model is extended by creating relationships to new object

classes subclasses from the ESRI Classes::Object class.

 25

Results

Customizing Arc Marine

The Arc Marine data model customization developed for the MMI

consists only of non-spatial object classes, but with explicit relationships to

spatial marine feature classes. Basic conceptual design for the

customization identified three groups of objects to add to Arc Marine for the

purpose of marine animal tracking. The animal group develops and

expands the base representation of animals as MarinePoints. The

telemetry group directly represents raw data and transformations of the

data including location returns, data quality information, and data collected

from tag sensors. The operations group was developed in relation to the

Cruise object class and Track feature class to provide auxiliary information

about the events represented by those feature classes.

Two new auxiliary entity-relationship groups were also developed:

telemetry tags (and hardware components) and data filtering (with object

modeling of component functions to create a normalized filtering audit trail).

These two groups are used, respectively, for back-end and front-end

functionality outside the data model and intended as a tool for developers.

The new objects in the descriptions below are interchangeable referred to

as class objects and tables. Class objects are, more specifically, the entity

representation in the data model; tables are the logical implementation of

these class objects in a database. The term “table” is used when

 26

discussing how the database representation of the class object is used to

store data or build join relationships to other database tables. The overall

customization is depicted in the UML diagrams of Appendix B.

Animal

The Animal class is a child class of the Vehicle parent class. This

choice is dependent on this particular marine application of the data model.

In other cases, an animal might be better represented as

MeasurementPoint, possibly with related survey data. In this case though,

the animal itself is not an observation but rather it is its own instrument

platform. The animal is carrying a collection of measuring devices that

measure a range of quantities including location, depth, temperature,

salinity, and incident radiation, or even complex attributes like surfacing

rate or dive profile. This is analogous to a ship carrying a conductivity,

temperature, and depth array with a GPS (though greatly miniaturized).

Like a vehicle, an animal creates a Track (recorded by a measuring device)

along which the attached MeasuringDevice array (the tag) records data.

An animal though is not simply a vehicle. As a specialized type of

vehicle, an animal has a species, genotype, sex, social group, and length

(the latter two based on the initial observation of the animal). The Animal

object class is also related to BiopsyInfo, AdoptionInfo, and Species object

classes. The BiopsyInfo object class represents data on individual biopsies

 27

(and the related approach to the animal) and will eventually link to genetic

information beyond the genotype as that part of the MMI program is

developed. AdoptionInfo is an administration table related to fundraising

that can be extremely helpful for such tasks as transmitting a tracking map

for a specific whale to a donor who has adopted that whale. The Species

object class not only avoids the redundancy of repeatedly storing genus,

species, and common name in the animal table, it also allows linking to

species specific information such as maximum speed parameters (in the

SpeedLimit table).

Since the animal is a specialized type of vehicle, it can carry

MeasuringDevices (in this case, the satellite tags) that relate directly to

MeasuredData. These measured data, though, are often derived from raw

satellite telemetry data that can carry poor location accuracy or no location

at all. Additionally, with Argos fixes there are two possible locations. The

animal and the measured data are linked to these quality data and

alternative locations through the AnimalEvent table that is the core fact

table for much of the database (See Figure 2).

 28

Figure 2. Snowflake schema of the Animal class object.
Animal is a dimension table of BiopsyInfo, AdoptionInfo, and AnimalEvent,
while Species is a higher level hierarchy concept of Animal.

As a class object, Animal can be extended with additional methods

and attributes. In operations such as agent-based modeling, this allows the

use of object-oriented programming instead of procedural programming.

The agent model is designed programmatically as a child class of the

Animal class object, allowing full access to the attributes, relationships, and

spatial context of instances of the Animal class. Applying similar object-

oriented strategies to other object entities, such as dynamic coastlines,

environmental mesh models, or prey agents (which can be a separate child

 29

class of Animal) allows for a full agent-based modeling environment in

which individual researchers and developers can add or remove

components without major restructuring of the model code base.

Telemetry

AnimalEvent is the core relational table, or fact table, of the

telemetry portion of the database schema. It anchors the LocationSeries

and Track feature classes to telemetry information stored in the extended

database as well as tying together the animal, tag, and tag deployment

(part of operations) in a star schema. AnimalEvent is similar to the

MarineEvent class, but for time referencing rather than linear referencing

and for both object classes and feature classes. As noted by Wright et al.

(2007, pp. 45-80), MarineEvent is intended to hold only a single value and

cannot respond to the many parameters of an animal sighting. Similarly

with telemetry, a MarineEvent can tie a single value to a specified a start

and end location along a Track. AnimalEvent though can relate complex

parameters (through sub-dimension tables and a relationship to measured

data) to start and stop points in time. Dynamic segmentation along a

timestamped Track fulfills the same geolocating purpose as MarineEvent.

AnimalEvent sub-dimension tables are context dependent (Figure

3). The table joined by AnimalEvent is dependent on the context of the

event. Argos tag collection events link to ArgosInfo, tag deployments link to

 30

DeployInfo, field observations link to ObservationInfo. The number of

potential sub-dimensions is limited only by the number of types of

Figure 3. AnimalEvent and context-dependent sub-dimensions.

interactions with the animal. In particular, each new tag type links to a new

sub-dimension table. As new tag types are added with different auxiliary

attributes, new sub-dimension tables will be added.

Table 1. Context-dependent sub-dimensions of AnimalEvent

DeployInfo Deployment of a measuring device onto an animal
ArgosInfo Auxiliary information, Argos locations
ObservationInfo Auxiliary information, field observations and photos
DerivedInfo Auxiliary information, interpolated or derived location
GPSInfo Auxiliary information, FastlockGPS locations

 31

These sub-dimension tables each carry a one-to-zero-or-one

relationship with the AnimalEvent table; thus the joins from the animal to

event information are context-specific (Figure 3). Though context-specific

joins increase the complexity of query building, this aspect should be

handled seamlessly by the interacting analysis tool. In exchange, the

cardinality of the sub-dimensions is significantly reduced (particularly low

frequency events such as DeployInfo). Note that attributes specifically

needed for analysis are still stored in MeasuredData and spatial

information is still stored in the geometry of feature classes. The

AnimalEvent sub-dimension tables only provide access to auxiliary

information related to a specific event.

Operations

The operations group is divided into two areas, CruiseOperations

and Approaches. CruiseOperations involves a small number of generic

object classes to link field observations to the person making the

observation. Approaches handle the specific operational situation of

approaching an animal and deploying a tag.

CruiseOperations is essentially a customization of the SurveyInfo

aspect of Arc Marine. SurveyInfo links an InstantaneousPoint to a unique

survey operation. This point may represent a sighting, photograph,

deployment, telemetry location, or a wide variety of other features. When

 32

this point is linked to a survey though, that survey has a specific crew,

identified by CrewKey, and specific crew members in that crew, identified

by the Crew class object. Thus, a crew has crew members and carries out

one unique survey. SurveyInfo is also a dimension of the ApproachEvent,

a linking dimension table for the Approach object group.

ApproachEvent is a series of one-to-one related class objects which

describe the specific instance of deploying a tag to an animal. This is an

important special case, as this particular event ties together an Animal and

MeasuringDevice to begin a Series. It is possible to completely omit the

ApproachEvent and simply record which MeasuringDevice has been

deployed to which Animal, but the significance of the event to marine

animal tracking (particularly with the permitting requirements of marine

mammal tracking) warrants specific inclusion in the database schema.

DeployInfo is the linking table for this group. First, this table records a wide

range of event parameters as an AnimalEvent sub-dimension. After all,

deploying a tag to an animal is a rather monumental interaction in the study

of that animal. This table also links to the specific tag deployed in

MeasuringDevice and the ApproachEvent (which links to SurveyInfo and

additional information about the specific approach). Thus, from Animal to

AnimalEvent to DeployInfo to MeasuringDevice, the animal is initially linked

to the tag instruments that it carries.

 33

Tag

The Tag group is the first of the auxiliary groups developed in this

customization. Tag is not directly a necessary component of the complex

relationship between sensor measurements, telemetry, and animal

movement. Rather, the objects in the tag group supply information critical

to the preprocessing of satellite returns as well as the planning of hardware

for future tag deployments. This group is a snowflake schema with

MeasuringDevice, modeling deployed tags, as the central fact table. The

dimensions of this schema are TagType and BitStructure. TagType

represents the specific hardware construction of the tag, including

individual components as a sub-dimension. BitStructure is a binary

decoding class object used in back-end data loading to supply the structure

of raw binary messages from a specific tag.

While Transmitter carries the one-to-many relationship typical of a

dimension table, it is only a descriptive table which supplies the Argos

platform transmitter terminal (PTT) assignment so that the tag’s returns can

be automatically extracted from the text files supplied by Service Argos.

Schedule, and the related ScheduleType and ScheduleDetail, is also not a

dimension of MeasuringDevice. It cannot be used as an aggregating

classification, as indicated by its many-to-one relationship with

MeasuringDevice. Instead, it is another descriptive class object indicating

the duty schedules of a specific tag.

 34

Filtering

While the Tag group including several class objects useful to back-

end data loading, the filtering group is designed to handle the front-end

analytic task of selecting between Argos mirror points. In the context of

other tag types, the filtering group can also be used to indicate variable

uncertainty, accuracy, or the exclusion of potential telemetry zingers.

There are two aspects to the filtering group. Flag, FlagParameter,

Functions, and FunctionParameter, represent information attached,

through flag, directly to an InstantaneousPoint feature. Filter, with

FilterStep and FilterStepParameter, is an audit trail of the specific

processing steps taking to attach flags to an InstantaneousPoint.

Flag, by itself, conveys no information other than the priority, or

reliability, assigned to a point. Reading along a Series of LocationSeries

points, the flags would indicate whether to use a point, use its mirror, move

the point (for example, if it is on land), interpolate a new location, or skip

the point altogether. The FlagParameters indicate the decision process (in

terms of the output of filter functions) used to flag the point. Meanwhile,

Functions and FunctionParameters handle the tasks of moving or

interpolating or even carry instructions on how to construct linear

interpolations between the point and its Series neighbors.

The actual outcome point set from applying filters is not recorded,

only the filtering methodology to go from a base flag set to the flag set used

 35

by the researcher in an analysis. This provides three features of filtering: 1)

the filtering methodology is recorded by research and date used, i.e. an

audit trail for use in later publication, 2) the filtering methodology is readily

repeatable for additional analysis experiments, and 3) the resulting flag set

is readily updated when the base flag set is refreshed with new telemetry

locations from an active tag. To store data filtering and querying choices by

researchers, InstantaneousPoints are assigned a default processing flag

that indicates the origin, validity, and priority of the point for analytic

processing (but no points are discarded). A researcher then works with a

snapshot of the point features by applying a series of filters with

arguments. The first filter will normally execute a query string against the

default flagged set, but the researcher may also first remove default

processing ("unsetting" the flags). This sequence of filter functions and

parameters are saved with a UserID and creation date in Filter, creating an

audit trail of research decisions. As each filter applies a specific function

(FilterStep) with a specific parameter (FilterStep), the snapshot can be

recreated simply by re-executing the saved list against the default

processing set. Filtering methodologies are not part of this object group.

Instead, the FilterStep makes a call to coded filtering methodologies. The

parameters used in that step are called from FilterStepParameter. Finally,

the stack of applied filters is stored with a user stamp and timestamp in

Filter, allowing for the three features mentioned above.

 36

Development Framework

The choice of an application development framework is ultimately

not an exclusive choice. With the geodatabase as a central connection

between modules, it is possible to use a Python script toolbox linked to a

Visual Basic based ArcMap extension, and all in coordination with a

standalone .NET application utilizing multiple languages. In selecting an

application framework, each of the three forms – toolbox, extension, or

stand-alone application – has distinct advantages and disadvantages.

The stand-alone application carries an immediate advantage in

licensing and accessibility. Not every researcher is a GIS analyst; an

individual researcher or lab may have a preference for analysis in MatLab,

R, S+, Excel, or other statistical applications. When distributing the tools to

the tracking community, licensing requirements are reduced to ArcGIS

Engine Runtime rather than an ArcInfo or even ArcSDE license. Yet, this

accessibility of the application is offset by accessibility of the code. VB.NET

carries a high learning curve with less modular code than Python scripting.

Development will likely be centrally driven and the development time for a

full stand alone application can be considerably higher than for an

extension. As well, there must be a limit on the analytical scope of the

application. While .NET allows access to the wide range of ArcGIS

application programming interfaces or APIs, a standalone application

cannot replicate the full spatial analysis and mapping capabilities of

 37

ArcGIS. As a final advantage of the application, many operations, such as

tag hardware inventory and documentation of ship operations, have no

need for the full power of a GIS, and may even be hindered by the reduced

querying abilities of ArcInfo. These types of activities may even be carried

out by a technician or research assistant who does not need access to the

larger geospatial dataset.

An ArcGIS extension carries lower programming overhead than a

stand-alone application, but does not have the modularity and code

accessibility of scripting. An extension, though, does offer true one-stop

access to processing and analysis. The extension gives the ability to

handle auxiliary data and metadata, spatial analysis, mapping, and

querying all within ArcMap or ArcInfo, but with the licensing requirements

of those applications. While such an extension can incorporate import

functions to third-party statistical applications, carrying out data

management in ArcGIS can limit adoption by research centers without

appropriate licenses. Realistically though, many research groups in animal

tracking will have institutional access to these licenses. Once again, the

main disadvantage of an extension is the development time and centrally

driven development. Without widespread adoption of the specific

extension, a situation may emerge where every research group is

reinventing the wheel.

 38

This leaves the final option, Python scripting. The most pressing

disadvantage with developing around a Python toolbox is a lack of access

to the full ArcGIS APIs. While geoprocessor access can carry out many of

the critical analysis and database updating functions, it cannot handle

mapping and visualization tasks. Python, though, is supported by a quick

learning curve that allows rapid development of sophisticated applications.

The language is also strongly supported in multiple scientific communities,

leading to the independent development of advanced graphical user

interfaces (GUIs), statistical modules, and even tools for cross-platform

development with .NET and COM which may provide workarounds for the

API access disadvantage.

The chosen solution uses aspects of each form, though with a focus

on Python scripting. Building on existing code, the standalone application

will handle research and technician level access to update hardware and

operations information or to create filtered data snapshots for analysis. The

first priority, though, is the construction of automated tools for data

updating, filtering, querying and export to analysis datasets. Generating the

procedures in Python creates a rapid, modular development path, while the

scripts can serve as the underlying code behind ArcMap toolbar buttons or

a full-fledged Python-implemented GUI.

 39

Figure 4. Application Framework.
The five major sections of the application framework are the database,
download and data loader, standalone application with filter functions,
analytic toolbox with python geoprocessing scripts, and integrated ArcGIS
extension.

Figure 4 depicts the five major sections of the application framework

that outlines potential future development for the Marine Mammal Institute.

All pieces of the framework center on the animal tracking customized

version of Arc Marine, including snapshot LocationSeries point sets used in

data warehousing. In the upper left, automated daily updating is carried out

by two Python scripts designed in a modular sequence. The first download

script takes a series of connection parameters as an argument. That

connection is used to download text results from Service Argos. The

results are parsed to generate a Transmission container which holds, for

each satellite transmission, PASS and DATA objects which respectively

 40

carry AnimalEvent (ArgosInfo) data and raw binary (MeasuredData). The

second data loader script takes this Transmission container and iterates

through the PASS and DATA objects to construct LocationSeries points

from the PASS data and new MeasuredData records from the DATA

object. MeasuredData records are then reconstructed from the new

MeasuredData (as well as the appropriate AnimalEvents such as GPSInfo

for binary encoded Fastlock GPS results) according to stored procedures

based on tag type. The binary translation procedures are separate from the

data loader which is separate still from the download script. In this manner,

changes to the tag program, database structure, or download service can

each be dealt with separately without having to change the structure of the

other components of the data update path. Each module simply has to

generate return objects conforming to the argument requirements of the

next module.

The next major component of the application framework, in the

upper right of Figure 4, is the standalone application, or researcher/

technician access level. This VB.NET based application implements only

the key advantage of the standalone application: protected access to

feature class snapshots and non-spatial information tables outside of

ArcGIS. This application allows the execution of a limited number of short

repeated operations in a low overhead program. More importantly, it

ensures that the application of data selection filters takes place through a

 41

controlled portal where an audit trail is fully implemented. With a limited

scope, the application also requires a minimal amount of development

time, though it may be replaced in the future by a full-fledged Python

application using Python implementations of Data Access Objects (DAO).

The lower left represents the current emphasis of development, the

analytic toolbox. This toolbox represents a series of Python scripts which

rely on expected interfaces to Arc Marine objects. Thus, these tools can be

shared with other researchers and applied to shared datasets as long as

each data table implements the same standard interface, in this case an

interface based on the InstantaneousPoint class. Though early emphasis

has been on procedural automated geoprocessing, more sophisticated

scripting will be able to handle tasks such as metadata generation, editing,

path generation, and movement modeling.

Finally, the lower right depicts the integrated application, or

extension within ArcGIS. Rather than rewrite effective Python in Visual

Basic or a similar language, this toolbar instead relies mostly on calls to

proven geoprocessing scripts. Unlike the tools, which address Arc Marine

object interfaces, the toolbar will directly access the geodatabase as well

as available ArcGIS APIs. The most critical function of the toolbar will be

the mapping tasks that are not handled effectively by ArcGIS Engine or by

geoprocessing scripts, and menu based access to common export formats.

 42

As identified by Rodman and Jackson (2006), currently available

Python libraries allow for the eventual development of a standalone Python

application in place of the present VB.NET implementation. In particular,

the availability of the geoprocessor and DAO in Python allows for the

combined use of the customized Arc Marine geodatabase, an external

relational database holding non-spatial information, and external DAO read

access to the geodatabase, allowing for faster and more complex queries

(particularly where clauses) among AnimalEvents and auxiliary data tables.

Like in Rodman and Jackson, the MMI project uses WxPython as the

primary GUI library and will use this library not only for stand-alone

application development but also to develop advanced toolbox scripts and

toolbar wizards. The native interface access of WxPython combined with

the cross-platform development of Python (there is even a .NET

implementation known as IronPython) also means that the entire

framework can eventually evolve into a native look and feel cross-platform

application. As a final note, three additional Python libraries of importance

in tool development are Numpy, Matplotlib, and Makepy/pywin32. The first

two libraries allow for the implementation of complex statistical operations,

including an implementation of the plotting library of MatLab.

Makepy/pywin32 is a utility that provides access to COM objects within

Python, creating the potential for access to the ArcObjects COM API from

within Python.

 43

Interfaces

In order to maintain the modularity of code, and thus improve

collaboration in tool development, programmers should attempt to program

to an interface rather than to a specific object implementation. This case

study introduces two such interfaces: InstantaneousPointUI and

AnimalEventUI. AnimalEventUI is specific to this customization of the data

model, while InstantaneousPointUI is a concept that should be applicable

to any implementation of Arc Marine and provides a solid introduction to

the concept of programming to the interface of core classes.

InstantaneousPointUI can be developed by examining the attributes

of the InstantaneousPoint class. Based on its inheritance, this class

contains OBJECTID, Shape, FeatureID, FeatureCode, CruiseID,

TimeValue, ZValue, SurveyID, SeriesID, and PointType. Any

InstantaneousPoint table can be expected to have these attributes, with all

LocationSeries points in the table carrying PointType=4. Thus, the

corresponding interface should implement read access to each of these

attributes, and write access to attributes in non-key fields (TimeValue,

ZValue, and the Shape geometry). Rather than creating encapsulated

code for the class, the read and write behaviors are controlled by editing

and update rules on the database. A tool should not, therefore, be written

to access these key fields unless the tool itself implements update

functions. The tool also should not rely on fields not present in the base

 44

InstantaneousPoint class; only TimeValue, ZValue, and Shape (and

indexes as appropriate).

What does this imply for the development environment? While these

rules may seem simple and straightforward, all too often custom tools are

written to conform to specialized tables. As a result, the user has to go

through a series of exports and transformations to even make a dataset

usable by the tool. Any tool written to conduct analysis on LocationSeries

points should require the InstantaneousPointUI. As a result, the tool will be

guaranteed to function with any other LocationSeries point table. Once a

research group has imported its animal tracking point observations to a

LocationSeries table, no further transformations should be required to use

a shared LocationSeries based tool.

For AnimalEventUI, the rules become more complicated.

AnimalEvent also has context-dependent joins to sub-dimension tables.

The linked sub-dimensions, though, are stored in the EventType field.

Thus, with only access to the EventType domain and AnimalEvent, it is

possible for a tool to gain access to the full event information through

AnimalEventUI. The guaranteed components of AnimalEvent are:

• Index fields (MarineEventID, FeatureID, VehicleID)
• FromLocation (Inherited)
• ToLocation (Inherited)
• DataValue (Inherited)
• TimeValue
• JulianValue
• EventType
• Attribute list of the joined sub-dimension

 45

• Record of the joined sub-dimension

Most AnimalEvent operations will involve either the creation of

LocationSeries points from latitude and longitude information stored in sub-

dimension tables or dynamic segmentation to assign locations to

timestamped events stored in sub-dimension tables. As such,

AnimalEventUI only needs to implement access to the index fields (to

reach the related linear feature and animal), FromLocation and ToLocation

(to dynamically segment the linear feature), TimeValue or JulianValue (for

timestamp dynamic segmentation), and the Attribute list to find locational

attributes. In order to implement AnimalEventUI, sub-dimension tables

must also have the appropriate Lat or Lon prefix on locational attributes (a

simple requirement when Service Argos results already include these

prefixes on downloaded results). Through this interface implementation,

any tool requiring the AnimalEventUI interface will be able to operate on

any AnimalEvent table and its associated sub-dimension tables without

additional transformation of the data. Thus, an operation as complex as

data loading operations on multiple tag types can be executed using a

universal shared tool.

 46

Discussion

Enhancing Satellite Telemetry

One of the key research questions outlined in the introduction of this

thesis was: “How can a GIS enhance the research advantages of satellite

telemetry?” To reiterate, the key advantages are timeliness, relationships

to environmental data, autonomous profiling of the animal’s environment,

and continuous coverage of the animal’s movements. The above results

suggest several key ways in which this customization optimizes Arc Marine

and the application development framework to produce a geographic

information system that maximizes these advantages.

First, the introduction of automation into back-end data loading

greatly increases the timeliness of satellite telemetry data. As processing

time narrows from days to minutes and as manual roadblocks are removed

from the workflow, key findings can be in the hands of researchers more

quickly and with greater relevance to current conditions. Further, the output

of these loading processes to a community standard feature class (the

LocationSeries subtype of InstantaneousPoint) and the steps of the data

loading sequence are modularized. This eases and speeds the transition of

a project to new source data forms, or the addition of loading tools for new

source data forms outside of Argos such as Fastlock GPS.

Second, the introduction of a standardized data model increases the

ability of the researcher to take advantage of the data relationships

 47

between individual animals and their environment as well as spatial and

temporal relationships between animals. These relationships are further

enhanced by introducing interoperable tools operating on interfaces that

allow consistent operation on multiple datasets. Different end user groups

in the marine GIS community will formulate their own community

customizations of Arc Marine. While this will result in a significantly

different appearance from user group to user group and even project to

project, ultimately key geometry and critical supporting object classes will

be nearly universal from group to group and project to project. The result

will be that environmental datasets developed by oceanographers,

ecologists, sociologists, resource managers, marine industries, or any

other GIS users operating in the marine environment will be transferable to

the customized framework of the MMI GIS with minimal transformation and

adaptation. In particular, MMI developed tools that operate on core Arc

Marine classes in the MMI database schema will operate on these same

classes in shared datasets. In turn, shared tools will function on the core

classes retained in the MMI customization.

Third, autonomous profiling of the marine environment is directly

addressed by one of the key MMI customizations. The addition of the

Animal subclass of Vehicle represents a change in modeling viewpoints

from the core Arc Marine schema. Following Boehlert et al. (2001), this

customization fully realizes the conceptualization of the tagged animal as

 48

its own environmental profiling vehicle. The Vehicle platform allows an

Animal to carry an unlimited (at least in the model) array of data collecting

instruments across multiple spatial dimensions and time, moving far

beyond the singular scalar relationships of LocationSeries points to a

Series.

Finally, customization of the data model coupled with a multilevel

development platform allows for the full retention of the complex

multidimensional data observed in continuous coverage of the animal’s

movement paths. In particular, Arc Marine and MMI customized Arc Marine

contain the essential fact table schemas to construct these data models as

data warehouse model. As data warehouses, Arc Marine can be fully

utilized for deep analysis and data mining of integrated historical archives

of multiple marine data types. This change schema function, though,

requires a similar change in mode from the on-line transactional processing

(OLTP) typical of operational relational databases to the on-line analytical

processing (OLAP) characterized by the vast data warehouses of big

business and genetic research.

Defining feature behaviors

For software developers in the marine animal tracking community,

one of the central goals will be to create “smart features” which implement

complex behaviors through relationships, validation rules, topology, and

 49

extended software code (Zeiler, 1999). These behaviors will be primarily

attributed to the LocationSeries points and Track lines which are the spatial

representation of marine animals. The behaviors of these points and lines

reflect both behaviors attached to the tracking device and to the animal.

These behaviors can be divided into two major classes: locating

behaviors and reporting behaviors. Locating behaviors are the methods

through which a specific instance of a given animal is assigned an x, y, and

z coordinate as well as positional error and a timestamp. Reporting

behaviors are methods by which a location series point attaches non-

positional data, for example water temperature measured at the tag, to the

given animal and a location in time and space. Reporting behaviors are

assumed to be the same for all existing tag types even though the types of

non-positional data transmitted may vary from project to project.

There are three categories of reporting behavior: decode data

stream, assign location to data stream, and assign timestamp to data

stream. Data stream decoding is the most fundamental reporting behavior,

but also carries the most complex set of rules. This behavior pertains to

recorded data, such as dive frequency, incident light, pressure, and

temperature, which are linked to a series of tracking positions. Sources can

include live satellite transmission, archived satellite transmission, physical

download from a tag archive, and direct field observations. As these data

are most often received as a binary stream, behavior rules may have to

 50

break this stream down into individual measurements. This type of

behavior is not directly handled in the MMI customization of core Arc

Marine. Instead, the auxiliary object classes of the tag group allow for

storage of the key parameters to parse this stream as part of a back-end

loading tool or front-end analysis tool. While this behavior is generally

handled by processing software, the outputs of this behavior will need

encapsulated object class rules when they are loaded directly into the

tables of the geodatabase.

The assign behaviors give an index to these data, either location or

timestamp. Most often the initial assign behavior will come in the form of a

timestamp collected with the data. The use of this timestamp will vary

depending on the specific parameters of the data, and hence assign rules

can be linked to data parameters. Subsequently, through this use of this

timestamp and existing timestamped LocationSeries points for the same

animal, a geographic coordinate can be assigned to the data. This

assignment is controlled by rules for the assign location behavior, which

are in turn are governed by interpolation methods for animal routes.

Locating behaviors are dependent on the technology of each tag

type. Although locating behavior rules will have to be redefined as new

technologies are developed, many rules will be reusable from tag type to

tag type. The MMI uses positions predominantly from Argos service tags,

although some positions (especially tag deployment locations) come from

 51

GPS receivers. Initial software development has focused strongly on the

Argos tag type, though cooperative efforts with Wildlife Computing are

opening up access to Fastloc GPS tagging raw data that will allow the

programming of advance behavior for those tags.

Although locating behavior rules will be more varied than reporting

behavior, there are five basic categories of locating behaviors: set latitude,

set longitude, set elevation/depth, derive new location, and set quality flag.

For the Argos locations, with solution pairs, the first three behaviors are all

carried out by creating a LocationSeries point for the probable true solution

and the probable mirror solution. The most basic behavior for deriving a

new location is to swap the probable true location with the probable mirror

location, although many different rules can be generated to control when

this swap should happen. Examples of these rules will be discussed later,

but it should be noted that while the rules are dictated by the tracking

technology, the parameters to these rules are based on the animal being

tracked. Lastly, there must be behavioral rules for rejecting both locations.

A basic example of such a rule, assuming the animal is a cetacean

species, would be excluding a solution pair for which both locations fall on

land and outside of beach regions.

The day length-SST tag (Wallace et al., 2005; Weng et al., 2005)

provides a different example of these five behaviors. This tag, designed for

species that spend considerable time near, but not at, the surface, takes

 52

advantage of measured light intensity to calculate day length, and hence

latitude. Longitude can be crudely calculated based on sunrise/sunset, but

this longitude calculation is significantly refined by the addition of sea

surface temperature (SST) from a sensor in the tag instrument array. Sea

surface temperature at the tag is matched with satellite remote sensed

measurement of sea surface temperature to create a refined location

region for the animal. Thus, for the daylight-SST tag, the assign of latitude

and longitude are two separate behaviors with distinctly different data

requirements. Meanwhile, the assign longitude behavior through sea

surface temperature also acts as a separate behavior for deriving a new

location, pointing to the potentials for code reuse even within the same tag

type.

Developing these three reporting behaviors and five locating

behaviors for each tag type increases the potential for generalized tools for

the animal tracking community. When a software developer can rely on the

same methods, regardless of tag type, to prepare data input for analysis,

the development task is simplified considerably while the cross-compatible

of tools between projects is greatly increased.

Defining information services

The MMI schema has three levels of services: back-end or data

stream, data warehouse, and front-end or client platform. These services

 53

can respectively be thought of as input, storage, and output, although each

service type handles all three of those functions to varying degrees. Only

the data warehouse is essential to enterprise application development,

whereas the data stream and client platform represent additional

capabilities, such as automated tag download or Argos filtering, that take

advantage of procedures and parameters stored in the expanded data

model.

Data warehouse

The data warehouse consists of the objects from the base Arc

Marine data model and additional object classes of the animal and

telemetry groups. These classes present a multidimensional view of spatial

geometry and measured data through which front-end services can

conduct detailed analysis. Since the data warehouse classes are

guaranteed to be available to any data stream, they are the primary target

of any back-end data loading applications. Classes outside of this data

warehouse are more project specific and oriented to the development of

project specific tools. Meanwhile, front-end analysis tools are guaranteed a

multidimensional view presented by the data warehouse rather than the

structure of any specific class objects.

Conversely, a data stream back-end or client platform front-end

must function with a geodatabase that implements the data warehouse

 54

objects. So, any additional object requirements for a service must be

added by that service if not already present in the system. Using Argos

filtering as an example, the Argos filtering application expects a table with

Argos flags for each LocationSeries point. If these flags are not available,

then the Argos filtering client will add this table and create flags for all of

the points. The application, though, will not attempt to build a

LocationSeries table nor extract out a LocationSeries table from other data

in the data warehouse.

Data Stream

A data stream is a service that routinely updates the data

warehouse from an external source. Or more ideally, the data stream

would update a transactional form of the MMI customized schema which

then, in turn, would be used to add new data to the analytical, or data

warehouse, form of the schema. A data stream is not a one-time data

loading program that initially populates the data warehouse with records.

Such a one-time use data loader would not have any requirements to store

information. A data stream, though, can store server names, login

information, downloading parameters, records of download times, and

other information useful to automation and coordinating of updating.

An example of a data stream in this case study is the Argos

download service. Service Argos can supply results from a telnet

 55

connection to base server that stores recent satellite returns. This server

interactively provides text results which can be captured.

These satellite returns can be managed interactively. A researcher

telnets to the correct server, enters a name and password, sends a

command to request a data in a specific format for a certain program and

time period, copies that information into a text file, and manually enters it

into a spreadsheet or database. Even the Argos download service can be

used interactively. Once a day the service is manually started and given

the correct login information, program, and time period; the service then

connects to the server, sends the correct command, captures and parses

the text and inserts that information into the database. This interactive

operation of the service, like a one-time use data loader, does not need to

store any parameters in the database, but it does require someone to send

the command every day.

In order to become automated, the data stream needs to keep track

of the same parameters that the user entered. These parameters could be

stored in the program, but placing the storage within the geodatabase

allows the program to simply be pointed at the correct database regardless

of the type of database, the operating system, the file system, or any other

system dependent properties. Even the procedure itself can be stored

directly in the database as a set of several automated services. These

parameter tables and stored procedures are not part of the core data

 56

warehouse, but instead cumulatively make up the auxiliary data stream

level of this customized Arc Marine schema.

Client platform

An interesting analogy for the front-end client platform is the

Facebook Platform of facebook.com (Facebook, 2007). The Facebook

Platform is a standard used when other software authors create programs

to interact with facebook.com. End users of the site first interact with

Facebook’s version of the data warehouse (technically a transactional

database with a significantly different structural optimization from Arc

Marine). They upload a photo and enter their name, email, birthday,

hometown, schools attended and other information in the base Facebook

profile (literally an online version of the classic freshman facebook). This

profile information is stored on the Facebook server according to a specific

data model.

The Facebook Platform then defines what information from this data

model is available to other applications, how this information is accessed,

and finally, how these data interact with the information provided by the

external application. The external application, though, often needs

additional information. Whether this information is survey results, a user’s

movie ratings, or statistics for a simple game, this information is not stored

in facebook.com’s data model. This would require adding thousands of

 57

new fields and a constantly expanding database. Instead external

applications, or clients, store this new information in a separately

maintained database and relate the two information sources through the

user’s identification. When the user’s profile page is constructed, it relies

on the data warehouse and then on the external client database to bring in

all the necessary information to present the overall output of the profile

page.

Low level access

Low level access refers to directly accessing and working with the

information in the data warehouse. In other words, using database

software (such as Microsoft Access or SQL Server SQL Analyzer) to

directly enter input, view data, or send SQL queries to update, select,

append, etc. Normally such query tasks are handled through a database

abstraction layer. For now, a database abstraction layer can be simply

defined as a unified interface to access the features of multiple database

software packages. Rather than reprogramming for the specific syntaxes

and structures of MySQL, SQL Server, or Oracle, the abstraction layer

provides software drivers for each of these systems while a standardized

command set runs each driver in a similar manner, allowing for unified

code. With the existence of data streams and clients, low level access is

restricted down to complex platform-dependent queries (for example, self-

 58

joins, sub-queries with row counts, or correlated queries) that cannot be

handled by database abstraction layer. Further, low level access should

only be utilized for one-time tasks such as initial data loading, backup, or

replication.

Even the data streams and clients should not utilize low level

access, as this removes the universality of these components. These

services should always utilize a database abstraction layer to remove

dependency on the specific physical implementation of the database

schema. For programmed applications, only one-time use data loaders

should ever take advantage of low level access (as these loaders will often

be specifically configured or programmed for a specific project).

The Client Side

The client platform consists of tools for extracting output from the

data warehouse. Clients retrieve snapshot record sets through queries to

the database and use these record sets in reports, statistical analyses, and

models. These clients also utilize the database to store complex

parameters and outputs, such as binary input bit structures and SQL query

strings or final model mesh grids and random walk geometries. An

extensive example of client parameter storage in the case study is the

series of tables that make up the Tag objects. These objects are related to

the core data warehouse classes, but also store additional information on

 59

tag components, bit structures, duty schedules, and other information that

can be used to plan deployments or Argos binary data messages. Yet, they

are only necessary to the function of client tools that access tag information

and are not universal to animal tracking projects. These tables can be

constructed on the fly when an appropriate client application is added

without any changes to the data or structure already present in the

database other than building appropriate table relationships.

OLTP and OLAP

While the front-end and back-end tools present the promise of

automated data processing and simple user interfaces to data, the data

warehouse aspects of Arc Marine and the MMI customization present the

greatest potential for higher level analytic techniques. To reach this level,

the marine geodatabase must be brought over from the desktop use of

transactional relational databases into the enterprise use of on-line

analytical processing.

On-line analytical processing (OLAP) carries a different approach to

data than the more traditional database function of on-line transaction

processing (OLTP). OLTP reflects an operational relational database (Han

and Kamber, 2006). This is like a checkbook register handling day-to-day

tasks like entering new purchases and deposits, correcting mistakes, and

reconciling with the bank’s records. An OLTP system must handle entry,

 60

updating, changes, and all from multiple users making simultaneous

changes and accessing quick views of sections of the database. The

emphasis is on the transaction, a maximum number in a minimum amount

of time. These transactions are of a limited type on a relatively small

number of records, but they require speed and currency with read and

write access.

In contrast, OLAP emphasizes the analysis over the transaction. An

OLAP system is built for a smaller number of users but with more extensive

read access. Write transactions are limited to data cleaning and loading,

while read transactions take the form of complex queries, including high

accuracy consolidation and aggregation over historical data. OLAP is more

akin to a library, where the emphasis is on access instead of updates. The

library is organized along an indexed detailed classification system (such

as the Library of Congress Classification) and uses subject orientation to

summarize and aggregate, optimizing for complex information queries that

can span a wide range of media or sources. Whereas OLTP focuses on

the database client (data entry, clerical, IT staff), OLAP focuses on the

database subject (analysis, management, research staff). In short, OLTP

provides operational support with data input, OLAP provides decision

support with analysis output.

So where does the MMI case study fit into this classification of on-

line transactional processing systems and on-line analytical processing

 61

systems? On the surface, the MMI case study has many operational

requirements, the most prominent of which is the regular download of

Argos satellite returns and the processing of raw data messages from

those returns. Add in the specific operational requirements of linking

derived results to filtering choices, maintaining a filtering audit trail,

recording field data, and storing tag hardware details, and the MMI system

starts to look transaction oriented.

However, the primary goals of the MMI system all reflect a strong

analysis and informational processing focus, ultimately reflecting the

broader scope of decision support for marine managers. The raw data

repository carries an emphasis on long-term information requirements; the

updating from new satellite returns is purely a data loading function. In turn,

the preserved linkage between derived results and processing choices

reflects a subject orientation on experiment repetition rather than

transactional processing of research methods. For an OLTP orientation,

the focus would be instead on preserving the derived snapshots for

continuous manipulation and updating. Even the storage of field data and

hardware details are an OLAP function to be used to examine historical

patterns of data collection and to perform complex analysis (in this case,

binary decoding) on the historical records of raw data messages. The

direct selection of filters in interactive analysis requires a transaction

 62

emphasis, and that aspect of the system falls outside Arc Marine and

within the scope of database meta tables.

Arc Marine as a data repository

Generically, Arc Marine can be referred to as a relational database

model (Codd, 1970), though whether a data storage system based on Arc

Marine constitutes a relational database would depend greatly on the

physical implementation and would be unlikely with modern software under

the formal rules specified by Codd (1985a, 1985b). Arc Marine, though,

branches off into advanced forms of databases: spatial, spatiotemporal,

and object-relational. Ultimately, to meet the goals of this case study as

well as widespread community implementation, it might best be

implemented as a data warehouse rather than a transactional database.

The foundation of Arc Marine is an entity-relationship (ER) model

(see Appendix A). Formulated from the Common Marine Data Types built

by the Arc Marine development team (Wright et al., 2007), the Arc Marine

ER model is the semantic representation of the database management

system that would physically host data based on these Common Marine

Data Types. Each entity in the model corresponds to a relation table with a

key identifier and set of attributes (as depicted in the ER model) that

describe the key, including foreign keys, which represent a description by

the records of another relation table. The relation table itself also holds a

 63

set of attribute tuples, the records or rows of the table, each with a unique

key value. The relationships in the ER model depict those foreign key links

between relation tables. Through the foreign keys, an attribute tuple in one

table, such as the descriptive attributes of a specific whale species in the

Species table, can be linked to that descriptive attribute in another relation

table, the Species foreign key (i.e. species name) for a specific individual

animal. This entity-relationship semantic model provides a direct

foundation for relational database design (Chen 1976; Teoroy et al., 1986).

The advantages of the relational model for databases are discussed further

by Codd (1970 and 1982).

Therefore, taken at its core alone, Arc Marine is a relationship

database schema, but this schema also includes complex objects beyond

simple attribute tuples. In particular, one of Arc Marine’s primary purposes

is to integrate spatial data, in the form of feature classes (vectors) and

mesh grids and volumes (rasters). These spatial data put implementations

of Arc Marine into the realm of spatial databases and spatiotemporal

databases.

Arc Marine can also act as a model for an object-relational

database. Following on the concept of object-oriented databases (Atkinson

et al., 1989), object-relational databases consist of object classes and

instance objects of those classes. Classes can be thought of as the tables

and objects as the tuples of those tables. Indeed, the complex multi-

 64

dimensional modeling representations in Arc Marine might best be

represented in an object-relational form (Stonebraker et al., 1990). Under

this form, the classes of Arc Marine are represented as constructed object

types (e.g., LocationSeries Point, Vehicle, Track, MarineArea) composed

of base types (integer, character field, point, polygon) or other constructed

types. Inheritance in object-relational databases also allows for easy

implementation of class extension. In this case study, Animal is merely

ANIMAL (sex=integer, genotype=c40, estlength=float, social=integer)

inherits Vehicle, in the language of PostgreSQL (Stonebraker et al., 1990)

the Object-Relational Database Management System used by the open-

source GIS GRASS. Or to rephrase, an Animal is an object with the same

attributes of Vehicle (an instrument carrying platform) with the additional

attributes of sex, genotype, estimated length, and social group. The

primary advantage to this object-relational implementation is the ability to

encapsulate data and code into a single object. Thus, the object class

implements behavior as well as descriptions and allows for the

implementation of smart objects. The most fundamental disadvantage,

though, is that there is no support for PostgreSQL, or a similar ORDBS, in

ArcGIS at this time, though such support will be available for ArcSDE in

ArcGIS 9.3 (ESRI, 2007c). Construction of the Arc Marine schema for

GRASS would require an extensive logical reconstruction to replace the

underlying ESRI geodatabase object model (and its corresponding

 65

geodatabase physical implementation) with the PostGIS geodatabase

object model. While this would move Arc Marine outside its application-

specific constraints, as will be reviewed later, object-relational

implementation is more easily achieved through database abstraction and

the encapsulation of complex object behaviors in scripting code.

There is a special consideration for ArcSDE when using Arc Marine

in an OLAP role. ArcSDE has a transaction-optimized query system

specifically geared towards on-line transactional processing. Because of

ArcSDE’s enterprise role in a geographic information system, the software

is geared towards the handling the series of editing transactions that build

up to continuous update of a spatial dataset. As a result, ArcSDE requires

the underlying database structure to be optimized for OLTP and not data

warehousing (particularly important when building ArcSDE on an Oracle

database), resulting in reduced efficiency and accuracy of complex queries

(particularly aggregation across large tables). Despite the attractiveness of

the “enterprise” tag, be aware that enterprise relational database software

is built towards operational processing and may not be the best solution for

scientific analysis (ESRI, 2007a).

Arc Marine’s OLAP role in this case study suggests a different data

repository role for the data model. Arc Marine can serve as the unifying

schema for a data warehouse, as mentioned early in the discussion of data

streams and the client platform. In this study, the data warehouse

 66

encompasses the consolidated multiple source data of the Marine Mammal

Institute. With the generalized schema of the case study, this data

warehouse can be scaled up to multiple projects covering other species,

tracking methods, and auxiliary data types. This data unification role would

cross Arc Marine over from a geodatabase schema into a spatial data

warehouse.

Conceptual Multidimensional Model of Arc Marine

A common conceptual model for the numeric measures accessed

by OLAP tools is the data cube (Gray et al. 1997). This view developed out

of the pivot-table view of front-end spreadsheet software such as Microsoft

Excel (Chaudhuri and Dayal, 1997), and is commonly used to develop

OLAP and data warehousing systems (Li and Wang, 1996; Harvel et al.,

2004; Jensen et al., 2004; Li et al., 2004; Miller 2007). The base of this

model is the atomic numeric measures that are the target of analysis.

These numeric measures carry a set of dimensions, the context of the

measures. A classic example comes from Chaudhuri and Dayal (1997):

For example, the dimensions associated with a sale amount
can be the city, product name, and the date when the sale
was made. The dimensions together are assumed to uniquely
determine the measure. Thus, the multidimensional data
views a measure as a value in the multidimensional space of
dimensions. Each dimension is described by a set of
attributes. For example, the Product dimension may consist
of four attributes: the category and the industry of the
product, year of its introduction, and the average profit
margin. For example, the soda Surge belongs to the category

 67

beverage and the food industry, was introduced in 1996, and
may have an average profit margin of 80%.

Figure 5. Multidimensional data cube.
The atomic measure Sales has three dimensions: Date, Product, and City
(Chaudhuri and Dayal, 1997).

Dimensions may also carry a concept hierarchy. In a concept

hierarchy, each node represents a level of abstraction, arranged from

specialized to generalized. A concept hierarchy may be rolled up

(generalized) or drilled down (specialized) to create different data views for

data exploration (Miller 2007). As an example, a time dimension can have

a hierarchy of “day < {month < quarter; week} < year” (Figure 6).

 68

Figure 6. Concept hierarchy for the Time dimension.
Day can be rolled up day < month < quarter < year or day < week < year.
Drill down operations proceed year > {month > quarter; week} > day (Han
and Kamber 2006).

The Arc Marine Data Warehouse Design Schema

What follows is a description of the data warehouse design schema

for Arc Marine as a multidimensional model. While this schema will support

the use of geographic data mining, the data mining techniques themselves

fall outside the scope of this study. For a more extensive discussion of

spatial data mining, the use of OLAP tools in geographic knowledge

discovery, and an overview of spatial data mining techniques see Miller

 69

(2007); Miller and Han (2001) Chapters 1, 3, and 4; and Han and Kamber

(2006) Chapters 3, 4, and 10.

To begin with, there are three common data warehouse design

schemas: star, snowflake, and fact constellation (Han and Kamber 2006).

A star schema is the most common form and is characterized by a

normalized central fact table containing the atomic measure and dimension

table keys, and a set of denormalized dimension tables. The structure is

termed a star because of the schema graph is typically displayed with the

dimension tables in a radial pattern around the fact table. The snowflake

schema differs from the star schema in that the dimension tables are

normalized into further sub-dimension tables. This normalization reduces

redundancy, saves space, and is easier to maintain. The tradeoff though is

a greater number of joins in query execution. When the dimension tables

are small relative to the fact table (the most common case), the

advantages of normalization are minimal. The fact constellation is a

schema containing multiple fact tables sharing dimension tables. As an

example, a data warehouse containing historical fact tables for shipping,

inventory, and sales would share location and product dimension tables

between the three fact tables. This schema can be thought of as a

collection of star schema, hence the terminology fact constellation.

The mesh features of Arc Marine present a solid example of a data

cube within the Arc Marine data model. The base of this star schema is

 70

also the atomic measure of the mesh feature, the Scalar or Vector

Quantity. Note that the X, Y, and Z components of a vector quantity are

attributes of the fact table, not separate dimensions; aggregation by

individual vector components is not likely to be a useful operation. The two

types of quantities can either be thought of as a single base fact table, or

more accurately two fact tables of a fact constellation which share an

identical set of dimension tables. One of the dimensions of these fact

tables is MeshPoint and the other is Parameter. Each of these represents a

different common form of aggregation for scalar and vector quantities:

aggregating by the same location and aggregating by the same

measurement type. The Mesh itself is not a dimension. Instead, it is part of

the concept hierarchy for the MeshPoint. Though not present in the Arc

Marine schema, this hierarchy can be generalized further from mesh point

to mesh to catalog (an assembly of meshes covering a specific area and

time interval). Additional hierarchies can be added including regions and

time periods. Parameters, as well, can be grouped into higher hierarchies

of common parameter types. This schema is technically a snowflake

schema as MeshPoint is actually a normalized table with dimension Mesh.

It would be possible to create a denormalized view by combining the

tables. In practice, a Mesh is often a composite structure (such as a raster

or grid) containing Mesh Points and quantities without their expression as

 71

separate fact tables, thus representing such a denormalized view of the

multidimensional data cube, or square in this case (Figure 7).

Figure 7. Multidimensional model of the Arc Marine MeshFeature class.

For this case study, LocationSeries Point and MeasuredData are the

central fact tables, with LocationSeries point serving as part of the concept

hierarchy for the Measurement dimension of Measured Data.

MeasuredData represents the atomic measure within the schema, while

features, in this case LocationSeries Point serve as part of the concept

hierarchy for Measurement. LocationSeries (as well as other features) is

also an atomic measure of its own fact tree (sharing a fact constellation

with other feature classes) when it is used for purely analyzing spatial

distribution or movement. A relevant example should help clarify this.

 72

Surfacings are a quantity commonly measured by satellite telemetry

tags on whales. In this simple example, surfacings are just a count of the

number of times the animal reaches the surface (there are other ways to

measure this metric). A data view of animal surfacings focuses on

measured data from the tags and may or may not have a spatial

component. When a spatial component is used, it merely represents an

aggregating spatial area for a count of surfacings. That count is still

contained within the measured data themself, and would rely on a data

view based on the MeasuredData star. Meanwhile, a kernel density or

home range analysis relies only on animal locations and no elements of

measured data. There may be dimensions to the animal locations (animal,

species, location quality), but the atomic measure used in the analytic

calculations is the point feature. Hence, the fact table for kernel density

would be the LocationSeries Point table and the data view would be based

on that table’s star schema.

The MeasuredData Star

MeasuredData is the fact table of star schema represented by a

three dimensional data cube of Measurement, MeasuringDevice, and

Parameter (Figure 8). These dimensions alone do not present interesting

levels of aggregation, but the concept hierarchies for MeasuringDevice and

 73

Measurement introduce significant analytical aggregations, while

Parameter defines data of common types. The

Figure 8. MeasuredData data cube model in core Arc Marine.

MeasuringDevice hierarchy roles up from MeasuringDevice to Vehicle to

the feature class Track. Meanwhile the Measurement concept hierarchy

rolls up to multiple parallels. One of these parallels is the TimeSeries object

class which subsequently rolls up to the MarineFeature classes. The rest of

these parallel hierarchies are the feature classes themselves which

embody spatial and temporal quantities as well as rolling up to higher

 74

aggregations such as surveys, cruises, and series. In the context of the

MMI customization, a fourth dimension is added in the form of AnimalEvent

(Figure 9). The MeasuringDevice concept hierarchy develops a more

significant aggregation by substituting Animal (and hence Species and

higher levels of Animal) for the Vehicle concept level. AnimalEvent not only

allows another route to aggregation by Animal or feature classes, it also

opens up a route to aggregation by the wide array of context-dependent

sub-dimensions. Denormalization relative to specific sub-dimensions can

create multiple sub-cubes by tag type that will allow the relation of

MeasuredData all the way back to raw data messages.

Figure 9. MeasuredData data cube in the MMI customization.
Note that this is a four-dimensional cube, with the fourth dimension,
AnimalEvent, represented as multiple cubes.

 75

One extremely important aspect of the spatial data warehouse is the

ability to aggregate spatially. Any concept hierarchy which can roll up to a

feature class can further roll up to spatial generalizations and even take on

additional dimensions from spatial joins with environmental rasters as

defined in spatial data mining techniques (See Miller 2007 for an extensive

discussion of spatial OLAP operations).

The LocationSeries Point Star

This discussion of the MMI customization of Arc Marine as a spatial

data warehouse closes with an exploration of the spatially oriented

LocationSeries point star. In the MMI customization, LocationSeries point

carries only two object class dimensions, Animal Event and Animal (as

linked through Series). The implications of each of these classes in a

concept hierarchy have been discussed above. It should be particularly

noted that the multidimensional cube of this fact star can be drilled down,

for example from Animal to MeasuringDevice to MeasuredData. Yet,

LocationSeries point, as a spatial feature class, carries an additional spatial

dimension as defined by its spatial geometry. The concept hierarchy of

geographic space has potential levels limited only by the grain and extent

of the dataset. As mentioned above, this spatial dimension also contains

spatial joins to other spatial datasets introduced into the data warehouse.

As a result, the potential for data mining expands out to any form of marine

 76

data linked to Arc Marine, and with it, the potential to more deeply explore

the central question of the MMI program, what is the relationship between

physical and biological process and the distribution and movement of

endangered whale species.

Database Abstraction

As a final special topic, one of the largest barriers to creating a

cross-platform spatial data warehousing solution is the physical

implementation, or adapting the geodatabase schema to the specific

hardware, operating system, and database software. The syntax for a

query in Microsoft Access or SQL Server will differ from the syntax for a

query to MySQL, Oracle, or PostgreSQL. And even the same software

platform can differ when run on Windows, UNIX, Linux, or Max OS.

The Open Database Connectivity (ODBC) specification is one such

abstraction layer in which software specific drivers conform to a defined

application programming interface (API). Rather than having to create a

new code for every software package, a programmer just has to match the

requirements of the API. The API compliant drivers then transform the

programmer’s database requests into the appropriate syntax for that

software.

The ESRI Geodatabase is a similar abstraction layer. The

implementation of the geodatabase will vary depending on the underlying

 77

GIS software (an SDE database is very different from a file geodatabase or

personal geodatabase), the operating system, the file system, and the

database file structure (such as MS Access or Oracle). Yet, a user

accessing the geodatabase through ArcGIS can expect analysis tools,

editing operations, and most of all mapping to work almost identically

regardless of the physical implementation. Even a programmer using a

scripting language or ArcObjects to access the geodatabase (but not the

underlying database) has a defined model (an API) to follow so that the

code functions identically on any combination of hardware and software

running ArcGIS.

For the Python scripting language used by the ArcGIS 9.2 software

environment, access to the underlying database comes through a

database abstraction API know as DB-API 2.0. This Python specific

database abstraction layer is based upon a series of independently written

modules that can connect to a wide range of database types while using

only one program syntax. With the cross-platform compatibility of Python

(as well as other advantages previously explained), the use of DB-API 2.0

allows for cross-platform low level database access as well as higher level

access to the geodatabase through the ArcGIS geoprocessing object.

DB-API 2.0 based code can also read and update a spatial

database independent of ESRI software. This means an ESRI

geodatabase can be directly updated without an active ArcInfo license. A

 78

spatial database implemented in open source PostGIS can be accessed in

the same form with the same code. Therefore, if the Arc Marine schema is

implemented in open source GIS software such as GRASS or MapServer,

Python code written for Arc Marine with the DB-API 2.0 database

abstraction layer will be able to access the implementation without software

changes. Going beyond current software, any future implementation of the

Open Geospatial Consortium’s Simple Features standard will only require

a compliant DB-API 2.0 module in order to be used with the same code

base.

 79

Conclusion

Through the course of this case study in Arc Marine customization,

two key concepts emerged that can help guide the future development of

Arc Marine for animal tracking and as an enterprise on-line analytical

processing structure.

First, Arc Marine takes advantage of the multidimensionality of the

geodatabase object model. The MMI customization pushes that

multidimensionality outwards to add more dimensions (such as time

through AnimalEvent) and broader levels of hierarchy concepts, rolling up

from timestamped data acquisition events to aggregated spatial regions.

This multidimensional view of marine data opens a pathway to the

implementation of high level analytical tools including data warehouses,

OLAP techniques, data mining, and spatial data mining.

Second, Arc Marine creates an expandable platform to drive

community application development. By defining a tracking community

framework with the MMI customization, researchers and programmers from

different projects can develop compatible tools and share compatible

datasets. This will speed data extraction from online repositories such as

OBIS-SEAMAP. The additions of cross-platform Python scripting and

database abstraction will help separate physical implementation decisions

from processing tool choices. Tools developed for the back-end framework

will facilitate data loading and ease the transition to Arc Marine. Tools

 80

developed for the front-end will open up more powerful analytical

techniques and make the adoption of Arc Marine more attractive across the

marine animal tracking community.

This leads to a reevaluation of the six goals of Arc Marine in the

context of the animal tracking community and of the Marine Mammal

Institute customization of Arc Marine.

1) Create a common model for assembling, managing, and

publishing tracking sets, following industry-standard methods for

dissemination (such as XML and UML). Methods and mechanisms for

metadata dissemination were not explored. Despite this, the back-end

framework creates a standardized process for the transfer of datasets (see

Appendix C for an example of an importation tool from OBIS-SEAMAP

published data). By attaching to this data transfer process, the metadata

transfer process can be similarly automated and standardized.

2) Produce, share, and exchange these tracking data in a similar

format and following a standard structure design. The case study

demonstrates the flexibility of the LocationSeries subtype of

InstantaneousPoint in handling a wide array of data types and tag types.

As import/export tools develop, the LocationSeries feature class can evolve

into a system for transfer between geodatabases as well as an archival

form for data warehouses.

 81

3) Provide a unified approach that encourages development teams

to extend and improve ArcGIS for marine applications. Arc Marine’s

rigorous yet general coverage of marine data types and related object

classes proved to be extremely useful in defining a larger application

framework. In particular, the generalized architecture provides a modeling

syntax that can be readily adapted to specific project questions. The

feature class and class object standards act as a de facto API for

programmers in the research field, minimizing the amount of community-

wide redundancy in application development.

4) Extend the power of marine geospatial analysis by providing a

framework for incorporating object-oriented rules and behaviors into data

composed of animal instance locations and dealing more effectively with

scale dependencies. While data exchange was facilitated by the back-end

structure, analytical power is increased by the front-end structure. The

easy transformation of Arc Marine into multidimensional views unlocks

higher analysis power. One of the most significant of these powers is the

concept hierarchy that allows aggregation and summarization to move

fluidly between different concept scales, including physical scales. The role

of object-oriented rules still needs further exploration, but the exposure of

the Arc Marine object classes through programming interfaces is an

essential element for meeting this particular goal.

 82

5) Provide a mechanism for the implementation of data content

standards, such as the OBIS schema extension of the Darwin Core

Version 2 (OBIS, 2005). As demonstrated in Appendix C, the standardized

structure of Arc Marine feature classes can be directly translated from a

standardized data content standard. In effect, this provides a reading

mechanism from standardized content into geodatabase storage and direct

display in ArcMap. What is left is to fill the translation gap with other

standards.

6) Aid researchers in a fuller understanding of object-oriented

geographic information systems, so that they may transition to powerful

data structures such as geographic networks, regions, and geodatabase

relationships within an easily managed context. Perhaps the most

significant finding of this case study is that it is possible to build powerful

data models on top of the generic geodatabase data model, and still

present a level of abstraction between the end user and those data

structures. Even though the structure underneath may be multi-

dimensional with branching hierarchies, complex joins, and multiple levels

of processing interfaces, the end user can ultimately manipulate this

structure through a short Model Builder model, simple Python script, quick

ArcMap view, or even an Excel spreadsheet. Powerful modeling concepts

take form in similarly powerful UML visualization tools accessed through a

 83

Visio viewer or web browsers. Real-world phenomena can be represented

as defined objects with expected behaviors and descriptive attributes.

In this MMI customization case study, Arc Marine has provided a

vital link to match a series of XY locations to a broader understanding of

the relationship of those points to their spatial context, the animal, tagging

hardware, locating methods, and the wider array of marine data. It has

opened these points up to new avenues for the programmer, the data

manager, and the analytical researcher. While Arc Marine has shown to be

effective to vary degrees in each of these goals, perhaps in this case study

it has been the most successful in connecting the marine mammal tracking

research field to the broadest powers of GIS and geospatial analysis.

Finally, this study closes with the original research questions posed

to it:

How can the Arc Marine Data Model be customized to best meet the

research objectives of the OSU MMI and the marine animal tracking

community?

How can a GIS implementation enhance the key advantages of

satellite telemetry?

 In a marine environment with dynamic environmental conditions

across a three-dimensional space, what it the optimal application

framework to allow multi-level access from multiple users?

 84

This study is an attempt at a systematic examination of the methods

by which the OSU MMI can push closer towards linking physical and

biological processes to the distribution and movement of endangered

whale species across the many scales of their range. The underlying goal

has been to harness the timeliness, continuous coverage, environmental

relationships and autonomous profiling of satellite telemetry.

New definitions of programmatic and data management frameworks,

from loading to warehousing to analysis, will provide the structure for a

high speed and accurate automated workflow from satellite download to

deep end user analysis. The encompassing object definitions of the core

Arc Marine classes provides a standardizing framework, pointing towards

common paths of import and export between research initiatives that will

be able to publish and subsequently share faster than ever before. Finally,

a fully-developed multidimensional framework allows for the development

of analytical tools across a limitless range of environmental variables and

into the narrowest and broadest scales of the spatial concept hierarchy

crossed by tracks of these critical species.

As automation speeds data acquisition and analysis, the resource

manager will have access to more timely decision support. With

standardization, that same manager will compare across individuals,

populations, species, communities, and regions to delineate critical

resources and critical habitats. As the development community and the

 85

community standard matures, so too will the analytical and visualization

tools, opening up new levels of communication and understanding, not

only for the resource manager but also for the public served by that

manager. Arc Marine will expanded the role of automation, integration, and

communication in the marine resource management dialogue. Through

community support, the Arc Marine data model can transform the marine

mammal community and ultimately impact the overarching goal of the MMI

to push the edge of “best science” and ensure the future survival and

success of endangered whale populations.

 86

References Cited

Aaby, A. A. 2004. Testing the ArcGIS Marine Data Model: Using Spatial
Information to Examine Habitat Utilization Patterns of Reef Fish along the
West Coast of Hawaii. M.S. Thesis. Oregon State University, Corvallis, OR.

Andrews, B. and S. Ackerman. 2005. Geologic sea-floor mapping: Marine
Data Model case study. Proceedings of the 25th Annual ESRI International
User Conference. San Diego, CA: ESRI.

Argos. 1990. User’s manual. Service Argos, Inc.: Landover, MA.

Atkinson, M., F. Banchilhon, D. Dewitt, K. Dittrich, D. Maier, and S. Zdonik.
1989. The object-oriented database system manifesto. Proceedings of the
Deductive and Object Oriented Database Conference: 223-240.

Austin, D., J. I. McMillan, and W. D. Bowen. 2003. A three-stage algorithm
for filtering erroneous Argos satellite locations. Marine Mammal Science.
19: 371-383.

Block, B. A. 2005. Physiological ecology in the 21st century:
Advancements in biologging science. Integrative and Comparative Biology
45: 305-320.

Block, B. A., H. Dewar, C. Farwell, and E. D. Prince. 1998. A new satellite
technology for tracking the movements of Atlantic bluefin tuna.
Proceedings of the National Academy of Sciences USA 95: 9384-9389.

Block, B. A., Teo, S. L. H., Walli, A., Boustany, A., Stokesbury, M. J. W.,
Farwell, C. J., Weng, K. C., Dewar, H. and Williams, T. D. (2005).
Electronic tagging and population structure of Atlantic bluefin tuna. Nature
434,1121 -1127.

Boehlert, G. W., D. P. Costa, D. E. Crocker, P. Green, T. O’Brien, S.
Levitus, and B. J. Le Boeuf. 2001. Autonomous pinnipeds environmental
samplers: Using instrumented animals as oceanographic data collectors.
Journal of Atmospheric and Oceanic Technology 18: 1882-1893.

Boustany, A. M., S. F. Davis, P. Pyle, S. D. Anderson, B. J. Le Boeuf, and
B. A. Block. 2002. Expanded niche for white sharks. Science 415: 35-36.

Breman, J., D. J. Wright, and P. N. Halpin. 2002. The inception of the
ArcGIS Marine Data Model in Marine Geography: GIS for the Oceans and
Seas (ed. Breman, J.) 3-9. ESRI Press: Redlands, CA.

 87

Chaudhuri, S. and D. Umeshwar. 1997. An overview of data warehousing
and OLAP technology. ACM SIGMOD Record. 26(2): 65-74.

Chen, P. P. 1976. The entity-relationship model – toward a unified view of
data. ACM Transactions on Database Systems. 1(1): 9-36.

Codd, E. F. 1970. A relational model of data for large shared data banks.
Communications of the ACM. 13(6): 377-387.

Codd, E. F. 1982. Relational database: a practical foundation for
productivity. Communications of the ACM. 25(2): 109-117.

Codd, E. F. 1985a. Is your DBMS really relational? Computer World.
10/14/1985.

Codd. E. F. 1985b. Does your DBMS run by the rules? Computer World.
10/21/1985.

Committee on Ocean Policy. 2004. U.S. Ocean Action Plan. ONLINE.
Available: http://ocean.ceq.gov/actionplan.pdf, 5/23/2007

Dewar, H., M. Domeier, and N. Nasby-Lucas (2004) Insights into young of
the year white shark, Carcharodon carcharias, behavior in the Southern
California Bight. Environmental Biology of Fishes 70, 133-143.

Duke University Marine Laboratory. 2004. Duke North Atlantic Harbor
Porpoise Tracking. ONLINE. OBIS-SEAMAP. Available:
http://seamap.env.duke.edu/datasets/detail_test/83, 10/9/2007.

Environmental Systems Research Institute (ESRI). 1999. ArcInfo 8: A new
GIS for the new millennium. ONLINE. Available:
http://www.esri.com/news/arcnews/summer99articles/ai8special/ai8_anew
gis.html, 10/5/2007.

ESRI. 2000a. ArcGIS Water Facilities Model. ONLINE. Available:
http://www.esri.com/news/arcnews/fall00articles/arcgis-wfm.html,
10/5/2007.

ESRI. 2000b. ESRI develops industry data models. ONLINE. Available:
http://www.esri.com/news/arcnews/fall00articles/esridevelops.html,
10/5/2007.

 88

ESRI. 2003. HowTo: Visio 2003 Professional UML to XMI export facility
installation. ONLINE. Available:
http://support.esri.com/index.cfm?fa=knowledgebase.techarticles.articleSh
ow&d=26105, 5/23/2007.

ESRI. 2007a. ArcGIS Desktop Help 9.2 – About updating statistics.
ONLINE. Available:
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=About_u
pdating_statistics, 9/30/3007.

ESRI. 2007b. Data Models. ONLINE. Available:
http://www.esri.com/software/arcgis/geodatabase/about/data-models.html,
10/5/2007.

ESRI. 2007c. ESRI Developer Summit 2007 – Questions & Answers.
ONLINE. Available:
http://events2.esri.com/uc/QandA/index.cfm?ConferenceID=3B67AFC7-
D566-ED85-A18E8EFF9B63B57B, 10/7/2007.

Facebook. 2007. Facebook Developers. ONLINE. Available:
http://developers.facebook.com/, 9/30/2007.

Gray, J., S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh. 1997. Data cube: A relational
aggregation operator generalizing group-by, cross-tab and sub-totals. . 1:
29-53.

Halpin, P., B. Best, E. Fujioka, and M. Coyne. 2004. Marine animal
analysis applications. Proceedings of the 24th Annual ESRI International
User Conference. San Diego, CA: ESRI.

Han, J. and M. Kamber. 2006. Data Mining: Concepts and Techniques.
Elsevier, Inc.: San Francisco, CA.

Harvel, L., L. Liu, G. D. Abowd, Y. X. Lim, C. Scheibe1, and C. Chatham.
2004. Context Cube: Flexible and Effective Manipulation of Sensed
Context Data. Pervasive Computing: Lecture notes in computer science.
3001:51-68.

Hill, R. D. 1994. Theory of geolocation by light levels in Elephant Seals:
Population Ecology, Behavior, and Physiology (eds. Le Boeuf, B. J. &
Laws, R. M.) 227-236. University of California Press: Berkeley, CA.

 89

Kinzel, M. R. 2002. Green sea turtles migration in the Gulf of Mexico:
Satellite telemetry and GIS in Marine Geography: GIS for the Oceans and
Seas (ed. Breman, J.) 25-33. ESRI Press: Redlands, CA.

Lagerquist, B. A., K. M. Stafford, and B. R. Mate. 2000. Dive characteristics
of satellite-monitored blue whales (Balaenoptera musculus) off the Central
California Coast. Marine Mammal Science. 16(2): 375-391.

Lassoued, Y. 2007. Arc Marine Ontology in GML/XML Schema. ONLINE.
Available: http://cmrc.ucc.ie/ontologies/interrisk/doc/index.html, 10/5/2007.

Le Boeuf, B. J., D. E. Crocker, J. Grayson, J. Gedamke, P. M. Webb, S. B.
Blackwell, and D. P. Costa. 2000. Respiration and heart rate at the surface
between dives in Northern Elephant Seals. Journal of Experimental Biology
203: 3265-3274.

Li, C. and X. S. Wang. 1996. A data model for supporting on-line analytical
processing. Proceedings of the fifth international conference on Information
and knowledge management table of contents. Rockville, Maryland: ACM,
81-88.

Li, R., 2000. Data models for marine and coastal geographic information
systems in Marine and Coastal Geographical Information Systems (eds.
Wright, D. J. and Bartlett, D. J.) 25-36.Taylor & Francis: London.

Li, X., J. Han, and H. Gonzalez. 2004. High-dimensional OLAP: A minimal
cubing approach. Proceedings of the 30th VLDB Conference. Toronto,
Canada: Very Large Data Base Endowment, 528-539.

Liaubet, R. and J. Malardé. 2003. Argos Location Calculation. Proceedings
of the Argos Animal Tracking Sympsium. Annapolis, MD.

Mate, B., R. Mesecar, and B. Lagerquist. 2007. The evolution of satellite-
monitored radio tags for large whales: One laboratory’s experience. Deep
Sea Research II: Topical Studies in Oceanography. 54(3-4): 224-247.

Mate, B. R. 1989. Watching habits and habitats from Earth satellites.
Oceanus. 32:14-18.

Mate, B. R., K.M. Stafford, R. Nawojchik, and J. L. Dunn. 1994.
Movements and dive behavior of a satellite-monitored Atlantic white-sided
dolphin (Lagenorhynchus acutus) in the Gulf of Maine. Marine Mammal
Science. 10: 116-121.

 90

Microsoft Corporation. 2003. Visio 2003 UML To XMI Export. ONLINE.
Available:
http://www.microsoft.com/downloads/details.aspx?familyid=3DD3F3BE-
656D-4830-A868-D0044406F57D&displaylang=en, 2/18/2006.

Miller, H. J. 2007. Geographic data mining and knowledge discovery in
Handbook of Geographic Information Science (eds. Wilson, J. P. and A. S.
Fotheringham). Blackwell Publishing: Malden, MA.

Miller, H. J. and J. Han. 2001. Geographic Data Mining and Knowledge
Discovery. Taylor and Francis: London, 74-109.

Mote Marine Laboratory. 2007. Casey Key Loggerheads – 2005-2006.
ONLINE. OBIS-SEAMAP. Available: http://www.mote.org/, 10/9/2007.

Ocean Biogeographic Information System (OBIS). 2005. Ocean
Biogeographic Information System. ONLINE. Available: http://iobis.org/faq/,
2/19/2006.

Read, A. J. and Westgate, A. J. 1997. Monitoring the movements of
harbour porpoises (Phocoena phocoena) with satellite telemetry. Marine
Biology. 130: 315-322.

Read, A. J., Halpin, P. N., Crowder, L. B., Best, B. D., Fujioka, E. (Editors).
2006. OBIS-SEAMAP (Spatial Ecological Analysis of Megavertebrate
Populations): mapping marine mammals, birds and turtles. ONLINE.
http://seamap.env.duke.edu, 2/18/2006.

Rehm, E. 2007. ArcGIS Marine Data Model, Example #1: Simple XML
using MDM XML Schema. ONLINE. Available:
http://staff.washington.edu/erehm/mdm/mdm.html, 10/5/2007

Rodman, L. C. and J. Jackson. 2006. "Creating Standalone Spatially-
Enabled Python Applications Using the ArcGIS Geoprocessor,"
Proceedings of the Twenty-Sixth Annual ESRI User Conference, San
Diego, CA, August 2006.

Shaffer, S. A., T. Yann, J. A. Awkerman, R. W. Henry, S. L. H. Teo, D. J.
Anderson, D. A. Croll, B. A. Block, and D. P. Costa. 2005. Comparison of
light and SST-based geolocation with satellite telemetry in free-ranging
albatrosses. Marine Biology 147: 833-843.

Sherman, L. 2006. Tracking the Great Whales. Terra. 1(2):2-8.

 91

Stonebraker, M., L. A. Rowe, and M. Hirohama, The Implementation of
POSTGRES. IEEE Transactions on Knowledge and Data Engineering.
2(1): 125-142.

Tagging of Pacific Pelagics. 2006. ONLINE. Available:
http://www.toppcensus.org/web/Background/Overview.aspx, 2/18/2006.

Teo, S. L. H., A. Boustany, S. Blackwell, A. Walli, K. C. Weng, and B. A.
Block. 2004. Validation of geolocation estimates based on light level and
sea surface temperature from electronic tags. Marine Ecology Progress
Series 283: 81-98.

Teoroy, T. J., D. Yang, and J. P. Fry. 1986. A logical design methodology
for relational databases using the extended entity-relationship model. ACM
Computing Surveys. 18(2): 197-222.

U.S. House, 110th Congress, 1st Session. 2007a. H. R. 1006, Marine
Mammal Assistance. ONLINE. GPO Access. Available:
http://www.gpoaccess.gov/bills/index.html, 4/04/2006.

U.S. House, 110th Congress, 1st Session. 2007b. H. R. 2327, To amend
the Marine Mammal Protection Act of 1972 to strengthen polar bear
conservation efforts, and for other purposes. ONLINE. GPO Access.
Available: http://www.gpoaccess.gov/bills/index.html, 5/23/2006.

U.S. House, 110th Congress, 1st Session. 2007c. H. R. 250, National
Oceanic and Atmospheric Administration Act. ONLINE. GPO Access.
Available: http://www.gpoaccess.gov/bills/index.html, 4/04/2006.

Wallace, B. P., C. L. Williams, F. V. Paladino, S. J. Morreale, R. T.
Lindstrom, and J. R. Spotila. 2005. Bioenergetics and diving activity of
internesting leatherback turtles Dermochelys coriacea at Parque Nacional
Marino Las Baulas, Costa Rica. Journal of Experimental Biology 208:
3873-3884.

Welch, D. W. and J. P. Everson. 1999. An assessment of light-based
geoposition estimates from archival tags. Canadian Journal of Fisheries
and Aquatic Sciences. 56: 1317-1327.

Weng, K. C., P. C. Castilho, J. M. Morrissette, A. M. Landeira-Fernandez,
D. B. Holts, R. J. Schallert, K. J. Goldman, and B. A. Block. 2005. Satellite
tagging and cardiac physiology reveal niche expansion in salmon sharks.
Science 310:104-106.

 92

Wright, D. J. 2007. UML diagrams, Case studies of Arc Marine: The
ArcGIS marine data model. ONLINE. Available:
http://dusk.geo.orst.edu/djl/arcgis/diag.html, 10/5/2007.

Wright, D. J., M. J. Blongewicz, P. N. Halpin, and J. Breman. 2005. A new
object-oriented data model for coasts and oceans. Proceedings of
CoastGIS 2005, 6th International Symposium on Computer Mapping and
GIS for Coastal Zone Management. Aberdeen, Scotland: CoastGIS
International Executive.

Wright, D. J., M. J. Blongewicz, P. N. Halpin, and J. Breman. 2007. Arc
Marine: GIS for a Blue Planet. ESRI Press: Redlands, CA.

Zeiler, M. 1999. Modeling our World. ESRI Press: Redlands, CA.

 93

APPENDICES

 94

Appendix A. Arc Marine Data Model Diagrams

(from Wright, 2007)

 95

 96

 97

 98

 99

Appendix B. MMI Customization Data Model Diagram

 100

 101

 102

 103

 104

 105

Appendix C. GIS Procedures

This appendix represents a sampling of basic GIS procedures and

automation methods as they relate to the use of Arc Marine in marine

animal tracking. The Excel worksheet, DemonstrationSet.xls is an archived

subset of sperm whale tracking data from the Marine Mammal Institute.

These examples use both file geodatabases (.gdb) and personal

geodatabases (.mdb). Each example is appropriate for both types as well

as ArcSDE.

Loading LocationSeries Point from Excel

For an overview of creating an Arc Marine geodatabase from the

core schema or a customized schema, see the Arc Marine Tutorial

available at:

http://dusk2.geo.orst.edu/djl/arcgis/ArcMarine_Tutorial/

1) To begin with, examine the fields in the core version of

Instantaneous Point (Figure A1). Note that the PointType field is set to the

integer “4” for all LocationSeries points in the table. LocationSeries is not

loaded to a separate table, but rather collected with all subtypes of

InstantaneousPoint.

 106

Figure A1. Structure of InstantaneousPoint

2) Shape geometry cannot be created directly from an Excel

spreadsheet into an existing table. That Excel sheet, though, can be used

to generate feature geometry. With LocationSeries, this geometry should

always be created in a feature class and not a shapefile. Shapefiles

 107

truncate time information from a date/time stamp and will result in only

dates being listed in the TimeValue field.

To create the new feature class, expand the Excel file in ArcCatalog

and right-click the sheet containing the feature information. Select the

option Create Feature Class > From XY Table… (Figure A2).

Figure A2. Creating a feature class from an Excel table.

3) Fill out the dialog as follows. Be certain to select an appropriate

coordinate system, as ArcGIS will not select an appropriate one for you. X

and Y may also be, respectively, longitude and latitude depending on how

your data sheet is designed. Notice output is directed to a feature class

inside the Arc Marine geodatabase (MMI.gdb) (Figure A3).

 108

Figure A3. Arguments for Create Feature Class From XY Table

4) Once the new feature class is created (here called

XYDemonstration), browse to it, right-click, and select properties. These

fields will have to be modified to match the schema of InstantaneousPoint

(Figure A4). The names of the fields are not important; rather it is the field

types that must match. (Note that CruiseID in the example is a double,

unlike the short integer field of CruiseID in InstantaneousPoint).

 109

Figure A4. Attributes of XYDemonstration

5) Here is the same table with additional fields added to match the

InstantaneousPoint schema (Figure A5). Fields without data can be

omitted (for example, ZValue was blank for all records in this dataset).

Editing is up to the user. Entire fields can be calculated using the Field

 110

Calculator in ArcMap. For large datasets, it is recommended to use first

load the feature class into a personal geodatabase and utilize Update

queries within Microsoft Access. Then the edited feature class can be

transferred to a file geodatabase.

Figure A5. XYDemonstration with InstantaneousPoint schema

 111

6) Once the schema of the new feature class is edited and fields

transformed to the appropriate data type, InstantaneousPoint can be

loaded. Right-click InstantaneousPoint in ArcCatalog and select Load >

Load Data… (Figure A6).

Figure A6. Executing the loading of InstantaneousPoint

 112

7) Fields are automatically matched by name and type (Figure A7).

A source field can also be set to the correct field when there is a not a

name match. CruiseID as a double cannot be downconverted automatically

to an integer, so this field is unmatched. Loading is still possible, but this

field would then be null.

Figure A7. Field matching in the Simple Data Loader

 113

8) After a quick re-editing of CruiseID, the Simple Data Loader

process is repeated with default values, resulting in a populated

InstantaneousPoint table (Figure A8).

Figure A8. InstantaneousPoint populated from DemonstrationSet.xls

 114

Loading InstantaneousPoint from OBIS-SEAMAP

1) To begin with, point your web browser to

http://seamap.env.duke.edu/datasets (Read et al., 2006) to select

downloadable datasets from the OBIS-SEAMAP Data Distribution server

(Figure A9).

Figure A9. OBIS-SEAMAP dataset browsing screen.

2) When selecting a dataset to download, choose the CSV form.

The shapefile form will truncate time from date/time stamps in the dataset.

The full date/time stamp is preserved in CSV format (Figure A10).

 115

Figure A10. OBIS-SEAMAP dataset download screen.

 116

3) As with the Excel spreadsheet, browse to the CSV file in

ArcCatalog and select Create Feature Class > From XY Table… (Figure

A11). Direct output to a feature class (once again, do not use a shapefile)

and set the X field to _lon and the Y field to _lat. Set your coordinate

system to WGS84 (Figure A12). Each of these values is a standardized

format for OBIS-SEAMAP.

Figure A11. Creating a feature class from the CSV file.

 117

Figure A12. Arguments for Create Feature Class From XY Table for any
OBIS-SEAMAP CSV file

4) There are two main forms for OBIS-SEAMAP datasets at the

point of matching source fields to target fields. For data loading, the only

significant difference is that one form (Figure A13) has an integer “dataset”

field which should be loaded into CruiseID. The other form (Figure A14)

has a string “owner” field which can be loaded into FeatureCode. While

other forms are possible as well, all OBIS-SEAMAP datasets are required

to have the _lon, _lat, and obs_datetime fields, and Seamap will add at

least one identifier field from dataset or owner.

 118

Figure A13. “Dataset” OBIS-SEAMAP schema

Figure A14. “Owner” OBIS-SEAMAP schema

 119

5) Figure A15 shows several datasets loaded simultaneously into

InstantaneousPoint and displayed according to the FeatureCode field.

Multiple datasets can be loaded at the same time if they have matching

schemas (see step 4 above).

Figure A15. MMI sperm whale data with datasets from OBIS-SEAMAP.
MMI sperm whale data is from DemonstrationSet.xls with excluded points
flagged (for example, points on land; Read and Westgate, 1997; Duke
University Marine Laboratory, 2004; Mote Marine Laboratory, 2007; Read
et al., 2007).

 120

Point to Path in Third-Party Extensions

This section demonstrates how to use the Flag table with

LocationSeries point to build linear interpolated tracking paths using two

third-party ArcGIS extensions commonly used in analyzing animal

movement: Hawth’s Tools and XTools. Be aware that Hawth’s Tools is not

being regularly updated for new versions of ArcGIS.

1) Generally, operations with third-party applications will be best

handled with snapshot record sets (i.e. new feature classes pre-built with

joined attributes). The filtering functions of the Marine Mammal Institution

customization will eventually be built to automatically generate such

snapshots. Instead, here Flag was joined to InstantaneousPoint. Note that

the join cannot be a relationship join because of the many to one

relationship from Flag to InstantaneousPoint.

2) With the joined tabled, the dataset is narrowed to only first priority

Argos points with a layer definition query (Figure A16). This eliminates

points that are flagged as “bad” (see Figure A15). The feature class is now

ready for use in third-party extensions.

 121

Figure A16. Setting the Definition Query to exclude “bad” points.

3) Hawth’s tools requires output to a shapefile. The output path can

vary, but all other arguments are standard for any use of

InstantaneousPoint with Convert Locations to Path in Hawth’s tools (Figure

A17). “Make each segment a separate line” is an optional argument

depending on user preference.

 122

Figure A17. Using LocationSeries with Hawth’s Tools

 123

4) Using the “Make One Polyline from Points” tool in XTools is

similarly simple. Output storage should be directed to a feature class for

loading into the Tracks class in Arc Marine. Again, all arguments other than

Output Storage will be identical for any use of Arc Marine with this tool

(Figure A18). The final output is displayed in Figure A19.

Figure A18. Using LocationSeries with XTools

 124

Figure A19. Animal paths loaded from XTools output into Track.
Note that the SeriesID must be manually linked to Animal (Vehicle child
class) to provide a relationship between LocationSeries points and the
associated Track.

Using LocationSeries in Model Builder

Below are several samples demonstrating the use of

InstantaneousPoint in Model Builder to create Arc Marine geoprocessing

tools common to animal tracking.

 125

Figure A20. Three selection paths.
This model shows three examples of how to create model input feature
layers based on an SQL expression as a model parameter. When used in
this manner, SQL Expression Builder is available at run time.

Figure A20 shows three possible methods for delivering

LocationSeries points to Model Builder processes. The SQL Expression

should include the criteria “[PointType]=4” to designate the LocationSeries

subtype of InstantaneousPoint. The top path, Make Query Table, allows for

the use of complex queries that can take advantage of relationship joins

(such as InstantaneousPoint to Series to Animal to Species) built into the

MMI customization or core Arc Marine. This path generates an output table

with feature geometry. The middle path, Select, is the most commonly

used method to deliver LocationSeries to a model process tool. The last

path is used for tools that specifically call for a selection layer or can use a

selection layer. This is identical to use a loaded ArcMap layer as tool input.

Figures A21 and A22 display models utilizing the Select selection

path to generate common analytic outputs

 126

Figure A21. InstantaneousPoint input to the Kernel Density tool.
Raster output is redirected back into the Arc Marine geodatabase.

Figure A22. LocationSeries input to Standard Distance geoprocessing
script.

In the slightly more complex model depicted in Figure A22,

LocationSeries is preselected through use of the Select tool (here labeled

TypeSelect) with the SQL string “[PointType]=4”. SeriesID is a defined

grouping parameter for the Standard Distance script while an additional

SQL expression is available to further define the input LocationSeries

points. By substituting for the Standard Distance script (and with

appropriate parameters in place of SeriesID), this model can be used to

drive any Python script written to use a point feature or written to

specifically use an InstantaneousPoint feature class.

 127

Appendix D. Python Codebase

The following is the Python code base so far with associated

programmer’s notes. At least Python 2. 3 is required (for the datetime

module) and Python 2. 4 is recommended for compatibility with ArcGIS 9.

The only required additional module is adodb (or mxodbc) for use with the

DBTESTING database abstraction layer code. The Marine Geospatial

Ecology Tools (MGET), or GeoEco module, from the Duke Marine

Geospatial Ecology Laboratory (http://code.env.duke.edu/projects/mget/) is

also highly recommended. While MGET metadata references are

integrated into the code base, it is not a required module.

DBTESTING.PY

This is the module in development. At the top are two lines that must

be edited. They store the DSN connection string for the testing (or

production later) database and the default module type. The DSN must be

changed to correct testing database DSN. This is built on the adodb

abstraction layer and conforms to DBAPI 2. 0, so once you change these

entries the rest of the code will need no change. The function

change_db(dsn,module) also allows interactive or programmatic changing

of these defaults (though the change is not stored at this time). dbhelp()

provides command line help on using the connection commands.

viewfield(), insertrow(), and deleterow() are abstraction versions of SQL (so

 128

that the underlying database syntax does not matter to the rest of the

code). insertrow() will need more switches for other data types, in particular

binary large objects (BLOBs) . viewfield() and deleterow() work fine for all

data types. Important note: the date/time data type does not translate

correctly for ODBC. You need to put in program lines to generate the

correct strings instead of using these functions directly in a query. SELECT

queries do work without additional code. As a result, use Julian values in

the MValue field for more consistent date/time comparisons.

ARGOS.PY

There is a lot in this module. If you run it directly, it does an

automated download of Argos using command line arguments. Notice the -

h flag provides help on command line arguments, which are in Unix style.

The one skeleton function right now is InsertDatabase, which should make

a call to the functions in DBTESTING (after its name is changed) to insert

PASS and DATA information into the database. The Call List towards the

top of the file should be very helpful. Error catching is implemented

throughout with lots of commenting.

ARGOSEXPRESSIONS.PY

The regexp objects used by argos.py. Read this one over, especially

the part about how to add new dataline formats. I used the list system so

 129

that argos.py would not have to be recoded for new dataline types. The

exception is if there are more than 4 data fields on one line. That would

require quite a bit of restructuring to argospass.py. argosdata,py, and

argos.py. Note though that this all handles multiline raw data perfectly fine

as long as there are only 4 fields per line.

ARGOSPASS.PY

Represents the PASS object. Has several important object

translating functions. If you want to derive values from information stored in

the pass object, use functions in here.

ARGOSDATA.PY

Same concept as ARGOSPASS, except for the DATA object.

TESTENV.PY

This is a lengthy script that tests new code without having to telnet

into Argos. I used a flash drive as the main directory for running it. It also

shows how the different functions should be used together. Edit line 4 and

5 to reference the location where you have put the test files. These test

files are 070716dg. txt (but you can replace with any downloaded raw diag

file) and 070716. txt (but you can replace with any download raw prv file).

Edit line 6 to reference the directory to save output.

 130

AUTOMATION UTILITIES

autorun.py: Generic script to automatically run another script in the

background at a set time interval.

autoargos.py: Uses Autorun.py to run argos.py every day (downloading

the daily Argos data and archiving it). This must be in the

same directory as argos.py to work correctly, or argos.py

must be in the system search path. Note that this uses a

86400 second timing interval, not a time of day trigger, so

it will always execute a download as soon as it is started.

You can run multiple threads with multiple program

numbers

addstartup.py: This is the "ON" button. Adds a line to the registry to

automatically start autoargos.py when the computer is

started up. Note that this does not use a program number.

You can edit it to do this.

delstartup.py: This is the "OFF" button. Removes the registry line, so

that autoargos.py is not started on reboot. Note that this

does _not_ turn off a running thread of autoargos.py. You

have to break from the running program to do this.

 131

DBTESTING.PY
"""This module provides functions to perform some basic SQL commands"""
import adodb
import sys, datetime
import argospass

#Change this string to change the default target database and database type
#See the adodb documentation for the correct module
#pyodbc is implemented as well
dsnstring = "DSN=mrmtest"
module='odbc'
try:
 conn = adodb.NewADOConnection(module)
 conn.Connect(dsnstring)
except:
 print "Unable to establish a connection with DSN string:",dsnstring
 print sys.exc_info()[:2]
 print "SQL statement will not Execute."
else:
 print "Connected to database '%s' with module '%s'." % (dsnstring,module)
 print "See dbhelp() for information on changing this connection."

def dbhelp():
 print "Use change_db(dsn, newmodule) to change to a different database and database type"
 print "or use change_db(dsn) to change to a different database of the same type."
 print "See the adodb documentation for module types and required extensions."

def change_db(dsn,newmodule = module):
 if conn and conn.IsConnected():
 conn.Close()
 if module == newmod:
 conn.Connect(dsn)
 else:
 conn = adodb.NewADOConnection

def viewfield(field,table,where=None):
 """Returns the results from a SELECT query for FIELD from TABLE using WHERE
criteria"""
 cursor = None
 if conn and conn.IsConnected():
 try:
 if where <> None:
 cursor = conn.Execute('SELECT %s FROM %s WHERE %s' % (field, table, where),)
 else:
 cursor = conn.Execute('SELECT %s FROM %s' % (field,table),)
 except:
 print "viewfield() encountered an error:"
 print sys.exc_info()[1]
 print "SQL Statement:"
 print "SELECT %s FROM %s WHERE %s" % (field, table, where)
 else:
 return cursor

def insertrow(row,table):

 132

 """Inserts one row into a table. row must be a sequence of values."""
 valuelist = []
 if conn and conn.IsConnected():
 for entry in row:
 if isinstance(entry, datetime.datetime):
 valuelist.append(conn.DBTimeStamp(entry))
 elif entry == None:
 valuelist.append('')
 else:
 valuelist.append("'%s'" %str(entry))
 values = ",".join(valuelist) #Comma-delimited values list
 try:
 cursor = conn.Execute('INSERT INTO %s VALUES (%s)' % (table,values),)
 except:
 print "insertrow(%s,%s) not executed." % (row,table)
 print "Statement:"
 print "INSERT INTO %s VALUES (%s)" % (table,values)
 print sys.exc_info()[1]
 else:
 conn.CommitTrans()
 else:
 print "Database connection not found."

def deleterow(criteria,table):
 if conn and conn.IsConnected():
 try:
 conn.Execute('DELETE FROM %s WHERE %s' % (table,criteria),)
 except:
 print "deleterow(%s,%s) not executed." % (criteria,table)
 print sys.exc_info()[1]
 else:
 conn.CommitTrans()
 else:
 print "Database connection not found."

class accessdb():
 """This object holds a series of methods for assessing the MMI Arc Marine
based data repository."""
 def __init__(self):
 self.pttlist=[] #This is the list of active measuring devices
 #Stores tuples in format: (PTT#, program number,DeviceID,VehicleID)
 self.lastupdate = datetime.datetime(1900,1,1)
 self.loadptts()

 def loadptts(self):
 """Loads active PTTs for use by other functions."""
 #Tested
 self.pttlist = []
 p = viewfield('PTT,StartDate,StopDate,ProgramID,DeviceID,VehicleID','MeasuringDevice')
 curr = datetime.datetime.today() - datetime.timedelta(1)
 yest = curr - datetime.timedelta(1)
 for row in p:
 start = conn.TimeStamp(row[1])
 end = conn.TimeStamp(row[2])
 if (start and start <= curr) and (not end or end>= yest):

 133

 self.pttlist.append((row[0],row[3],row[4],row[5]))
 self.lastupdate = datetime.datetime.today()

 def findptt(self,ptt,program = None):
 """Checks if a given PTT and program are active.
Returns VehicleID for the PTT if active.
Without program argument, returns program numbers for ptt if active."""
 #Tested
 #If more than one day since last update, loadptts()
 if self.lastupdate < (datetime.datetime.today() - datetime.timedelta(1)):
 self.loadptts()
 if program:
 for p in self.pttlist:
 if ptt == p[0] and program == p[1]:
 return p[3]
 else:
 progs = []
 for p in self.pttlist:
 if ptt == p[0]:
 print "PTT %s found with program %s" % (ptt, p[1])
 progs.append(p[1])
 if len(progs) > 0:
 return progs
 return False

 def createorphan(self,passobj):
 #Inserts an orphan tag based on the pass object
 #All vehicleIDs are set to the orphan ID of 0 for now
 #But when written, the orphanID must instead by the vehicleID
 #Created when the orphan is inserted in the db
 orphanID = 0
 return orphanID

 def findpass(self,passobj):
 """Checks if a pass object already has been loaded into argosinfo.
 Find records that are the same satellite and device and within one hour"""
 #Tested
 sat = "'%s'" % (passobj.satellite) #Satellite that received the transmission, lf1 criteria
 #MValues work more constistently with underlying databases

 t1 = (passobj.mvalue-(1.0/24)) #Start of 2 hour window as MValue
 t2 = (passobj.mvalue+(1.0/24)) #End of 2 hour window as MValue
 veh = self.findptt(passobj.PTT,passobj.program) #VehicleID, rf2 criteria
 if not veh:
 veh = self.createorphan(passobj)

 #Build query
 lt = "ArgosInfo" #Left table
 rt = "animalevent" #Right table
 lj = "TelemetryId" #Left join field
 rj = lj #Right join field
 lf1 = "satellite" #Left table criteria field 1
 rf1 = "mvalue" #Right table criteria field 1
 rf2 = "vehicleid" #Right table criteria field 2
 joincrit = "%s.%s = %s.%s" % (lt,lj,rt,rj)

 134

 fields ="*"
 tables = "%s INNER JOIN %s ON %s" % (lt,rt,joincrit)
 where = "%s.%s = %s AND %s.%s > %s AND %s.%s < %s AND %s.%s=%s" % (lt,lf1,sat,
rt,rf1,t1, rt,rf1,t2, rt,rf2,veh)

 print fields
 print tables
 print where
 #Send off the query and get results back as a cursor
 cursor = viewfield(fields,tables,where)

 #Check if there are any results
 if cursor:
 records = []
 for row in cursor:
 records.append(row)
 if len(records) < 1:
 self.insertpass(passobj)
 print records
 else:
 print "No cursor"
 #if there are results,
 #if no results, return None
 #If no cursor, there was an error somewhere, report this

 #This part might be complex
 #Three match types (first on data):
 #All old and some new: Add new sensor events and check timedate on old
 #All old and all new: Check timedatas on old
 #Some unmatched old: Fail, a new argosinfo will be built and all new sensor
 # events, old data is untouched
 def finddata():
 #Based on found argosinfo, find matching data objects
 pass
 def updatedata():
 #Update old sensor events. Very complex and needs to return result
 pass
 def insertdata():
 #insert a new sensorevent based on based data
 pass

 def insertpass(self,passobj):
 veh = self.findptt(passobj.PTT,passobj.program) #VehicleID
 if not veh:
 veh = self.createorphan(passobj)
 aerow = [passobj.timevalue,passobj.mvalue,1,veh]
 insertrow(aerow,'AnimalEvent (timevalue,mvalue,eventtype,vehicleid)')
 conn.CommitTrans()
 where = "MValue = %s AND EventType = %s AND VehicleId = %s" %
(aerow[1],aerow[2],aerow[3])
 row = viewfield('*','animalevent',where).FetchRow()
 telemetryid = row[0]
 airow = passobj.insertSQL()
 airow.append(telemetryid)

 135

 fields =
"satellite,lc,iqa,iqb,lat1,lon1,lat2,lon2,Nb_mes,Nb_120dB,Best_level,pass_dur,nopc,freq,telemetry
id"
 insertrow(airow,'ArgosInfo (%s)' % fields)
 conn.CommitTrans()
 #Insert the AnimalEvent and ArgosInfo
 #Make calls to insert the SensorEvents without any checks

try:
 acc = accessdb()
except:
 print "Unable to create database access object."
 print sys.exc_info()[:2]
 print "Arc Marine database access functions will not be enabled."

ARGOS.PY
"""
#--
Tool Name: Download ARGOS data
Source Name: argos.py
Version: ArcGIS 9.2
Author: Brett Lord-Castillo, lordcasb@onid.orst.edu

This tool downloads ARGOS tracking data and loads it into a geodatabase
constructed with the ArcMarineDataModel with MMI tracking customization

Current status: Not integrated with GeoEco metadata checking
Download: Complete, executes from main
Archiving: Complete, executes from main
Parsing: Complete, does not execute in main
Create Objects: Complete, does not execute in main
DB Insert: Partially written, see DBTESTING
#--
"""

#--
#Imports
#--
try:
 from GeoEco.ArcGIS import GeoprocessorManager
 from GeoEco.DynamicDocString import DynamicDocString
 from GeoEco.Internationalization import _
 from GeoEco.Logging import Logger
except ImportError:
 print "Failed to import GeoEco modules."
 print sys.exc_info()[:2]
 print "Proceding, but may cause errors."
from telnetlib import Telnet
from time import strptime
import os, csv, datetime, sys
expressions_loaded = 1
try:
 from argosexpressions import *
except:

 136

 print "Module argosexpressions is not available."
 print "Not able to load regexp definitions for parsing."
 print "Downloading functions still available."
 expressions_loaded = 0
argosobjects_loaded = 1
try:
 from argospass import PASS
except:
 print "Module argospass is not available."
 print "Cannot load to database."
 print "Downloading functions still available."
 argosobjects_loaded = 0
try:
 from argosdata import DATA
except:
 print "Module argosdata is not available."
 print "Cannot load to database."
 print "Downloading functions still available."
 argosobjects_loaded = 0

#--
Call List:
Call InitDownload
Calls ConnectTelnet or ConnectSSH
Returns conn object
Call Download with conn object and date object for start date
Downloads the text files
Returns directory to file
Call Cleanfile with path
Returns path to cleaned file (same file)
Call Parse with filepath to send the file off to be parsed
Returns a list
Three elements: DS headers, DS datalines, and garbage
Two elements: DG blocks, garbage
Call PairedParse with DB blocks, DS Headers, and DS datalines
Return paired blocks as [dg,ds,[dsdata]], unmathced dg, and unmatched ds
Call GenerateObjects with paired blocks from PairedParse
Returns an array of dB ready objects
Call InsertObjects
Insert the data into the dB, doing redundancy checks

class DownloadARGOS(object):
 """Method holding object. Create a DownloadARGOS object to access class methods.
for the download and parsing of Argos data. Raw data is only stored, not decoded."""
 try:
 __doc__ = DynamicDocString()
 except:
 print "Unable to use GeoEco DynamicDocString."

 @classmethod
 def InitDownload(cls, user, password, host = "datadist.argosinc.com", port = 23, method =
"telnet"):
 #Status: Add Metadata
 """Allows switching between download connection methods. This is most useful to

 137

 allow the implementation of SSH or WWW protocols as those become available."""
 if method == "telnet":
 conn = cls.ConnectTelnet(user, password, host, port)
 elif method == "SSH":
 #SSH method is not implemented yet
 conn = cls.ConnectSSH(user, password, host, port)
 #Add more methods here
 else:
 print "Undefined connection method request passed to InitDownload()"
 print "Undefined method:", method
 print "Continuing with no connection..."
 return None
 return conn

 @classmethod
 def ConnectTelnet(cls, sUser, sPassword, sHost, dPort):
 #Status: Add Metadata
 """Uses a telnet object to connect to an ARGOS host using passed arguments
 Returns a telnet connection object."""
 try:
 #Open telnet connection and send username and password
 tn = Telnet(sHost, dPort)
 tn.read_until("Username:", 10)
 tn.write('%s\r' % (sUser))
 tn.read_until("Password:", 10)
 tn.write('%s\r' % (sPassword))
 #Wait for Argos to respond
 tn.expect(["ARGOS READY",],10)
 except:
 print "Error in opening telnet connection"
 print "User: ", sUser
 print "Host: ", sHost
 print "Port: ", dPort
 print sys.exc_info()[:2]
 sys.exit()
 return tn

 @classmethod
 def ConnectSSH(cls, args):
 """#Status: Unwritten, not in use and should not be called"""
 print "SSH method not defined"
 print "Cannot use SSH connections at this time"
 sys.exit("Illegal function call")
 #SSH connection method will go here

 @classmethod
 def Download(cls, connection, directory, program = '',
 start=(datetime.datetime.today()-datetime.timedelta(1))):
 """Uses a connection to an Argos host to download results of PRV and DIAG commands.
This should be accessed programmatically."""
 #Status: Metadata
 #Start must be a date object, defaults to yesterday"""

 #Build command strings
 calldate = datetime.datetime.today() #Date command is being called

 138

 directory = os.path.abspath(directory) #Archive directory
 if not os.path.exists(directory):
 sys.exit("Output directory does not exist")
 try:
 dayofyear = str(start.timetuple()[7]) #Day number for command string
 except AttributeError:
 raise TypeError, "Argument 'start' must be <type 'datetime.datetime'>, not %s" %
type(start)

 #ARGOS command strings. Could add more types of commands here or add switching
 sendPRV = 'PRV/A,%s,DS,%s,\r' % (program, dayofyear)
 sendDIAG = 'DIAG,%s,%s,\r' % (program, dayofyear)

 #Define output files and check if they exist already
 if abs(calldate - start) < datetime.timedelta(2,1):
 #If start date is yesterday, base name on today's date
 #e.g. '070131' for a call on 01/31/2007 for data on 01/30/2007
 outname = calldate.strftime("%y%m%d")
 else:
 #Otherwise, used combined date format
 #e.g. '070131_070128' for a call on 01/31/2007 for data on 01/28/2007
 outname = '%s_%s' % (calldate.strftime("%y%m%d"),start.strftime("%y%m%d"))
 pathprv = os.path.abspath('%s\\%s.txt' % (directory,outname))
 pathdiag = os.path.abspath('%s\\%sdg.txt' % (directory,outname))

 #Download the DS file
 try:
 if os.path.exists(pathprv):
 print "File %s already exists.\nOutput will be appended to this file." % pathprv
 outprv = open(pathprv,'a')
 else:
 print "File %s does not exist.\nCreating file." % pathprv
 outprv = open(pathprv,'w')
 outprv.write("DS\n")
 except IOError:
 sys.exit("Unable to open output file: ", pathprv)
 try:
 connection.write(sendPRV)
 outprv.write(connection.read_until("ARGOS READY", 30))
 except EOFError:
 print "Connection terminated before PRV/A command finished execution."
 except:
 print "Unexpected error:", sys.exc_info()[0]
 raise
 finally:
 outprv.close()

 #Download the DIAG file
 try:
 if os.path.exists(pathdiag):
 print "File %s already exists.\nOutput will be appended to this file." % pathdiag
 outdiag = open(pathdiag,'a')
 else:
 print "File %s does not exist.\nCreating file." % pathdiag

 139

 outdiag = open(pathdiag,'w')
 outdiag.write("DIAG\n")
 except IOError:
 sys.exit("Unable to open output file: ", pathdiag)
 try:
 connection.write(sendDIAG)
 outdiag.write(connection.read_until("ARGOS READY", 30))
 except EOFError:
 print "Connection terminated before DIAG command finished execution."
 except:
 print "Unexpected error:", sys.exc_info()[0]
 raise
 finally:
 outdiag.close()

 #Clean up
 try:
 connection.write("LOGOUT\r")
 connection.close()
 except:
 print "Unexpected error in closing connection:", sys.exc_info()
 print "Attempting to continue..."
 return [pathprv,pathdiag]

 @classmethod
 def CleanFile(cls, infile):
 """Removes bad characters and extra line feeds from downloaded Argos output."""
 #Status: Metadata
 outdir = os.path.dirname(os.path.abspath(infile))
 outfile = os.path.basename(os.path.abspath(infile))
 #Open up output file to be cleaned
 try:
 editfile = open(infile, 'r')
 except IOError:
 print "Unable to open input file: %s" % infile
 raise

 #Open temporary ~ file to hold cleaned output
 try:
 cleanfile = open('%s//~%s' % (outdir,outfile),'w')
 except IOError:
 print "Unable to open temporary file: %s//~%s" % (outdir,outfile)
 editfile.close()
 raise
 #--
 #Write cleaned text to ~ file
 try:
 text = editfile.read()
 except:
 print "Error reading input from %s." % infile
 editfile.close()
 cleanfile.close()
 raise

 llen = 0 #Line length

 140

 white = 1 #All characters in line are whitespace flag
 newline = '' #Stores line to be written

 try:
 #Read character by character and write line by line
 for char in text:
 if ord(char)==10 or ord(char)==13: #End of line encountered
 #Only write lines of more than 1 character and with non-whitespace characters
 if llen > 1 and white==0:
 newline = '%s\n' % newline
 if newline[0] == '/':
 newline = newline [1:]
 cleanfile.write(newline)
 white = 1
 llen = 0
 newline = ''
 else: #End of line not encountered
 newline = '%s%s' % (newline,char) # Add character to line
 if ord(char)<>32: white = 0 # If character is not whitespace, unset white flag
 llen = llen + 1 # Increment line length

 #Write last line if not blank
 if newline <> '':
 newline = '%s\n' % newline
 cleanfile.write(newline)
 except:
 print "Problem encountered during file cleaning."
 raise
 finally:
 #Close files in use
 editfile.close() #Reading from
 cleanfile.close() #Temporary write to
 #--

 #--
 #Copy from temporary file to input file
 try:
 copyfrom = open('%s//~%s' % (outdir, outfile),'r')
 copyto = open(infile,'w')
 except:
 print "Unable to copy from temporary file %s//~%s to %s." % (outdir,outfile, infile)
 raise

 try:
 copyto.write(copyfrom.read())
 except:
 print "Unable to copy from temporary file %s//~%s to %s." % (outdir,outfile,infile)
 print "Attempting to continue with temporary file"
 infile = ''

 copyfrom.close()
 copyto.close()
 #--

 #Cleanup and return path to cleaned file

 141

 if infile:
 try:
 os.remove('%s//~%s' % (outdir, outfile))
 except OSError:
 print "Failed to remove temporary file %s//~%s." % (outdir,outfile)
 return infile
 else:
 #Copy from temporary file failed, so return temporary file.
 return '%s//~%s' % (outdir, outfile)

 @classmethod
 def Parse(cls, infile):
 """Switches the input off to the correct parsing functions.
 Takes a returned array which is outputed to the correct CSV types
 and then puts that data into the correct location."""
 #Status: Metadata

 #Check to make sure argosexpressions.py has been loaded.
 if not expressions_loaded:
 raise ImportError, "Module argosexpressions not loaded. Cannot parse downloaded text."

 #Open the file to be parsed
 try:
 file_type = open(infile, 'r')
 except IOError:
 print "Parse() could not open input file:", infile
 raise

 try:
 #Read in the first line which defines the program output type (DS or DIAG)
 test_type = file_type.readline()

 #parselist stores the lines to be sent to the parsing functions
 parselist = []

 #Read in the file
 for line in file_type.readlines():
 parselist.append(line) #Append any non-termination line
 except IOError:
 print "IOError encountered while reading file %s." % infile
 if len(parselist) > 0:
 #If any lines were received, attempt to parse them
 print " Attempting to continue..."
 else:
 print " Exiting..."
 raise
 finally:
 #Always close the file
 file_type.close()

 #Switch to send file to the correct parser
 if test_type == "DS\n":
 return cls.ParseDS(parselist)
 elif test_type == "DIAG\n":
 return cls.ParseDIAG(parselist)

 142

 #If the right type is not found, cannot parse this file
 print 'First line of file must be "DS" or "DIAG".'
 print 'Unable to read command type. Cannot parse input file.'
 return []

 @classmethod
 def ParseDS(cls, inlist):
 """Should only be called from Parse(). Used to parse PRV command output."""
 #Status: comment, metadata, trap errors

 #Variable List
 hf = 0 # Header Flag
 ff = 0 # Footer Flag
 hcnt = 0 # Header count variable
 #Variables for header/footer information
 headers = ['header','program','ptt','numlines','satellite',
 'LC','date','yr','mon','day','time','hr','min','sec',
 'lat','lon','Z','freq','NumMsg','msgs>-120dB',
 'Best','Freq','IQ',
 'lat1','lon1','lat2','lon2','dateobj']
 #lines start with fields: 0,5,14,20,23

 #Variables for data lines
 dataheaders = ['header','date','year','month','day',
 'time','hour','minute','second',
 'passes','data1','data2','data3','data4','dateobj']
 #lines start with fields: 0,5,9

 #First line of each array is variable names
 wDS = [headers]
 wDSData = [dataheaders]
 garbage = []
 dsline = []
 dataline = []
 lastatts = ['','','','','','','','','']

 if len(inlist) < 1:
 #If empty, only return headers
 return [wDS,wDSData,garbage]
 timestamp = ''
 date_first = ''
 date_last = ''

 for line in inlist:
 if ff == 1: #If in a footer block
 footer2 = fPRVb.match(line)
 if footer2:
 dsline.extend([footer2.group('lat1'),footer2.group('lon1'),
 footer2.group('lat2'),footer2.group('lon2')])
 else:
 #No second line of footer
 dsline.extend(['','','',''])
 ff = 0
 if not timestamp:

 143

 timestamp = date_first
 if date_last:
 date_mid = abs(date_last-date_first)/2
 date_avg = datetime.timedelta(date_mid.days,date_mid.seconds)
 timestamp = date_first + date_avg
 dsline.extend([timestamp])
 wDS.append(dsline)
 else:
 header1 = hPRV.match(line)
 footer1 = fPRVa.match(line)
 if header1:
 if hf == 1:
 #Already in an unterminated block
 #Most likely a one message block
 #Pad out dsline to 28 columns and append
 for n in range(len(dsline),28):
 dsline.extend([''])
 wDS.append(dsline)
 #Encountered start of block
 hcnt = hcnt + 1
 hf = 1
 date_first = ''
 date_last = ''
 header2 = hPRVf.match(line)
 #Start new ds entry
 #All headers have this information
 dsline = [hcnt,header1.group('program'),header1.group('PTT'),
 header1.group('lines'),header1.group('satellite')]
 if header2:
 #Only full headers have this information
 dsline.extend([header2.group('locclass'),header2.group('date'),
 header2.group('yr'),header2.group('mon'),header2.group('day'),
 header2.group('time'),header2.group('hr'),header2.group('min'),
 header2.group('sec'),header2.group('lat'),header2.group('lon'),
 header2.group('Z'),header2.group('freq')])
 timestamp = datetime.datetime(int(header2.group('yr')),int(header2.group('mon')),
 int(header2.group('day')),int(header2.group('hr')),
 int(header2.group('min')),int(header2.group('sec')))
 else:
 #Pad with blanks if not a full header
 dsline.extend(['','','','','','','','','','','','',''])
 elif footer1:
 #Encoutered end of block
 #Reset data line attributes
 lastatts = ['','','','','','','','','','']
 ff = 1
 hf = 0
 dsline.extend([footer1.group('msgs'),footer1.group('dB'),footer1.group('best')])
 dsline.extend([footer1.group('freq'),footer1.group('iqx')+footer1.group('iqy')])
 elif hf == 1:
 #Begin dataline matching
 dataline = [hcnt]
 for datatest in dataopts:
 result = datatest[0].match(line)
 has_attributes = datatest[1]

 144

 numgroups = datatest[2]
 if result:
 if has_attributes:
 #If there are attributes, use those values
 lastatts = [result.group('date'),result.group('yr'),
 result.group('mon'),result.group('day'),
 result.group('time'),result.group('hr'),
 result.group('min'),result.group('sec'),
 result.group('passes')]
 date_temp = datetime.datetime(int(result.group('yr')),
 int(result.group('mon')),
 int(result.group('day')),
 int(result.group('hr')),
 int(result.group('min')),
 int(result.group('sec')))
 if not date_first:
 if int(result.group('passes')) ==1:
 date_first = date_temp
 else:
 date_first = date_temp -
datetime.timedelta(0,10*int(result.group('passes')))
 else:
 date_last = date_temp
 else:
 lastatts = ['','','','','','','','',''] #Comment out this line to use attributes of last
data line
 dataline.extend(lastatts)
 n = 0
 while n < numgroups:
 dgrp = 'data%s' % str(n+1)
 dataline.extend([result.group(dgrp)])
 n = n + 1
 while n < 4:
 dataline.extend([''])
 n = n + 1
 #If we find a result, stop testing data formats
 break
 if len(dataline):
 dataline.extend([date_temp])
 wDSData.append(dataline)
 else:
 #If there was no data line match, then line is garbage
 garbage.append(hcnt,line)
 else:
 #Encountered garbage outside a header block, so ref to last header
 garbage.append([hcnt,line])
 #Increment and move to next line
 return [wDS,wDSData,garbage]
 #--

 @classmethod
 def ParseDIAG(cls, inlist):
 """Should only be called from Parse(). Used to parse DIAG command output.
 #Status: Comments, Metadata, Error trapping"""
 #Variable List

 145

 lc = 0 # Line Counter
 hf = 0 # Header Flag
 hcnt = 0 # Header count variable
 garbage = []

 #Variable names for header, line 1, line 2, line 3, line 4, and data section
 columnheaders = ['header','ptt','date','yr','mon','day',
 'time','hr','min','sec','lc','iq',
 'lat1','lon1','lat2','lon2',
 'nbmsg','dB','best','passdur','nopc',
 'fq','altitude','data1','data2','data3','data4','dateobj']
 #Lines start with fields: 0,6,12,16,21

 wDiag = [columnheaders] #First line of array is variable names

 #Trap for zero length lists
 if len(inlist) < 1:
 return wDiag #Only return header list

 #Parse and create array
 curline = 0 #Current line (1-5) in DIAG block
 err = 0 #Error counter
 timestamp = ''
 for line in inlist:
 header = hDIAG.match(line)
 #If header line, move to line 1
 if header:
 hcnt = hcnt + 1 #Increment header count
 hf = 1 #Inside a DIAG block
 curline = 1 #Move to next line
 err = 0 #Init error count
 parms = [hcnt,header.group('ptt'),header.group('date'),
 str(2000+int(header.group('yr'))),header.group('mon'),
 header.group('day'),header.group('time'),header.group('hr'),
 header.group('min'),header.group('sec'),header.group('lc'),
 header.group('iq')]
 timestamp = datetime.datetime(int(parms[3]),int(parms[4]),int(parms[5]),
 int(parms[7]),int(parms[8]),int(parms[9]))

 #If header done, add line 1 data to parms list if present and move to next line
 elif curline == 1:
 line1 = lDIAG1.match(line)
 line1a = lDIAG1a.match(line)
 if line1:
 parms.extend([line1.group('lat1'),line1.group('lon1'),
 line1.group('lat2'),line1.group('lon2')])
 elif line1a:
 parms.extend([line1a.group('lat1'),line1a.group('lon1'),
 line1a.group('lat2'),line1a.group('lon2')])
 else: #Line 1 not found, add blanks, increment error count
 print "Line 1 Missing!"
 parms.extend(['','','',''])
 err = err + 1
 curline = 2 #Move to next line

 146

 #If line 1 done, add line 2 data to parms list if present and move to next line
 elif curline == 2:
 line2 = lDIAG2.match(line)
 if line2:
 parms.extend([line2.group('nbmsg'),line2.group('dB'),line2.group('best')])
 else: #Line 2 not found, add blanks, increment error count
 print "Line 2 Missing!"
 parms.extend(['','',''])
 err = err + 1
 curline = 3 #Move to next line

 #If line 2 done, add line 3 data to parms list if present and move to next line
 elif curline == 3:
 line3 = lDIAG3.match(line)
 line3a = lDIAG3a.match(line)
 if line3:
 parms.extend([line3.group('passdur'), line3.group('nopc')])
 elif line3a:
 parms.extend([line3a.group('passdur'), line3a.group('nopc')])
 else: #Line 4 not found, add blanks, increment error count
 print "Line 3 Missing!"
 parms.extend(['',''])
 err = err + 1
 curline = 4 #Move to next line

 #If line 3 done, add line 4 data to parms list if present and move to next line
 elif curline == 4:
 line4 = lDIAG4.match(line)
 if line4:
 parms.extend([line4.group('fq1')+line4.group('fq2'),line4.group('altitude')])
 else: #Line 4 not found, add blanks, increment error count
 print "Line 4 missing!"
 parms.extend(['',''])
 err = err + 1
 curline = 5 #Move to next line

 #If line 4 done, add the data line to parms list if present and end block
 elif curline == 5:
 lineh = dDIAGh.match(line)
 lined = dDIAGd.match(line)
 if lineh: #Four fields found
 parms.extend([lineh.group('data1'),lineh.group('data2'),
 lineh.group('data3'),lineh.group('data4')])
 elif lined: #Two fields found
 parms.extend([lined.group('data1'),lined.group('data2'),
 '',''])
 else: #No data found, add blanks, increment error count
 parms.extend(['','','',''])
 print "No Data Line!"
 err = err + 1
 #Write the block to the output file and reset
 parms.extend([timestamp])
 wDiag.append(parms)
 hf = 0
 curline = 0

 147

 #If data encountered outside the DIAG block, skip it, we will only match first four fields
 elif curline == 0:
 garbage.append([line]) #Extra lines captured as garbage
 if dDIAGh.match(line):
 pass #Extra dataline(4 fields), can capture here
 elif dDIAGd.match(line):
 pass #Extra dataline(2 fields), can capture here
 else:
 pass #Other line outside block

 if err > 0:
 print "Total DIAG Errors: ", err
 #Return array of parsed data
 return [wDiag, garbage]

 @classmethod
 def PairedParse(cls, dglist, dslist, dtlist):
 """Matches output from ParseDS and ParseDIAG to produce paired array
 #Status: Tested, needs commenting"""

 paired = []
 #paired is structured: header number,dg block,ds block,data line list
 unmatcheddg = [dglist[0]]
 unmatchedds = [dslist[0]]
 if len(dslist) > 1:
 maxds = dslist[-1][0]
 else:
 maxds = 0

 #Load DS blocks
 for i in range(maxds+1):
 paired.append([[i],'',dslist[i],[]])
 #Load headers
 paired[0][0]=["Header Number"]
 paired[0][1]=dglist[0]
 paired[0][2]=dslist[0]
 paired[0][3]=dtlist[0]

 #Load data lines
 dtread = dtlist[1:]
 for line in dtread:
 paired[line[0]][3].append(line)

 #Load DIAG blocks
 dgread = dglist[1:]
 for line in dgread:
 #line is the dgblock loaded
 #hdr is the header number of this DIAG block
 hdr = line[0]
 #dstest is the DS block loaded for this header
 dstest = paired[hdr][2]
 #Match on data line
 dgdata = ''.join(line[23:27]) #data1+data2+data3+data4
 dsdata = []

 148

 for i in paired[hdr][3]:
 dsdata.append(''.join(i[10:14])) #data1+data2+data3+data4
 dsdata.append(dgdata)
 if dsdata.index(dgdata) == len(dsdata)-1:
 #No data line match, fail
 unmatcheddg.append(line)
 else:
 #Data line match, now match on date
 if not dstest[27]:
 paired[hdr][1] = line
 elif abs(line[27]-dstest[27])<datetime.timedelta(0,30,1):
 #Match if time difference is 30 seconds or less
 paired[hdr][1] = line
 else:
 #Fail to match
 unmatcheddg.append(line)

 #Find unmatched DS blocks
 for block in paired:
 if block[1]:
 #DS block has a DG block
 pass
 else:
 #DS block has no match
 unmatchedds.append(block[2])
 paired.remove(block)
 return [paired, unmatcheddg, unmatchedds]

 @classmethod
 def GenerateObjects(cls, paired):
 """Not written. Generates initial matched objects from PairedParse arrays."""

 #Paired is the paired list returned by PairedParse
 #--
 #Here is where the information comes from:
 #paired[i][d][f]
 #i is the argos header number
 #t is the dataset 1=DIAG 2=DS 3=DS datalines
 #f is the field in the dataset. See the header lists in those parsers
 #entry[d][f] corresponds to the above for a specific header entry

 #Check to make sure argospass.py and argosdata.py have been loaded.
 if not argosobjects_loaded:
 raise ImportError, "Modules argospass and argosdata required for datebase loading. Cannot
continue."

 dbloader = [] #This list will eventually be loaded into the db
 #Structure: [[PASS1,[DATA,...]],[PASS2,[DATA,...]]]
 paireddata = paired[1:] #Strip off the headers
 for entry in paireddata:
 dbline = [] #Line to be added, structured as [PASS,[DATA,DATA...]]
 #Start by building two dictionaries based off the headers
 #This way header refences can be used even if the paired list
 #structure changes later
 dg=dict(zip(paired[0][1],entry[1]))

 149

 ds=dict(zip(paired[0][2],entry[2]))
 try:
 #LOAD FROM DS (unless blank, then from DG)
 #Load program, ptt, timevalue, and satellite
 #PASS object handles timevalue to timestamp transformation internally
 dbpass = [ds['program'],ds['ptt']]
 if ds['dateobj']:
 dbpass.append(ds['dateobj'])
 else:
 dbpass.append(dg['dateobj'])
 if ds['satellite']:
 dbpass.append(ds['satellite'])
 else:
 dbpass.append(dg['satellite'])

 #LOAD FROM DIAG
 #LC domain and IQ split handled by PASS object
 dbpass.extend([dg['lc'],dg['iq']])
 #Load lat/lon values
 dbpass.extend([dg['lat1'],dg['lon1'],dg['lat2'],dg['lon2']])
 #Load Nb messages, Nb>-120dB, and best level
 dbpass.extend([dg['nbmsg'],dg['dB'],dg['best']])
 #Load Pass duration, NOPC, and frequency
 dbpass.extend([dg['passdur'],dg['nopc'],dg['fq']])
 except KeyError, missing:
 print "No entry %s in 'paired' list. Entry %s is expected for creation of PASS objects."
% (missing,missing)
 raise

 try:
 #Make the PASS object
 passobj = PASS.initlist(dbpass)
 except:
 print "Could not create PASS object with initlist()."
 raise
 dbline.extend([passobj,[]])
 try:
 #Make the DATA objects
 for dataline in entry[3]:
 #Create dictionary based on dataline headers
 dt=dict(zip(paired[0][3],dataline))
 rawdata='%s%s%s%s' % (dt['data1'],dt['data2'],dt['data3'],dt['data4'])
 if not dt['passes']:
 dbline[1][-1].raw = '%s%s' % (dbline[1][-1].raw,rawdata)
 else:
 dataobj=DATA(dt['dateobj'],dt['passes'],passobj.passid,rawdata)
 dbline[1].append(dataobj)
 dbloader.append(dbline)
 except:
 print "Could not create DATA object."
 raise
 return dbloader

 @classmethod
 def InsertDatabase(cls, sequence, connection):

 150

 """Takes an sequence of objects and inserts into Arc Marine.
 Sequence must be in this form:
 [[PASS,[DATA,...]],[PASS,[DATA,...]]]
 connection is a DB-API 2.0 connection object.
 """
 pass

 @classmethod
 def WriteCSV(cls, datalist, filename):
 """Writes a sequence to a CSV file. Appends if the file already exists.
 datalist sequence to be written
 filename file to write to"""
 #Status: Comments, error trapping
 filename = os.path.abspath(filename)
 if os.path.exists(filename):
 wtr = csv.writer(open(filename,'ab'))
 else:
 wtr = csv.writer(open(filename,'wb'))
 wtr.writerows(datalist)
 del wtr
 return filename

#--

#--
#MAIN
import getopt
def main():
 """Allows argos.py to be called for automated download.
 Use argos.py -h for command line options.

 argos.py [-h] [-p program] username password directory [startdate]
 -h This text
 -p Specify a program number
 -d Specify a download start date, must be mm/dd/yyyy format
 username ARGOS system username
 password ARGOS system password
 directory Specifies the location of text downloads
 startdate Start date for download, must be mm/dd/yyyy format
 Defaults to yesterday (according to local time)"""

 try:
 opts, args = getopt.getopt(sys.argv[1:],'hp:',['help'])
 except getopt.GetoptError:
 usage()
 sys.exit(2)
 program = ''
 for o,a in opts:
 if o in ("-h", "--help"):
 usage()
 sys.exit()
 if o == '-p':

 151

 program = str(a)
 print "Beginning execution."
 if len(args)<3:
 print "Test execution ended."
 sys.exit("Test.")
 user = args[0]
 password = args[1]
 directory = args[2]
 directory = os.path.abspath(directory)
 if not os.path.exists(directory):
 sys.exit("Output path does not exist")
 if len(args)<4:
 startdate = datetime.datetime.today() - datetime.timedelta(1)
 else:
 try:
 start = strptime(args[3],"%m/%d/%Y")
 except ValueError:
 sys.exit("Date must be in mm/dd/yyyy format.")
 startdate = datetime.datetime(*start[0:6])
 limit = datetime.datetime.today() - datetime.timedelta(9)
 if startdate < limit:
 sys.exit("Data not available before " + limit.ctime())
 print "Downloading at:", startdate.ctime()
 da = DownloadARGOS()
 files = da.Download(da.InitDownload(user,password),directory,program,startdate)
 print "Outputing to:"
 print files
 for entry in files:
 parseout = da.Parse(da.CleanFile(entry))
 if len(parseout) == 2:
 dg,dggarb = parseout
 elif len(parseout) == 3:
 ds,dt,dsgarb = parseout
 else:
 print "%s lists returned by Parse(). Expected 2 (DIAG) or 3 (PRV)." % len(parseout)
 return 0
 print "Output to text archives complete."
 print "Dumping garbage and creating datebase loader."
 try:
 da.WriteCSV(dggarb,'%s\\garbage.csv' % directory)
 da.WriteCSV(dsgarb,'%s\\garbage.csv' % directory)
 except:
 print "Unable to write to garbage files"
 paired,unmatchdg,unmatchds = da.PairedParse(dg,ds,dt)
 try:
 da.WriteCSV(unmatchdg,'%s\\unmatcheddg.csv' % directory)
 da.WriteCSV(unmatchds,'%s\\unmatchedds.csv' % directory)
 except:
 print "Unable to output unmatched headers."
 finaloutput = da.GenerateObjects(paired)
 print finaloutput

def usage():
 """Command line help for argos.py"""

 152

 print "help ARGOS"
 print "Downloads and text archives argos satellite telemetry results\n"
 print "argos.py [-h] [-p program] username password directory [startdate]"
 print " -h This text"
 print " -p Specify a program number"
 print " -d Specify a download start date, must be mm/dd/yyyy format"
 print " username ARGOS system username"
 print " password ARGOS system password"
 print " directory Specifies the location of text downloads"
 print " startdate Start date for download, must be mm/dd/yyyy format"
 print " Defaults to yesterday (according to local time)"

if __name__ == "__main__":
 main()

#Used for automated download
#===
=========

ARGOSEXPRESSIONS.PY
#--
#Regular expressions for the parsing of downloaded ARGOS output
#--

#--
#Regular Expression variables (in verbose descriptions)
#--
import re
#--
PRV(DS) Expressions

""" New PRV data line formats must be added in the correct section below
 and a new entry must be created in the dataopts array
 matchobject: the variable name for the expression
 has_attributes: whether or not the match object has date, time,
 and passes attributes
 number of data groups: how many data groups (up to four) need to be
 parsed; groups less than 4 are padded with blanks
"""

hPRV = re.compile(""" #Any Header
 ^(?P<program>\d{5})\s # Program Number
 (?P<PTT>\d{5})\s # PTT
 (?P<lines>..\d)\s # Num Lines
 (?P<num>.\d) \s # num of bytes
 (?P<satellite>\w) # Satellite
""", re.VERBOSE)

hPRVf = re.compile(""" #Full Header
 ^(?P<program>\d{5})\s # Program Number
 (?P<PTT>\d{5})\s # PTT
 (?P<Lines>..\d)\s # Num Lines
 .\d \s # num of bytes
 (?P<Satellite>\w)\s # Satellite

 153

 (?P<locclass>.)\s # Location Class
 (?P<date>(?P<yr>\d{4})-(?P<mon>\d{2})-(?P<day>\d{2}))\s # Date
 (?P<time>(?P<hr>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2}))\s* # Time
 (?P<lat>\d{2}.\d{3})\s* # Lat in dec deg
 (?P<lon>\d{2,3}.\d{3})\s* # Lon in dec deg
 (?P<Z>\d{1,2}.\d{3})\s* # Z in m
 (?P<freq>\d{9}) # Frequency in Hz
""", re.VERBOSE)

#Begin data line formats here
#New formats must be added to dataopts list below

dPRVda = re.compile(r""" #Data Line decimal
 ^\s* # Leading whitespace
 (?P<date>(?P<yr>\d{4})-(?P<mon>\d{2})-(?P<day>\d{2}))\s # Date
 (?P<time>(?P<hr>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2}))\s+ # Time
 (?P<passes>\d{1,2})\s+ # Passes
 (?P<data1>\d{2,5})\s+ # Decimal Data
 (?P<data2>\d{2,5})\s+ # Decimal Data
""", re.VERBOSE)

dPRVdb = re.compile(r""" #Data Line decimal
 ^\s* # Leading whitespace
 (?P<date>(?P<yr>\d{4})-(?P<mon>\d{2})-(?P<day>\d{2}))\s # Date
 (?P<time>(?P<hr>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2}))\s+ # Time
 (?P<passes>\d{1,2})\s+ # Passes
 (?P<data1>\d{1,3})\s+ # Decimal Data
 (?P<data2>\d{1,3})\s+ # Decimal Data
 (?P<data3>\d{1,3})\s+ # Decimal Data
 (?P<data4>\d{1,3}) # Decimal Data
""", re.VERBOSE)

dPRVdc = re.compile(r""" #Data Line decimal
 ^\s* # Leading whitespace
 (?P<data1>\d{1,3})\s+ # Decimal Data
 (?P<data2>\d{1,3})\s+ # Decimal Data
 (?P<data3>\d{1,3})\s+ # Decimal Data
 (?P<data4>\d{1,3}) # Decimal Data
""", re.VERBOSE)

dPRVha = re.compile(""" #Data Line hex format 1
 ^\s* # Leading whitespace
 (?P<date>(?P<yr>\d{4})-(?P<mon>\d{2})-(?P<day>\d{2}))\s # Date
 (?P<time>(?P<hr>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2}))\s+ # Time
 (?P<passes>\d{1,2})\s+ # Passes
 (?P<data1>[A-F0-9]{2})\s+ # Hexidecimal Data
 (?P<data2>[A-F0-9]{2})\s+ # Hexidecimal Data
 (?P<data3>[A-F0-9]{2})\s+ # Hexidecimal Data
 (?P<data4>[A-F0-9]{2}) # Hexidecimal Data
""", re.VERBOSE)

dPRVhb = re.compile(""" #Data Line hex format 2
 ^\s* # Leading whitespace
 (?P<date>(?P<yr>\d{4})-(?P<mon>\d{2})-(?P<day>\d{2}))\s # Date

 154

 (?P<time>(?P<hr>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2}))\s+ # Time
 (?P<passes>\d{1,2})\s+ # Passes
 (?P<data1>[A-F0-9]{4})\s+ # Hexidecimal Data
 (?P<data2>[A-F0-9]{4}) # Hexidecimal Data
""", re.VERBOSE)

dPRVhc = re.compile(""" #Extra hex data
 ^\s* # Leading whitespace
 (?P<data1>[A-F0-9]{2})\s+ # Hexidecimal Data
 (?P<data2>[A-F0-9]{2})\s+ # Hexidecimal Data
 (?P<data3>[A-F0-9]{2})\s+ # Hexidecimal Data
 (?P<data4>[A-F0-9]{2}) # Hexidecimal Data
""", re.VERBOSE)

#Option format is: matchobject, has_attributes, number of data groups
#Groups without attributes must come at end of list
dataopts = [[dPRVdb, 1, 4],
 [dPRVha, 1, 4],
 [dPRVhb, 1, 2],
 [dPRVda, 1, 2],
 [dPRVhc, 0, 4],
 [dPRVdc, 0, 4]]
#End Data Line formats

fPRVa = re.compile(""" #Footer Line 1
 ^\s* # Leading whitespace
 (?P<msgs>\d{3})\s msgs\s # Number of Messages
 (?P<dB>\d{3})>-120dB\s* # msgs > -120 dB
 Best:\s* (?P<best>.\d{3})\s* # Best signal in dB
 Freq:\s* (?P<freq>\d{6}.\d{1})\s* # Frequency in Hz
 IQ\s :\s (?P<iqx>.)(?P<iqy>\d{1}) # IQ x,y
""", re.VERBOSE)

fPRVb = re.compile(""" #Footer Line 2
 ^\s* # Leading whitespace
 Lat1:\s* (?P<lat1>\d{1,2}.\d{3}[NS])\s* # Lat1 in dec deg N/S
 Lon1:\s* (?P<lon1>\d{1,3}.\d{3}[EW])\s* # Lon1 in dec deg E/W
 Lat2:\s* (?P<lat2>\d{1,2}.\d{3}[NS])\s* # Lat2 in dec deg N/S
 Lon2:\s* (?P<lon2>\d{1,3}.\d{3}[EW]) # Lon2 in dec deg E/W
""", re.VERBOSE)

#--

#--
DIAG Expressions

prog = re.compile(""" #First Line of DIAG
 ^\s* # Leading Whitespace
 Prog\s* (?P<program>\d{1,5}) # Program Number
""", re.VERBOSE)

hDIAG = re.compile(""" #Diag Header
 ^\s* # Leading whitespace
 (?P<ptt>\d{5})\s{2} # PTT
 Date\s :\s # "Date :"

 155

 (?P<date>(?P<day>\d{2}).(?P<mon>\d{2}).(?P<yr>\d{2}))\s # Date
 (?P<time>(?P<hr>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2}))\s* # Time
 LC\s :\s (?P<lc>.)\s* # Location Class
 IQ\s :\s (?P<iq>\d{2}) # IQ
""", re.VERBOSE)

lDIAG1 = re.compile(""" #Stats Line 1
 ^\s* # Leading whitespace
 Lat1\s :\s* (?P<lat1>\d{2}.\d{3}[NS])\s* # Lat1 in dec deg N/S
 Lon1\s :\s* (?P<lon1>\d{2,3}.\d{3}[EW])\s* # Lon1 in dec deg E/W
 Lat2\s :\s* (?P<lat2>\d{2}.\d{3}[NS])\s* # Lat2 in dec deg N/S
 Lon2\s :\s* (?P<lon2>\d{2,3}.\d{3}[EW]) # Lon2 in dec deg E/W
""", re.VERBOSE)

lDIAG1a = re.compile(""" #Stats Line 1 as ?'s
 ^\s* # Leading whitespace
 Lat1\s :\s* (?P<lat1>.......)\s* # Lat1 unknown
 Lon1\s :\s* (?P<lon1>........)\s* # Lon1 unknown
 Lat2\s :\s* (?P<lat2>.......)\s* # Lat2 unknown
 Lon2\s :\s* (?P<lon2>........) # Lon2 unknown
""", re.VERBOSE)

lDIAG2 = re.compile(""" #Stats Line 2
 ^\s* # Leading whitespace
 Nb\s mes\s :\s (?P<nbmsg>\d{3})\s* # Num messages
 Nb\s mes>-120dB\s :\s (?P<dB>\d{3})\s* # Num > -120dB
 Best\s level\s :\s (?P<best>-\d{3})\s dB # Best level in dB
""", re.VERBOSE)

lDIAG3 = re.compile(""" #Stats Line 3
 ^\s* # Leading whitespace
 Pass\s duration\s :\s (?P<passdur>\d{3})s\s* # Pass duration in s
 NOPC\s :\s (?P<nopc>\d) # NOPC
""", re.VERBOSE)

lDIAG3a = re.compile(""" #Stats Line 3 with ?'s
 ^\s* # Leading whitespace
 Pass\s duration\s :\s (?P<passdur>...)s\s* # Pass duration unknown
 NOPC\s :\s (?P<nopc>\?) # NOPC unknown
""", re.VERBOSE)

lDIAG4 = re.compile(""" #Stats Line 4
 ^\s* # Leading whitespace
 Calcul\s freq\s :\s # "Calcul freq :"
 (?P<fq1>\d{3})\s (?P<fq2>\d{6}.\d)\s Hz\s* # Frequency in Hz
 Altitude\s :\s* (?P<altitude>\d{1,4})\s m # Altitude in m
""", re.VERBOSE)

dDIAGh = re.compile(""" #Hex data
 ^\s* # Leading whitespace
 (?P<data1>[A-F0-9]+)\s+ # Field 1
 (?P<data2>[A-F0-9]+)\s+ # Field 2
 (?P<data3>[A-F0-9]+)\s+ # Field 3
 (?P<data4>[A-F0-9]+) # Field 4

 156

""", re.VERBOSE)

dDIAGd = re.compile(""" #Two data fields
 ^\s* # Leading whitespace
 (?P<data1>[A-F0-9]+)\s+ # Field 1
 (?P<data2>[A-F0-9]+) # Field 2
""", re.VERBOSE)

ARGOSPASS.PY
import datetime
class PASS():
 """PASS Object"""
 idcounter = 0

 def julian(self):
 """Returns a julian timestamp based on basetime for mvalue."""
 #Basetime is 1/1/1900 12:00 am
 basetime = datetime.datetime(1900,1,1,0,0,0)
 diff = self.timevalue - basetime
 return diff.seconds / 86400.0 + diff.days
 mvalue = property(julian)

 def gettimestamp(self):
 """Returns date string instead of datetime object for timevalue"""
 return self.timevalue.ctime()
 timestamp = property(gettimestamp)

 def insertSQL(self):
 sql = [self.satellite, self.lc, self.iqa, self.iqb, self.lat1, self.lon1,
 self.lat2, self.lon2, self.nbmes, self.nb120db, self.bestlevel,
 self.passdur, self.nopc, self.freq]
 return sql
 #This will return a list to construct a VALUES statement for an INSERT into ArgosInfo

 def __str__(self):
 return "PASS object %s at %s on tag %s." % (self.passid, self.timestamp,self.PTT)

 def __init__(self, prog, device, timev, sat, locclass, iq, lt1, ln1, lt2, ln2, nbm,
 num120db, best, duration, no_pc, frequency):
 self.__class__.idcounter +=1
 self.passid = self.__class__.idcounter
 self.program = prog #string
 self.PTT = device #string
 self.timevalue = timev #datetime
 self.satellite = self.satdomain(sat) #str convert to domain
 self.lc = self.locdomain(locclass) #str convert to domain
 self.iqa = int(iq[0]) #integer
 self.iqb = int(iq[1]) #integer
 self.lat1 = self.llconv(lt1) #float or blank
 self.lon1 = self.llconv(ln1) #float or blank
 self.lat2 = self.llconv(lt2) #float or blank
 self.lon2 = self.llconv(ln2) #float or blank
 self.nbmes = int(nbm) #integer
 self.nb120db = int(num120db) #integer

 157

 self.bestlevel = int(best) #integer
 try:
 self.passdur = int(duration)
 except ValueError:
 self.passdur = -1 #integer, or -1 if N/A
 try:
 self.nopc = int(no_pc)
 except ValueError:
 self.nopc = -1 #integer, or -1 if N/A
 self.freq = float(frequency) #float

 @classmethod
 def initlist(cls,a):
 """Receives a list of 16 elements to generate a PASS object instead of using the default
constructor"""

 if len(a) == 16:
 b = PASS(a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],a[10],a[11],a[12],
 a[13],a[14],a[15])
 return b
 else:
 print "List passed to initlist must have 16 elements."
 return None

 @classmethod
 def satdomain(cls, sat):
 return sat
 @classmethod
 def locdomain(cls, lc):
 return lc

 @classmethod
 def llconv(cls, coord):
 try:
 numcoord = float(coord[:-1])
 except ValueError:
 return -1
 except:
 raise
 dircoord = coord[-1]
 if dircoord in ('S','W','s','w'):
 numcoord = numcoord * -1.0
 elif dircoord in ('N','E','n','e'):
 pass
 else:
 print "Cannot convert coordinate:", coord
 return
 if dircoord in ('E','e','W','w'):
 if abs(numcoord) > 360.0:
 print "Coordinate value out of bounds:", coord
 return
 else:
 if numcoord > 180.0:
 numcoord = (numcoord - 360.0)
 elif numcoord <= -180.0:

 158

 numcoord = (numcoord + 360.0)
 if dircoord in ('N','n','S','s'):
 if abs(numcoord) > 90.0:
 print "Coordinate value out of bounds:", coord
 return
 numcoord = round(numcoord, 5)
 return numcoord
#--

ARGOSDATA.PY
import datetime
class DATA():
 """DATA Object"""
 idcounter = 0

 #Returns date string instead of datetime object for timevalue
 def gettimestamp(self):
 return self.timevalue.ctime()
 timestamp = property(gettimestamp)

 def __str__(self):
 return "DATA object %s at %s for PASS %s." % (self.dataid,self.timestamp,self.passid)

 def __init__(self, tv = datetime.datetime.today(), dup = 1, PID = -1, rawdata = "test"):
 self.__class__.idcounter +=1
 self.dataid = self.__class__.idcounter
 self.timevalue=tv #datetime
 self.duplicates=int(dup) #Integer: Duplicate messages
 self.passid=PID #ID for associated PASS object
 self.raw=str(rawdata) #Stored raw string

TESTENV.PY
import argos, dbtesting
import os, csv, sys
da = argos.DownloadARGOS()
pathstra = 'E:\\070716dg.txt'
pathstrb = 'E:\\070716.txt'
directory = 'E:\\'
files = [pathstra,pathstrb]
print da
print 'pathstra',files[0]
print 'pathstrb',files[1]
for entry in files:
 parseout = da.Parse(da.CleanFile(entry))
 if len(parseout) == 2:
 dg,dggarb = parseout
 elif len(parseout) == 3:
 ds,dt,dsgarb = parseout
 else:
 print "%s lists returned by Parse(). Expected 2 (DIAG) or 3 (PRV)." % len(parseout)
print "Output to text archives complete."
print "Dumping garbage and creating datebase loader."
try:

 159

 da.WriteCSV(dggarb,'%s\\garbage.csv' % directory)
 da.WriteCSV(dsgarb,'%s\\garbage.csv' % directory)
except:
 print "Unable to write to garbage files"
 raise
paired,unmatchdg,unmatchds = da.PairedParse(dg,ds,dt)
try:
 da.WriteCSV(unmatchdg,'%s\\unmatcheddg.csv' % directory)
 da.WriteCSV(unmatchds,'%s\\unmatchedds.csv' % directory)
except:
 print "Unable to output unmatched headers."
 raise
finaloutput = da.GenerateObjects(paired)
This section is for testing database inserting of the pass objects
for entry in finaloutput:
 print entry[0]
 dbtesting.acc.findpass(entry[0])
This section below was to output a listing of every object created
for line in entry[1]:
print ' %s: %s' % (line,line.raw)

AUTOMATION UTILITIES
AUTORUN.PY
import time, os, sys, string
def main(cmd, inc=60):
 try:
 while 1:
 os.system(cmd)
 time.sleep(inc)
 except KeyboardInterrupt:
 print "Keyboard interrupt detected in autorun.main()."
 pass
 except:
 raise

if __name__ == '__main__':
 if len(sys.argv) < 2 or len(sys.argv) >3:
 print "usage: %s command [seconds_delay]" % sys.argv[0]
 sys.exit(1)

 cmd = sys.argv[1]
 try:
 if len(sys.argv) < 3:
 main(cmd)
 else:
 inc = int(sys.argv[2])
 main(cmd,inc)
 except KeyboardInterrupt:
 print "Keyboard interrupt detected in autorun.py."
 pass
 except:
 raise

 160

AUTOARGOS.PY
from os import system
import sys
import autorun
def main(username,password,directory,program = None):
 try:
 if program:
 cmd = 'argos.py -p %s %s %s %s' % (program,username,password,directory)
 else:
 cmd = 'argos.py %s %s %s' % (username,password,directory)
 print "Interrupt with Control-C"
 autorun.main(cmd, 86400)
 except KeyboardInterrupt:
 print "Keyboard interrupt detected in autoargos.py."
 print "Exiting..."
 sys.exit()

if __name__ == '__main__':
 if len(sys.argv) < 4 or len(sys.argv) > 5:
 print "usage: autoargos.py username password directory [program]"
 sys.exit(1)
 username = sys.argv[1]
 password = sys.argv[2]
 directory = sys.argv[3]
 if len(sys.argv) < 5:
 main(username, password, directory)
 else:
 program = sys.argv[4]
 main(username, password, directory, program)

ADDSTARTUP.PY
from _winreg import *
import os,sys

aReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE)

try:
 targ = r'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'

 print "*** Writing to", targ, "***"
 aKey = OpenKey(aReg, targ, 0, KEY_WRITE)
 aPath = os.path.abspath(os.path.dirname(sys.argv[0]))
 aTool = 'autoargos.py'
 aToolpath = r'%s\%s' % (aPath,aTool)
 try:
 try:
 SetValueEx(aKey, "Autoargos",0,REG_SZ,aToolpath)
 print "Autoargos will now execute on startup."
 except EnvironmentError:
 print "Encountered problems writing into the Registry..."
 raise
 finally:
 CloseKey(aKey)

 161

 print "*** Reading from", targ, "***"
 aKey = OpenKey(aReg, targ)
 try:
 for i in range(1024):
 try:
 n,v,t = EnumValue(aKey,i)
 print i,n,v,t
 except EnvironmentError:
 print "You have", i, "tasks starting at logon"
 break
 finally:
 CloseKey(aKey)

finally:
 CloseKey(aReg)

DELSTARTUP.PY
from _winreg import *
aReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE)
try:
 targ = r'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'
 aKey =OpenKey(aReg,targ,0,KEY_WRITE)
 try:
 DeleteValue(aKey, "Autoargos")
 print "Autoargos will no longer execute on startup."
 finally:
 CloseKey(aKey)
finally:
 CloseKey(aReg)

