
 
 

Automated Web-based Analysis and Visualization of Spatiotemporal Data 
 
 

by 
Dylan B. Keon 

 
 
 

A DISSERTATION 
 

submitted to 
 

Oregon State University 
 
 
 

in partial fulfillment of 
the requirements for the 

degree of 
 

Doctor of Philosophy 
 
 

Presented November 16, 2012 
Commencement June 2013 

 
 

Committee in Charge: 
Dawn Wright, Major Adviser, Geography Program, College of Earth, Ocean and 

Atmospheric Sciences (CEOAS) 
Anne Nolin,  Geography Program, CEOAS 

Chris Daly, School of Chemical, Biological and Environmental Engineering and 
Northwest Alliance for Computational Science & Enginering 

Mike Bailey, School of Electrical Engineering and Computer Science 
Rick Colwell, Graduate Council Representative, CEOAS 

 
 
 
 
 



AN ABSTRACT OF THE DISSERTATION OF 

 
 
Dylan B. Keon for the degree of Doctor of Philosophy in Geography presented on 
November 16, 2012. 
Title:  Automated Web-based Analysis and Visualization of Spatiotemporal Data. 

 

Abstract approved:                            
  Dawn J. Wright 

 

Most data are associated with a place, and many are also associated with a moment 

in time, a time interval, or another linked temporal component.  Spatiotemporal data 

(i.e., data with elements of both space and time) can be used to assess movement or 

change over time in a particular location, an approach that is useful across many 

disciplines.  However, spatiotemporal data structures can be quite complex, and the 

datasets very large.  Although GIS software programs are capable of processing and 

analyzing spatial information, most contain no (or minimal) features for handling 

temporal information and have limited capability to deal with large, complex 

multidimensional spatiotemporal data.  A related problem is how to best represent 

spatiotemporal data to support efficient processing, analysis, and visualization. 

 

In the era of “big data,” efficient methods for analyzing and visualizing large 

quantities of spatiotemporal data have become increasingly necessary.  Automated 

processing approaches, when made scalable and generalizable, can result in much 



greater efficiency in spatiotemporal data analysis.  The growing popularity of web 

services and server-side processing methods can be leveraged to create systems for 

processing spatiotemporal data on the server, with delivery of output products to the 

client.  In many cases, the client can be a standard web browser, providing a 

common platform from which users can interact with complex server-side processing 

systems to produce specific output data and visualizations.  The rise of complex 

JavaScript libraries for creating interactive client-side tools has enabled the 

development of rich internet applications (RIAs) that provide interactive data 

exploration capabilities and an enhanced user experience within the web browser. 

 

This dissertation examines the automated web-based analysis and visualization of 

spatiotemporal data in the context of three distinct projects.  Although particular 

methods were developed to solve the stated problems for each project, in most cases 

those methods can be generalized to other disciplines or computational domains 

where similar problem sets exist.  Chapter 2 describes methods of dynamically 

selecting and preparing data for tsunami modeling, and processing the resulting time-

series output data.  Chapter 3 describes simulation modeling of potential human 

evacuation response to a modeled tsunami inundation event, with methods for the 

web-based definition of a simulation scenario and animated, interactive visualization 

of the simulation output.  Chapter 4 describes methods for web-based calculation and 

visualization of climate grid statistics over varying spatial and temporal scales, 

including methods for fast automated server-side grid processing.  
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Chapter 1:  Introduction 

Nearly all data possess a spatial component.  The proliferation and accessibility of 

easy-to-use mapping tools such as Google Maps (2012) and Google Earth (2012), 

combined with (often automatic) spatial application features (e.g., geotagging, 

location-based services, smartphone GPS mapping capabilities), has thrust 

technology that leverages the spatial component into a prominent position of reliance 

and everyday usage.  Perhaps less prominent, but equally present and important, is 

the element of time.  Many data possess a temporal component (or have the potential 

for a linked temporal component) in addition to a spatial component, such as the time 

at which a photograph was taken, the recorded time of a temperature observation, or 

the time step represented by a video frame in a dynamic simulation.  However, the 

temporal component is generally less well-supported than the spatial component in 

GIS and mapping software. 

 

Geographic information systems (GISs) include well-established methods for 

displaying, manipulating, and analyzing data that contain a spatial component.  Basic 

usage and manipulation of spatial datasets in GIS is relatively easy to understand.  

However, because most GIS software packages do not have the capability to analyze 

and visualize data that represent dynamic phenomena (or have limited capabilities 

for doing so), they are not able to effectively manage spatial data that also contain a 

temporal component (i.e., spatiotemporal data).  A GIS that can evaluate spatial data 

but not temporal data can only display information about one slice in time for the 
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area of interest and, therefore, provides limited information about dynamic events or 

processes within the area of interest. 

 

Spatiotemporal datasets are often rich in content by nature.  They can describe the 

movement of an individual or a group of individuals over a period of weeks (e.g., 

Wen et al. 2012), the change in forest composition over hundreds of years (e.g., 

McLachlan et al. 2005), or, indeed, virtually any feature across any time interval.  

Analysis and visualization software must be able to effectively represent and display 

potentially complex spatiotemporal datasets in a manner that allows users to easily 

interpret them, explore them, and identify subsets of information for further analysis.  

Geovisualization tools (e.g., Buckley et al. 2005, Kraak 2008) are well-suited for this 

approach, but the three-dimensional (3D) nature of spatiotemporal datasets can make 

them difficult to understand by non-technical users working with them in 3D 

geovisualization applications (Zhong et al. 2012).  Adding to their complexity, 

spatiotemporal datasets are often very large in size, requiring significant storage 

space, processing capabilities, and effective database storage schemes. 

 

1.1 Spatiotemporal Data Representation and Software Tools 

The representation of spatiotemporal data is an important consideration – not only 

for how the data are communicated, but also how they are stored digitally or, in other 

words, “the binary structure in a computer or electronic storage medium that 

corresponds with an object, measurement, or phenomenon in the world” (Yuan et al. 
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2005).  In the late 1980s, a considerable amount of research examined the 

representation of spatiotemporal data.  Langran and Chrisman (1988) were the first 

to describe a detailed framework for incorporating temporal data in a GIS.  In the 

following years a number of additional models were proposed and implemented, 

beginning with file-based approaches that became known as the “snapshot model” 

(e.g., Armstrong 1988).  In the snapshot model, temporal information is attached to 

spatial information, such that the entire geographic representation is duplicated at 

each time slice, with changes in the phenomena at that geographic area also 

represented.  Beller et al. (1991) proposed the Temporal Map Sets (TMS) model, an 

extension of the snapshot model where each geographic cell is time-stamped and is 

considered to be either in or out of the event.  Later, Langran (1992) published an 

influential work that recognized the upward trajectory of GIS, its limitations in terms 

of analyzing dynamically-changing events, and fully explored methods for the 

inclusion of temporal data in GIS. 

 

The representation of geographic data significantly affects all three levels of GIS and 

spatial analysis:  Data modeling, formalization, and visualization (Yuan et al. 2005), 

and has been examined, described, and summarized in many forms (e.g., Peuquet 

1984, Yuan 2001, Goodchild et al. 2007).  Although numerous studies have 

examined the representation of temporal data for use in GIS and spatiotemporal 

analysis (Langran and Chrisman 1988, Langran 1992, Peuquet 1994, Yuan 1999, 

Peuquet 2001, Peuquet 2002, Miller and Bridwell 2008), questions remain regarding 
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the most efficient representations of spatiotemporal data to support dynamic, real-

time operations, especially in the era of “big data” (Wang and Lu 2009, Brown et al. 

2011, Goth 2012, Lohr 2012).  Due to the potentially significant effects that different 

forms of data representation can have on data analysis and visualization, the 

representation of spatiotemporal data was identified as a priority research area by the 

University Consortium for Geographic Information Science (UCGIS) (Yuan et al. 

2005), and remains an active research topic today (e.g., Tøssebro and Nygård 2011, 

Li and Kraak 2012). 

 

Object-oriented approaches to database modeling offer some advantages over the 

snapshot model.  Namely, they avoid duplication of data and provide added 

functionality such as the inheritance of properties from one object to another.  

Worboys (1992) took the time-stamping approach used in the snapshot and TMS 

models and applied it to spatial objects, describing “spatiotemporal atoms” as 

subunits of spatiotemporal objects.  Peuquet and Duan (1995) used an object-

oriented approach in their event-based spatiotemporal data model (ESTDM), which 

also uses a time-stamping approach but only stores the changes related to an object 

from one time slice to the next, minimizing redundancy in the data.  Goodchild et al. 

(1999) and Goodchild et al. (2007) adopted the concept described by Worboys 

(1992) of reducing all geographic information to an atomic unit, which can help 

generalize geographic representation. 
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The implementation of temporal capabilities in relational database management 

systems (RDBMSs) has been described in many forms (e.g., Snodgrass 2000).  

Certain software products such as TimeDB (2012) attempt direct implementations of 

temporal data storage and management.  Although many RDBMS products such as 

Oracle and PostgreSQL have powerful spatial extensions available (Oracle Spatial 

and PostGIS, respectively), none have similar temporal extensions available.  

Temporal data representation and analysis has only recently become available in GIS 

software from major vendors such as Esri’s ArcGIS (2012). 

 

1.2 Advancements in Web-based Technology 

Exploration and analysis of multidimensional spatiotemporal data typically requires 

specialized locally-installed (a.k.a. “desktop”) GIS software.  However, 

advancements in server-side mapping and analysis tools, their integration with web 

servers, and a range of complex client-side software libraries make the standard web 

browser a compelling candidate as a common user interface for working with 

spatiotemporal data.  Innovative combinations of web-based software tools and 

custom code facilitate the development of rich internet applications (RIA), which can 

include many of the user interface features commonly found in locally-installed 

software applications. 

 

Although the client-side programming language JavaScript has been available since 

its development in the Netscape web browser in 1995, the past several years have 
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witnessed a revolution in the usage and advancement of client-side methods that 

leverage JavaScript in unique ways.  Core to this advancement is the concept of 

asynchronous communication between a client (i.e., a web browser) and server, 

instantiated as the Asynchronous JavaScript and XML (AJAX) approach and so-

named by Garrett (2005).  Simply put, the AJAX approach enables content on a web 

page to be updated without having to reload the entire page.  Google’s Gmail and 

Maps web applications (deployed in 2004 and 2005, respectively) represented the 

first wide-scale usage of the AJAX approach, and popularized the technique to the 

extent that most major websites now use it in one form or another.  AJAX 

approaches are central to the development of RIA, which use AJAX directly, as well 

as in supporting tools such as jQuery (2012), a library that simplifies and centralizes 

client-side operations while providing cross-browser support.  In the context of web-

based mapping applications, OpenLayers (2012) provides a powerful example of a 

client-side mapping toolkit that supports the development of both simple and 

complex web-mapping applications, all of which use the AJAX approach. 

 

Web-based server-side software has also advanced in the past decade, particularly in 

the area of open source mapping tools.  MapServer (2012), a server-side open source 

web mapping toolkit that was initially developed in 1994 and released under an open 

source software license in 1999, has since undergone significant changes and is still 

under active development.  GeoServer (2012), written in Java, is an example of a 

server-side web mapping toolkit that includes full implementation of the Open 
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Geospatial Consortium’s (OGC) web mapping service (WMS), web feature service 

(WFS), and web coverage service (WCS) standards.  Although server-side web 

programming languages such as PHP have also undergone significant development 

in the past decade, the advent of web application frameworks is perhaps a more 

noteworthy event, particularly in the case of lightweight Python frameworks based 

on the web server gateway interface (WSGI), such as Pyramid (2012).  These 

frameworks enable the fast development of targeted web-based applications that can 

leverage other server-side Python processing code and deliver the results via the 

hypertext transfer protocol (HTTP). 

 

1.3 Automated Data Processing 

To support real-time operations on spatiotemporal data in a web-based context, not 

only must powerful server-side processing capabilities be used, but innovative 

methods must be developed to automate and, ideally, generalize the related 

processes.  Automated processing of this type can require a complex set of linked 

tools, services, databases, files, and custom code, and necessitates the efficient 

handling of large quantities of multidimensional data. 

 

As the size of spatiotemporal datasets and databases has grown, researchers have 

devised automated methods to efficiently process and analyze them.  Although the 

storage and processing difficulties associated with “big data” seem increasingly 

prevalent today, spatial data collections have presented formidable computational 
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challenges since the early days of GIS.  Several discussions about automated 

processing occurred in the 1980s.  Openshaw (1987) advocated for the development 

of fully automated geographical analysis systems, and Openshaw et al. (1987) put 

theory into practice, building an automated geographical analysis machine (GAM) 

on a Mark I computer system to perform repeated, automated point pattern analyses.  

At the time, this was a fairly unique example of a dedicated machine developed for a 

specific, automated spatial processing task (Goodchild et al. 1992).  Addressing a 

common spatial data processing issue, Brassel and Weibel (1988) reviewed the 

possibilities of automated map generalization using currently available computer 

technology. 

 

In recent years, the automated processing of spatiotemporal data and automated 

generation of geovisualizations have received an increasing amount of attention in 

the research community.  Sharma et al. (2012) devised an automated processing 

chain to convert data from the Geographic Markup Language (GML) format to 

shapefiles for use in a custom query and visualization tool.  Lakshmanan (2012) 

described the development of automated algorithms for the analysis of spatial grids.  

Misra et al. (2011) describe the rapid development of software tools for automated 

analysis of spatial data using open source software components.  Today, advanced 

server-side technology such as GIS-based server software, related application 

programming interfaces (APIs), and custom code, enables the development of 
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powerful systems that can quickly process spatiotemporal data to produce output and 

deliver it to the user for visualization, exploration, and further analysis. 

The automation of geovisualizations refers to the automatic creation of output (e.g., a 

movie file or interactive interface) from spatiotemporal data.  This is often done by 

converting multiple snapshots of data into an animated sequence, with each snapshot 

representing a single slice in time for a given area.  If the visualization methods are 

extended (i.e., beyond the creation of a simple movie file), the output can become 

interactive, providing controls that can be manipulated by the user.  Relatively little 

work has been done to automate the generation of geovisualizations that not only 

utilize user input but also provide interactive controls in the generated interface, 

although automation and user interactivity have both been identified as important 

research priorities (e.g., Buckley et al. 2005). 

 

1.4 Data Exploration and Visualization 

GIS can help users identify patterns in data that are not otherwise readily apparent.  

Similarly, scientific visualization often reveals patterns in data that lead to further 

understanding, by displaying data in a form that had not been viewed before 

(MacEachren et al. 1999).  The term geovisualization refers to visualization 

techniques that are used with spatial or spatiotemporal data.  Spatiotemporal data are 

particularly well-suited to geovisualization techniques that can display change in an 

area over time, a situation that often occurs as the result of a larger process.  One 

example is the visualization of a simulated dataset representing a tsunami’s 



10 
 

propagation across the ocean and inundation of a community on the U.S. Pacific 

coast. 

Geovisualizations are powerful tools that can be used for identifying patterns within 

complex multivariate datasets (Buckley et al. 2005, Kraak 2008), and can even be 

used as a method of data mining and knowledge discovery (Gahegan et al. 2001).  

Traditional methods of visualization typically involve the creation of an animated 

representation of an area or object changing across multiple slices of time.  The 

animation is often rendered as a simple movie file.  Many commercial software 

packages (e.g., ArcScene) offer 3D capabilities and generation of fly-through 

animations, but few (if any) have the capability of automating the dynamic 

generation of visualizations given a set of user-defined input parameters.  The 

resulting animations are typically non-interactive, meaning that layers cannot be 

activated or deactivated, and other features cannot be controlled.  However, recent 

developments in commercial software such as Esri CityEngine (2012) and Microsoft 

Layerscape (2012) show promise for enabling these capabilities within a web 

browser.  Recently, Schultz and Bailey (2012) described an interesting approach for 

processing spatiotemporal data and generating interactive OpenGL-based 

visualizations of the datasets as extruded volumes. 

 

An even smaller subset of software tools allow the display of time-series animations 

to be overlaid with spatial layers and manipulated in that context.  One example is 

Google Earth which enables the control and animation of time-series data via time-
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stamped KML-defined layers, manipulated by a time slider mechanism.  However, 

the user is still constrained by the fact that (1) Google Earth is a locally-installed 

application (although it is a free product and can be installed on all common 

operating systems, it still requires more steps than simply using a web browser) and 

(2) it is not possible to query the underlying layers at any location, as the user could 

do in a true GIS or web-based mapping tool designed for that purpose.  In recent 

versions, ArcGIS Desktop software includes tools for enabling time-based operations 

on spatiotemporal datasets that include temporal attributes assigned using the 

snapshot approach (ArcGIS Resource Center 2012).  The ArcGIS graphical interface 

utilizes a time slider similar approach similar to that available in Google Earth, but 

includes additional functionality. 

 

Interactive geovisualizations and related tools (e.g., interactive charts) that enable 

spatiotemporal data exploration can effectively enhance the user experience.  For 

example, placing output data values in a static list or table is helpful, particularly if a 

data export facility is provided so the user can easily obtain the data for further 

analysis on their own computer, but placing data values in a dynamic table linked to 

an interactive chart, overlaying them on an interactive mapping tool that highlights 

temporal relationships, and generating and plotting meaningful statistical chart aids 

based on the data values provides a richer user experience.  If the data contain both 

spatial and temporal components, it is worthwhile to invest the effort to make that 

complexity available to, and interpretable by, the user.  As Tufte (1983, p. 30) noted: 
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Time-series displays are at their best for big data sets with real 
variability.  Why waste the power of data graphics on simple linear 
changes, which can usually be better summarized in one or two numbers?  
Instead, graphics should be reserved for the richer, more complex, more 
difficult statistical material. 
 
 

Although written nearly 30 years ago, with innumerable technical advances in GIS, 

computer graphics, and visualization realized in the intervening period, Tufte’s 

statement remains just as applicable today. 

 

1.5 Spatiotemporal Data Used in This Study 

Spatiotemporal datasets exist in many forms and at multiple scales.  The approach 

taken in this study was to work with a set of large spatiotemporal datasets (on the 

order of terabytes and millions of observations) to provide sufficiently complex test 

cases and challenges for data acquisition, processing, storage, representation, 

analysis, visualization, and dynamic value extraction.  Data representing modeled 

spatiotemporal phenomena (i.e., tsunami inundation modeling, tsunami evacuation 

simulation, and climate modeling across the conterminous U.S.) were deemed 

appropriate for this purpose, and are described briefly in this section. 

 

1.5.1 Tsunami Inundation Modeling Input Data 

Tsunami modeling involves defining a complex set of input parameters and 

preparing the necessary gridded bathymetry and topography data to be used as inputs 

for analysis.  Tsunami simulations are performed using any of a number of modeling 
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codes that calculate the event initiation and propagation of the resulting tsunami 

wave across the open ocean at each simulated time step, including the inundation of 

the tsunami flow on land.  One means of producing tsunami simulation time-series 

output data is via the Tsunami Computational Portal (TCP 2012), a web-based 

research portal that aggregates multiple tsunami simulation model codes and 

provides a common parameterization interface for defining simulation runs.  A large 

number of gridded input bathymetry datasets are available for selection in the TCP.  

The gridded datasets vary in resolution and extent, and have specific requirements 

for nesting (i.e., substituting a high-resolution dataset for a near-shore area within a 

low-resolution bathymetry grid), which complicate server-side data preparation and 

processing operations. 

 

1.5.2 Tsunami Evacuation Simulation Data 

Tsunami simulation modeling runs produce binary output data products representing 

gridded time-series wave height for each time step, maximum wave height across all 

time steps, and, depending upon the selected model, matching U and V velocity 

vectors.  All of these data products are used as inputs in a tsunami simulation 

modeling framework to provide per-pixel water depth values at each time step.  The 

simulation framework uses these data to calculate potential casualties during an 

evacuation scenario, and produces an additional spatiotemporal dataset representing 

the movement and status of the evacuating population at each time step.  This dataset 

drives a set of web-based tools that allow exploration of the simulation over time. 
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1.5.3 PRISM Modeled Climate Data 

The PRISM Climate Group at Oregon State University produces climate grids using 

weather station data and the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) approach to model precipitation, maximum temperature, minimum 

temperature, and mean temperature across the conterminous U.S. on daily, monthly, 

and annual time scales (Daly et al. 1994, Daly et al. 2002).  Data describing weather 

stations, observation times, and other information are stored in a database, but the 

modeled time-series data are all stored on the filesystem as spatial grids in the binary 

interleaved by line (BIL) format.  Currently over 49,000 PRISM climate grids are 

stored on the filesystem, representing the set of time-series climate data used in this 

study. 

 

1.6 Research Goals 

The overarching goal of this dissertation was to develop methods for storing, 

accessing, analyzing, and processing spatiotemporal data in support of real-time 

web-based operations.  The projects undertaken in this dissertation represent real-

world research challenges and provide good test cases for attaining that goal.  The 

specific research goals of this dissertation include: 

 
• Automate the processing of spatiotemporal data based on user input to 

generate output data products and visualizations in support of data analysis 

and exploration. 



15 
 

• For each project, determine the best spatiotemporal data representations for 

fast access and processing. 

• Create functional web-based tools that run within a common user interface 

(i.e., a standard web browser). 

• Build all web-based tools and related utilities using open source server-side 

and client-side software, in addition to custom code. 

• Animate time-series output data in a web-based geovisualization tool, while 

allowing simultaneous interaction with the data (map operations, querying, 

etc.). 

 
The tools developed in this dissertation represent solutions designed for specific 

research problems.  However, the methods are typically generalized, such that they 

could be applied to any discipline using similarly-structured spatiotemporal datasets.  

Chapter 2 describes methods for data processing and storage for a unique web-based 

application, while Chapters 3 and 4 describe the methods used to develop rich 

internet applications for real-time interaction with large spatiotemporal datasets.  

Chapter 5 presents the conclusion of the dissertation and suggested paths forward.  

The purpose of Chapters 2-4 is described briefly below. 

 

1.6.1 Spatial Data Handling in the Tsunami Computational Portal (Chapter 2) 

The TCP enables tsunami researchers to configure simulation runs across three 

different model codes using a common parameterization scheme.  All input settings 

are configured in a web interface that supports dynamic, map-based selection of the 

gridded bathymetry and topography data used as inputs for the model codes.  The 

available bathymetry and topography datasets include global data such as GEBCO 
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(2010) and ETOPO1 (Amante and Eakins 2009), in addition to fine-scale grids 

located near shore.  The gridded datasets are all stored in a PostgreSQL (2012) 

database, spatially enabled via PostGIS (2012).  Assignment of the input datasets is a 

dynamic process that involves ensuring alignment of grid points and dynamic, real-

time snapping of selected boundaries to existing datasets.  Tsunami simulation runs 

produce modeled time-series output data used to generate animations or as inputs for 

further analysis.  This chapter will be submitted for publication in the journal 

Transactions in GIS. 

 

1.6.2 Web-based Tsunami Scenario Simulation Framework (Chapter 3) 

Modeled tsunami inundation data (from the TCP or other simulation tools) are used 

as inputs for an evacuation simulation framework, for which the input parameters are 

defined by the user via a web interface (i.e., the user controls the parameters 

governing the evacuation scenario simulation).  The framework simulates predicted 

human movement and uses the time-series inundation data together with a casualty 

model to identify each simulated individual’s casualty status at each time step of the 

simulation.  The time-series simulation output data is written to a spatial database 

and used to dynamically populate a web-based evacuation simulation mapping tool, 

in which the user can animate both the time-series inundation data and the time-

series evacuation scenario, plus query any of the underlying data at any point without 

interrupting the animation.  Most web-based GIS implementations allow attributes of 

the underlying spatial layers to be queried; however, few web-based interfaces allow 
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time-series animations to be overlaid with spatial layers and, at the same time, enable 

querying of the time-series data in a manner similar to the spatial layers.  This 

chapter will be submitted for publication in the International Journal of 

Geographical Information Science. 

 

1.6.3 Web-based Climate Grid Statistics (Chapter 4) 

The PRISM climate grids represent a large (about 4.5 TB) set of time-series data, 

with each grid approximately 85 MB in size.  Loading the grids over the network for 

analysis of large spatial or temporal scales can take a prohibitively long amount of 

time, and analysis of the grid sets can require significant processing power.  

Leveraging and extending a Python and open source GIS server-side grid processing 

framework allows the time-series data to be dynamically extracted from selected grid 

sets over user-defined spatial and temporal windows.  The extracted data can be 

analyzed using a number of statistical techniques, with the output data displayed on a 

map and plotted on a chart, depending upon the type of analysis selected.  All 

operations are defined by the user via an interactive web-based interface that handles 

the definition of input temporal and spatial scales as well as visualization and 

exploration of the output data, which can be exported for further analysis.  This 

chapter will be submitted for publication in the journal Computers & Geosciences.  
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2.1 Abstract 

The relative isolation of useful computational models and the difficulty of comparing 

alternative approaches are common problems shared by many research disciplines.  

Models typically have unique input/output formats and parameterization schemes, 

and the codes may require specific hardware/software environments.  This makes 

running similar jobs against different models in order to compare results difficult.  

Storage, representation, and efficient retrieval of massive data sets for analysis 

present additional challenges. 

 

The Tsunami Computational Portal (TCP) is a cyberinfrastructure service that brings 

together computational models in a common environment to simplify comparison. Its 

web-based interface facilitates executing the same inputs and controls against 

multiple models, or modifying parameters incrementally for a particular model.  

Researchers retrieve and visualize the results using tools available in the interface.  

The web interface is driven by a large PostgreSQL database (spatially-enabled by 

PostGIS) that contains global and local bathymetry and topography datasets (grids).  

A web-based mapping tool allows users to select grids of interest, nesting fine-

resolution near-shore grids within coarse open-ocean grids, and automatically 

snapping them to points in the database to satisfy alignment requirements of the 

model codes.  Custom utilities automatically handle the export of spatial objects 

from the database in the binary grid format required for processing on large 

computational clusters, and manage communication among related components.  
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Post-processing code automatically generates images and video of each model run 

from the output data. 

 

The TCP has made it possible to compare tsunami models and observe the effects of 

alternative numerical methods in a common interface.  A similar approach would 

benefit any domain where alternative models need to be exercised broadly and 

compared in order to increase scientific understanding of time-series phenomena.  

Managing the spatial data required for model run parameterization and simulation 

analysis presents data configuration and storage challenges, particularly with regard 

to efficient real-time (i.e., via web interface) spatial queries and data export.  

Through effective data storage, indexing, and spatial query techniques the TCP gives 

researchers fast access to grids needed for tsunami modeling, while contributing a 

useful, shared, web-based resource to the tsunami modeling community. 

 

2.2 Introduction 

Tsunami awareness has increased greatly in the past decade, in large part due to the 

major tsunami events caused by the 2004 Indian Ocean earthquake and the 2011 

Tōhoku earthquake near Japan, both of which resulted in widespread damage and 

loss of human life in impacted coastal areas (Titov et al. 2005, Geist et al. 2006, 

Dunbar et al. 2011, Gupta 2011).  The 2011 Tōhoku tsunami also caused damage to 

areas along the U.S. West Coast vulnerable to tsunami inundation, and resulted in 

one death in California (Dunbar et al. 2011, Allan et al. 2012).  Japanese tsunami 
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marine debris is still adrift in the Pacific Ocean and is actively being tracked 

(Showstack 2011, NOAA 2012).  Debris has already reached the U.S. West Coast 

(e.g., Murphy 2012), with more predicted to land in 2013 (NOAA 2012), leading to 

continued interest in tsunamis and their aftereffects from both researchers and the 

general public.  Along the U.S. West Coast, many tsunami-related educational and 

outreach efforts have taken place at State and Federal levels (e.g., Bernard 2005), as 

well as at the local level where tsunami hazard mitigation planning, inundation zone 

mapping, and citizen education continue to be areas of active research (e.g., Johnston 

et al. 2004, Tang et al. 2008).  Significant work remains, however, in accurately 

predicting tsunami behavior within specific geographic areas. 

 

Post-tsunami surveys can provide useful data for interpreting tsunami behavior, but 

field observations alone give only a partial understanding of a tsunami event (Lynett 

and Liu 2011).  Computational modeling of known and hypothetical tsunami events 

can improve understanding of tsunami behavior.  Tsunami modeling consists of three 

phases:  (1) generation of the tsunami event (typically by underwater earthquake but 

possibly by landslide or other means), (2) propagation of the tsunami wave across 

the ocean, and (3) inundation and run-up of the tsunami wave on shore, where 

substantial tsunami energy can be released (Yeh 1991, Bernard et al. 2006, Gisler 

2008).  High-quality spatial data (bathymetry and coastal topography grids) at 

multiple scales are required to effectively study tsunami wave generation, 

propagation, and inundation.  Typically, less detail (i.e, grid resolution) is needed in 
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mid-ocean domains, with an increasing amount of detail required as the modeled 

tsunami wave approaches shore.  This presents challenges from both computational 

(i.e., switching resolutions dynamically during simulation) and data-availability (i.e., 

fine-resolution data must be aligned exactly with coarse-resolution data) 

perspectives. 

 

There is also growing recognition of the need for high quality data describing both 

recent tsunami and paleotsunami events, to aid researchers in duplicating event 

parameters for tsunami modeling purposes (Goff et al. 2011, Goff et al. 2012).  

Databases describing such events have been established (e.g., Goff et al. 2010) and 

are available online (e.g., Dunbar and McCullough 2011).  However, while verified 

event data may be available online and good quality global spatial data (combined 

bathymetry and topography) are available at a coarse scale, the access and 

availability of tsunami numerical modeling codes and computational systems on 

which they can be run efficiently remain difficult to obtain.  Furthermore, expert skill 

is still required to interpolate or otherwise align grids from different sources and at 

different scales by matching fine-scale data points with coarse-scale underlying data.  

Processing a single simulation scenario across different model codes for comparative 

studies has been impractical due to differences in model parameterization schemes 

and idiosyncratic input requirements. 
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Computational portals can provide an effective means of assembling geographically 

distributed resources and services in a single interface (Huang et al. 2006).  The 

Tsunami Computational Portal (TCP 2012) is a cyberinfrastructure service that 

brings together multiple computational tsunami models in a common environment.  

The purpose of the TCP is to provide a useful, centralized, web-based service to 

researchers engaged in developing and comparing numerical models of tsunami 

generation, propagation, and inundation, and to facilitate comparison and further 

exploration of simulation output.  Goals of the TCP service include: 

 
• Provide an intuitive web-based portal with access to multiple models. 

• Create a consistent user interface and model parameterization scheme. 

• Enable parameter suite studies across sets of similar scenarios. 

• Facilitate identical runs across different computational models. 

• Give users the ability to view job status and retrieve results. 

• Provide visualization tools that work directly with TCP output data. 

 
 
The web-based portal interface allows tsunami researchers, as well as model 

developers, to study and compare numerical models of tsunami generation, 

propagation, and inundation.  The TCP facilitates the execution of identical inputs 

and controls across multiple models, as well as so-called parameter sweep studies 

where parameters are modified incrementally while executing the same model 

multiple times.  Researchers can retrieve and visualize results using tools available in 

the portal interface. 
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The TCP was developed as a collaborative effort involving Oregon State University 

(OSU), the Northwest Alliance for Computational Science and Engineering 

(NACSE) at OSU, the Arctic Region Supercomputing Center (ARSC) at University 

of Alaska Fairbanks (UAF), and tsunami researchers from institutions worldwide.  

Development of the TCP was funded by the U.S. National Oceanic and Atmospheric 

Administration (NOAA) and the U.S. Department of Defense, through its High 

Performance Computing Modernization Program (HPCMP). 

 

A critical component of the TCP is the inclusion of, and rapid access to, high-quality 

bathymetry and coastal topography grids.  This presents multiple challenges related 

to spatial data configuration, storage, and analysis.  Tsunami numerical modeling 

codes are often tasked with computing trans-oceanic simulations with high-

resolution near-shore datasets included for greater detail in select coastal areas.  

Large computational problems like these can require tens of millions of gridded data 

points to represent the domain of interest at multiple resolutions, exceeding the 

processing capabilities of standalone servers (i.e., requiring parallel processing on 

large computational systems).  Time-critical simulations that require fast model run 

configuration, including satisfying spatial data alignment issues across multiple 

resolutions and preparing data for model input, also require fast processing.  Finally, 

post-processing of output time-series datasets can be resource intensive. 
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2.3 Tsunami Modeling 

Although the increased focus on tsunami science has drawn attention to tsunami 

modeling techniques and numerical codes used for tsunami simulation, the relative 

isolation of useful computational models and the difficulty of comparing alternative 

approaches remain common problems shared not only by the tsunami research 

community, but also by many other scientific research disciplines.  Model source 

code cannot always be shared and, even when it is, other research groups may find it 

difficult to install and run an unfamiliar model.  Each model has unique input/output 

formats and parameterization schemes, and the model codes themselves must often 

be run with exactly the hardware (e.g., parallel clusters running the Solaris vs. Linux 

operating system) or software (e.g., Fortran-based vs. C-based) environments used 

by the original developers of the model codes.  The result is that a significant amount 

of work may be required simply to run a similar job configuration on two different 

model codes in order to compare results.  Furthermore, researchers may have limited 

access to “big iron” – the supercomputing resources needed to efficiently compute 

large tsunami simulation processing jobs. 

 

Several established hydrodynamic numerical modeling codes exist for modeling 

tsunami propagation and inundation (Table 2.1). 
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Table 2.1:  Selected set of established tsunami numerical modeling codes.  
Numerical model names in bold text are available in the portal. 

Numerical Model Reference Model Description 

ADCIRC (A 
[Parallel] Advanced 
Circulation Model 
for Oceanic, Coastal 
and Estuarine 
Waters) 

Blain and Kelly 
2001; ADCIRC 
2012 

Utilizes equations discretized in space 
using the finite element method and in 
time using the finite difference method.  
Can be run using either the spherical or 
Cartesian coordinate system. 

COMCOT (Cornell 
Multi-grid Coupled 
Tsunami Model) 

Liu et al. 1995; 
Liu et al. 1998 

A package of computational programs 
for solving the linear shallow water 
(LSW) equations in both spherical and 
Cartesian coordinate systems, and the 
nonlinear shallow water (NLSW) 
equations in the Cartesian coordinate 
system. 

MOST (Method of 
Splitting Tsunami) 

Titov and 
Gonzales 1997; 
NOAA Center for 
Tsunami 
Research 2012 

A suite of numerical codes for 
simulating event generation, wave 
propagation, and inundation.  Uses a 
finite difference method to divide its 
computational domain. 

Tsunami CLAW George and 
LeVeque 2006 

An adaptive-mesh model that uses a 
finite-volume approach for solving the 
NLSW equations but allows for zooming 
in on coastal regions to better capture the 
effects of local bathymetry variation. 

TUNAMI-N2 
(Tohoku University's 
Numerical Analysis 
Model for 
Investigation of Near 
field tsunamis) 

Imamura et al. 
2006 

Uses a finite distance model to apply 
linear theory in deep ocean areas, and 
shallow-water theory in shallow areas 
and runup on land with constant grids. 

UAF Tsunami 
Model 

Kowalik and 
Murty 1993; 
Suleimani 2004 

A finite difference model that solves the 
NLSW equations for transoceanic 
tsunami propagation in the spherical 
coordinate system, and in the Cartesian 
coordinate system for runup calculation. 
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Effective tsunami inundation modeling depends upon three important requirements 

(National Research Council 2011): 

 
1. An understanding of the phenomenon that generated the tsunami event (often 

via earthquake and associated shifting of the seafloor), including information 

that can be used to parameterize a computational model. 

2. Accurate and precise gridded bathymetry and coastal topography data 

representing the ocean/land interface (preferably with higher-resolution data 

representing near-shore areas). 

3. Hydrodynamic computational model code to simulate wave propagation and 

inundation, as well as the computing hardware required to effectively process 

the simulation. 

 
 
The TCP addresses all three of these requirements: 

 
1. Researchers using the TCP provide parameters that describe the event 

generation, to simulate either a past tsunami-generating event using known 

seafloor displacement information or a hypothetical event. 

2. The TCP includes common global-scale bathymetry and coastal topography 

data (GEBCO and ETOPO), as well as fine-resolution bathymetry and coastal 

topography data provided by researchers to represent specific near-shore 

areas at various locations around the world.  All grids added to the system are 

made available to any researcher using the portal. 

3. Parameters and controls from the three established numerical tsunami 

modeling codes were mapped to create a common parameterization scheme:  

COMCOT, the UAF Tsunami Model, and Tsunami CLAW. 
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The three model codes available in the TCP were retrofitted to the shared 

parameterization scheme and ported to run on ARSC supercomputers.  All of the 

codes can process multiple nested grids (i.e., a coarse-resolution grid can contain 

multiple, finer-resolution grids representing near-shore geographic locations or other 

regions where more detailed modeling is required). 

 

2.4 Portal Infrastructure 

The Tsunami Computational Portal system comprises multiple components 

distributed among various systems at NACSE and ARSC (Figure 2.1).  Spatial data 

configuration, storage, and analysis operations are central to the system and are 

driven primarily by the relational database management system.  The portal database, 

website, and custom-built data processing tools are all driven by open source 

software. 

 

The portal website is a step-by-step guided interface written in a mix of PHP and 

JavaScript that allows the user to configure a model run and provides them with 

intelligent choices and defaults based upon their previous selections.  Extensive error 

checking code validates every parameter value and provides the user with  

 



35 
 

 
 
Figure 2.1:  Tsunami Computational Portal system-level view architecture.  Aside from job initiation and finalization messages 
sent by NACSE servers, all communication (including data transfers) is initiated by ARSC.  This is done for security reasons 
(ARSC is a secure DoD site).
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information about the expected size of result files based on their current settings.  

Each user can retrieve results, configure new jobs, and easily replicate or modify 

previous settings to create suites of jobs for comparison across different model 

codes. 

 

The numerical models available in the portal require individual input configurations 

in different formats.  A unified configuration scheme was developed that utilizes 

nearly all of the same input parameters across all models, facilitating the use of 

shared components in the system.  Developing a common parameterization scheme 

across model codes was a challenging task undertaken primarily by ARSC staff.  

Custom utilities perform automatic communication and transfer of data between 

NACSE and ARSC, and enable the automatic export of spatial objects in the binary 

format required for processing on ARSC supercomputers.  The export utility was 

developed as a database function that dynamically extracts the necessary slices of 

data from each requested grid as text and packs them into an ordered binary format 

that can be directly pulled into ARSC processing jobs. 

 

Grids made available in the portal are stored and managed in the open source 

PostgreSQL (2012) relational database management system that is spatially enabled 

via the open source PostGIS (2012) module.  The PostgreSQL database server 

instance runs on a dedicated Dell PowerEdge R710 server containing four quad-core 

2.53 GHz Intel Xeon processors and 32 GB memory, with data stored across eight 
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320GB 10,000 RPM serial-attached SCSI disks in a RAID 5 configuration (via a 

hardware RAID controller).  The server runs the Red Hat Enterprise Linux 6 

operating system. 

 

The database structure (Figure 2.2) was designed to store metadata that describes the 

bathymetry and coastal topography grids used as model inputs, the grids themselves, 

and detailed information about each configured model run. 

 

 

Figure 2.2:  Generalized database structure diagram (key tables displayed).  The 
database is designed to hold an unlimited number of gridded spatial datasets and 
their associated metadata, as well as information describing model runs configured 
by portal users. 
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Storing this detailed information allows the user to reconstruct a model run, which is 

particularly useful in comparative studies where the user may want to change a 

single parameter value while keeping the rest constant.  Grids are stored as 

individual tables (one table per grid), while a management table stores information 

about each grid (e.g., the grid point spacing value, number of rows and columns, 

maximum extent in each direction, and calculated values describing the grid 

domain).  A separate PostGIS management table (geometry_columns) stores 

information about each grid’s coordinate system. 

 

Information about completed jobs is added automatically to the database, and the 

output data files are automatically made available within the portal interface.  Users 

receive notification via email when the results are ready, and can download the files 

from their account in the portal.  Automatically-triggered post-processing code at 

NACSE generates images and video of each model run to provide a quick 

visualization of model output. 

 

2.4.1 Database Configuration 

PostgreSQL was selected as the production relational database management system 

for the following reasons: 

 
• Highly regarded reputation as an enterprise-class open source relational 

database management system (e.g., Garbin and Fisher 2010). 
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• Spatial query capabilities via PostGIS that conform to the OpenGIS Simple 

Features Specification for SQL (Open Geospatial Consortium Inc. 2010). 

• Support for unlimited rows and indexes per table, as well as a very large (32 

TB) maximum table size (PostgreSQL 2012). 

• Proven in-house ability to run efficiently on Linux-based servers in a 

production computing environment. 

 
 
To enable the full set of spatial operations supported by PostGIS, the PROJ.4, 

GEOS, and LibXML2 open source packages must be compiled and PostGIS must be 

configured to use them (Table 2.2).  Of particular importance, GEOS supports key 

spatial operations within PostGIS, as well as operators for controlling which indexes 

are utilized in queries (Zhang and Yi 2010).  The PROJ.4 package is necessary for 

performing coordinate conversions within the database. 

 

Table 2.2:  Software packages required for PostgreSQL database installation and 
support of spatial features and operations.  All software packages listed in this table 
are released as open source products. 

Software Package Purpose 

PostgreSQL 
(postgresql.org) Relational database management system. 

PostGIS 
(postgis.refractions.net) 

Spatial database extension for PostgreSQL (adds support 
for spatial objects and operations). 

GEOS 
(geos.osgeo.org) 

C++ port of the Java Topology Suite.  Provides OpenGIS 
Simple Features operations to PostgreSQL/PostGIS. 

PROJ.4 
(proj.osgeo.org) 

Cartographic projections library that allows the database 
engine to perform coordinate system transformations on 
spatial objects. 

LibXML2 
(xmlsoft.org) 

XML C parser and toolkit for building tag-based 
structured data and documents. 
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The PostgreSQL database server can be tuned via the many configuration parameters 

in the postgresql.conf file that affect the database system.  Four particular settings 

have the greatest effect on database read/write performance (Table 2.3), and have 

been modified on the TCP production database server to match the server’s hardware 

configuration. 

 

Table 2.3:  Key parameter settings in the PostgreSQL postgresql.conf configuration 
file.  The “Modified Setting” column displays values in use on the TCP production 
database server. 

Parameter Default 
Setting 

Modified 
Setting Rationale 

shared_buffers 32 MB 8192 MB 
A value that is 25% of the memory on a 
dedicated server gives the best balance of 
memory allocation and performance. 

effective_ 
cache_size 128 MB 16384 MB 

A value that is 50% of the memory on a 
dedicated server gives the best balance of 
memory allocation and performance. 

checkpoint_ 
segments 3 32 

Best set higher than default (somewhere 
between 16 and 64) so that the system is 
not continually writing checkpoints. 

wal_buffers 64 kB 512 kB 
Set higher than the default value (but 
below 1MB total) to improve performance 
in write-heavy operations. 

 

 
2.5 Spatial Data Handling 

Tsunami propagation across the ocean is strongly influenced by bathymetry and 

coastal topography (Lynett 2011, National Research Council 2011).  Many tsunami 

inundation models require bathymetry data that cover the entire ocean basin as a 

coarse-resolution continuous base layer, with additional higher-resolution 
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bathymetry and integrated topography data included for more detailed modeling of 

wave propagation and inundation along coastal areas.  In the tsunami computational 

modeling domain, these bathymetry and coastal topography datasets are typically 

represented as gridded point data rather than raster-based data products. 

 

Data points located on a regularly-spaced grid are necessary for numerical models, 

giving them a framework for calculating tsunami movement from one point to the 

next across the modeled domain.  A continuous coarse-resolution grid (i.e., 30 arc-

second, or  ~900 m) covering the globe exists and can be used for this purpose.  

Researchers examining particular near-shore areas often generate finer-scale (i.e.,  

< 100 m) bathymetry and coastal topography grids from survey data, or obtain finer-

scale grids from sources such as the NOAA/NGDC coastal relief models 

(www.ngdc.noaa.gov/mgg/coastal), which are 1 arc-second (~30 m) or finer 

resolution. 

 

2.5.1 Input Grid Specifications 

Grids stored in the spatial database consist of bathymetry and coastal topography 

datasets representing global and regional extents.  Grids added to the database are 

often acquired as large space-delimited ASCII text files in “xyz” format (i.e., 

containing longitude, latitude, and depth [elevation] values), although grids are 

occasionally acquired in netCDF format.  The open source geospatial processing 

tools GMT (2012), PROJ.4 (2012), and the OGR Simple Features Library (OGR 
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2012) are used in various combinations for data preparation and pre-processing tasks 

such as grid point alignment or reordering operations, or coordinate system 

conversion. 

 

Because most gridded data to be inserted in the database are typically obtained in 

xyz (or zxy, etc.) format, a Perl (2012) script was developed to process the gridded 

data (Appendix A).  Following any pre-processing work, files in space-delimited xyz 

format are parsed into a series of structured query language (SQL) insert statements 

via the processing script, and inserted into the database as spatial objects via PostGIS 

functions.  After insertion of each grid, B-tree (generalized binary search tree) 

indexes are built for the Cartesian x and y columns and a GiST (Generalized Search 

Tree)-based spatial index (specifically, R-tree-over-GiST as implemented by 

PostGIS) is built for the column that stores the geometry point objects.  A 

multicolumn index (combining the indexes on the x and y columns) is also built for 

very large datasets (e.g., GEBCO_08) to speed queries in instances when any 

WHERE clauses applied to the individual x and y indexes then need to be ANDed or 

ORed across both columns (i.e., to query a range of points between minimum and 

maximum values of x and y). 

 

After a grid is added to the spatial database, an operation is performed to update the 

internal statistics the database maintains for each table.  Finally, custom database 

functions written in PostgreSQL’s PL/pgSQL procedural language automatically 



43 
 

calculate the maximum allowable time step for each grid, and the time required to 

cross the maximum domain of each grid (Appendix B).  These values then feed 

directly into the TCP interface to provide guidance for users and for the system to 

verify that input grids are prepared to the specifications required by the model codes 

at ARSC. 

 

The TCP spatial database contains the two global relief grids GEBCO_08 (GEBCO 

2010) and ETOPO1 (Amante and Eakins 2009), in addition to a number of fine-

resolution near-shore grids (Table 2.4).  GEBCO_08 is a 30 arc-second global grid 

developed via the collaborative effort of a number of international oceanographic 

and hydrographic governmental agencies.  ETOPO1 is a 1 arc-minute global relief 

model built from multiple global and regional datasets by the U.S. NOAA National 

Geophysical Data Center.  Earlier versions of both global grids (GEBCO 1 arc-

minute and ETOPO2 2 arc-minute) were initially added to the TCP spatial database 

and used in the portal prior to the availability of the newer versions.  Although both 

earlier versions have been deprecated, and ETOPO2 may actually be misregistered in 

latitude and longitude (Marks and Smith 2006), the grids remains available in the 

TCP spatial database for researchers who may need to use them for comparative 

studies or to reproduce past results.
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Table 2.4:  Selected grids available in the TCP spatial database.  The parameters max_allowable_time_step and 
time_to_cross_max_domain are not calculated for global grids (e.g., etopo1), as they only apply to grids of less than global 
extent.  The "etopor" grid is a "rolled" version of the global etopo2 grid with longitude configured 0 to 360 (vs. -180 to 180), 
which allows researchers to run transoceanic simulations across the Pacific Ocean.  The gebco30 grid is the full global 
GEBCO_08 30 arc-second dataset, the largest global grid stored in the TCP spatial database at nearly a billion rows of data.  
Latitude, longitude, and spacing values were rounded to three decimal places in this table. 

Grid Name Min_x 
(longitude) 

Min_y 
(latitude) 

Max_x 
(longitude) 

Max_y 
(latitude) 

Spacing 
(arc sec) Rows Columns Point count 

(dbase rows) 

cook_inlet_24s -155.997 55.003 -147.003 61.997 24 1350 1050 1,417,500 
crm_or_wa_coast_12s -126 44 -123 47 12 901 901 811,801 
crm_or_wa_coast_3s -126 44 -123 47 3 3601 3601 12,967,901 
etopo1 -180 -90 180 90 60 21601 10801 233,312,401 
etopo2 -180 -89.967 179.967 90 120 10800 5400 58,320,000 
etopor 0 -89.967 359.967 90 120 10800 5400 58,320,000 
gebco -180 -90 179.983 90 60 21600 10801 233,301,600 
gebco30 -179.996 -89.996 179.996 89.996 30 43200 21600 933,120,000 
gulf_of_alaska_2m -168.983 52.017 -140.017 61.983 120 870 300 261,000 
homer_1s -151.558 59.584 -151.367 59.667 0.889 777 339 263,403 
homer_3s -151.751 59.534 -150.907 59.793 2.667 1140 351 400,140 
homer_8s -152.166 59.254 -150.908 59.792 8 567 243 137,781 
kingscove5s -163.3 53.2 -161.701 55.399 5 1152 1584 1,824,768 
seaside_3s -126 45 -123.5 47 3 3001 2401 7,205,401 
seldovia_1s -151.782 59.392 -151.684 59.47 0.889 399 336 134,064 
seldovia_3s -151.882 59.391 -151.476 59.533 2.667 549 192 105,408 
seward_1s -149.467 60.059 -149.308 60.158 0.889 639 402 135,000 
seward_3s -149.5 59.876 -149.251 60.166 2.667 336 393 132,441 
seward_8s -149.999 59.501 -149.001 60.165 8 450 300 137,781 
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2.5.2 Grid Alignment 

Grids stored in the spatial database are grid/node registered, meaning that grid cells 

are centered on lines of latitude and longitude rather than the grid cell edges being 

aligned to lines of latitude and longitude (Figure 2.3).  The TCP system enforces 

strict grid spacing alignment requirements to ensure that points in fine-resolution 

grids are exactly co-located with matching points (i.e., identical lat/lon coordinates) 

in coarse-resolution grids when the grids are nested together.  The implemented 

tsunami numerical codes support grid spacing ratios of 5:1 and 3:1.  For instance, 

five fine-resolution (e.g., 12 arc-second or ~360 m) gridded point spaces fit within 

the space between a pair of coarse-resolution (e.g., 60 arc-second or ~1.8 km) 

gridded points.  Figure 2.3 illustrates these grid spacing requirements and provides a 

grid cell-level example of nesting a fine-resolution grid in a coarse-resolution grid.  

This grid spacing regularity enables the computational model codes to seamlessly 

switch from processing coarse-resolution data to fine-resolution data on an expected 

alignment and spacing ratio within a single model run.  Fine-resolution grids require 

two rows and columns of “padding” points around their perimeter.  This requirement 

satisfies the alignment system built into the grid verification code and matches the 

fine-resolution grids originally provided to the TCP system by UAF researchers.
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Figure 2.3:  Illustration of spacing requirements for gridded data used in the TCP.  Fine-resolution grids nested in coarse-
resolution grids must align exactly with the coarse grid points and must have the correct coarse-to-fine spacing ratio.
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Up to four fine-resolution subgrids can be nested in a master grid, with an extra 

subgrid nested within each of the first-level subgrids (Figure 2.4); however, subgrid 

borders cannot cross or touch one other, and each model restricts how deeply nesting 

can occur.  To simplify this selection process for portal users configuring model 

runs, the TCP handles these restrictions automatically – a validation system written 

in mix of PHP and JavaScript (examples in Appendix C) ensures that nested subgrids 

are aligned properly within parent grids and match the acceptable 5:1 or 3:1 grid 

spacing ratios.  A custom map-based grid selection tool (Figure 2.5) allows users to 

select input grids dynamically, and user-selected extents of nested subgrids are 

automatically snapped to matching points within their parent grids according to the 

requirements of the selected model code.  The mapping tool displays the grid 

selection and nesting arrangement graphically, with the defined extent outlined and 

the grid name and resolution labeled within each extent (Figure 2.6).  Actions such 

as snapping subgrid points to parent grid points and checking parameter settings 

against the selected spatial extent all take place in real time while the user is 

configuring a model run.  Storing the grids in a spatial database makes these real-

time checking and verification operations possible – the PHP-based website code can 

quickly connect to the PostgreSQL database, run a query, process the result, and 

provide the necessary feedback to the user.
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Figure 2.4.  Representation of an acceptable grid nesting arrangement.  This is the 
maximum allowed number of grids and level of nesting for a single model run.  The 
largest region (Grid_Number=1) represents the master grid, containing four subgrids 
(numbers 2, 3, 4, 8), each of which also contain a subgrid (numbers 5, 6, 7, 9). 
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Figure 2.5:  Step 2 of the TCP interface, displaying the use of the custom mapping 
tool to define the master grid extent for a COMCOT model run.  If exact coordinates 
are known, they can be entered and the selection box will snap to the defined extent.  
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Figure 2.6:  Step 3 of the TCP interface, displaying the map-based subgrid selection 
mechanism.  Subgrids must be placed within the master grid (dashed line boundary), 
and may not overlap or touch the boundaries of any other defined subgrids.  
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2.5.3 Grid Preparation for a Model Run 

Once a model run is parameterized and the user has submitted the job for processing, 

the selected master grid and subgrids are prepared and packaged along with the 

metadata and parameters that define the model run.  These operations take place on 

NACSE servers.  To be compatible with the model codes running on ARSC 

supercomputers, all gridded datasets submitted for tsunami simulation processing 

must be converted to a binary file format that matches the following specification: 

 
• Each data element must be: 

o Four bytes in size. 

o Type float or real. 

o Big-endian (MSB) byte order. 

• The file must not have a header. 

• The file must contain n data elements, where n is the product of the number 

of rows and columns. 

 
 
Data to be configured as input grids for model runs are extracted from the database 

and packaged into the necessary binary format via a database function written in the 

PostgreSQL C application programmer’s interface (API).  The PostgreSQL C API is 

implemented as the libpq C library, which provides a set of functions that allow C 

programs to submit queries to the PostgreSQL server instance and receive the results.  

Performing these operations via compiled C code can be much faster than running 

the equivalent query using an interpreted programming language (e.g., Perl) or the 

PL/pgSQL procedural language.  Writing the grid export functions in C facilitates 
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the export of gridded point data directly from the database to the required binary file 

format (Appendix D).  The clipped grids are packaged along with metadata and 

model run configuration parameters, and made available to ARSC for processing. 

 

2.6 Results 

The TCP system is actively used by researchers interested in modeling tsunami 

propagation and inundation across multiple model codes.  A range of input 

bathymetry grids are available by default, and additional grids can be added to the 

system.  Powerful computer hardware at NACSE, together with effective indexing of 

database columns, provides fast access to the input datasets for region selection and 

preparation.  Fast supercomputers at ARSC, where configured simulation jobs are 

executed, guarantee quick turnaround of complex modeling scenarios. 

 

2.6.1 Portal Usage 

Over 100 TCP user accounts have been approved and established.  Over 800 jobs 

have been configured and run by portal users since the portal was introduced.  

Output data have been described in technical papers and conference presentations 

(e.g., Barkan et al. 2008, Keon et al. 2009), and have also been used in various 

quantitative analyses.  To investigate possible effects of a large earthquake-generated 

tsunami on coastal Europe, Barkan et al. (2009) used the portal to run multiple 

simulations of a large tsunami event based upon known historic information about 

the 1755 Lisbon earthquake-generated tsunami.  Barkan and ten Brink (2010) later 
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used the portal to model multiple simulations of the tsunami generated by the 1867 

Virgin Island earthquake. 

 

2.6.2 Input Grid Availability 

Of the 30 bathymetry and coastal topography grids available in the spatial database, 

four are global datasets acquired and processed by NACSE personnel and the 

remaining 26 are of sub-global extent (and typically finer-resolution than the global 

grids), and were provided by researchers who used them in model runs and made 

them available to all portal users.  The portal interface at NACSE runs on servers 

protected by redundant network access and backup power capabilities, which 

guarantees high availability.  Configuring the system to store and serve input grids 

via a fast spatial database gives portal users effective real-time web-based access to 

these large datasets, as well as the built-in verification of grid spacing, alignment, 

and overlap protection that the database calculates dynamically using stored 

metadata, user input, and fast spatial queries. 

 

2.6.3 Output Grids and Data Products 

Several data output products are delivered upon completion of a model run (Table 

2.5).  All output data products are file-based (i.e., none are inserted into the 

database), but are linked to database metadata records via unique identifiers.  Of 

particular interest for further modeling or visualization are the time series and sea 
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level max files, each of which can be converted to an image (or a set of images or 

video in the case of the series file). 

 
Table 2.5:  Output data products produced by numerical codes at ARSC for each 
model run.  These sets of files are transferred from ARSC to NACSE for post-
processing and then made available to the user who submitted the job. 

Ouput Data 
Product Format Description 

Time series Binary 
Contains sea level height at each grid cell location 
for each time step.  One file is returned for each 
input grid. 

Sea level max Binary 
Contains the single highest sea level height 
recorded at each grid cell location across all time 
steps. 

Model run statistics ASCII 
System-level statistics related to the model run 
(host, model code & version, job ID, elapsed time, 
etc.). 

U velocity vectors Binary Optional output.  Data describing the U velocity 
component for every grid cell at each time step. 

V velocity vectors Binary Optional output.  Data describing the V velocity 
component for every grid cell at each time step. 

Input configuration ASCII Copy of the input configuration defining the 
successfully completed model run. 

 
 
When the data output products are successfully transferred from ARSC to NACSE, 

automatically-triggered processes at NACSE unpack the files to the correct location 

on the filesystem and update the database to indicate the availability of the output 

data products.  Post-processing code renders a complete set of images for the time 

series data (one image per time step) and automatically assembles them into a video 

file (Figure 2.7).  
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Figure 2.7:  Sequence of three selected images representing tsunami propagation in a 
North Atlantic Ocean model run.  The images were generated via post-processing of 
the time series data output, with one image generated for each output time step.  

time step 0 

time step 50 

time step 100 
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2.6.4 Spatial Database Performance 

The grid management system developed for this project, in which the spatial 

database is a key component central to web-based model parameterization and 

preparation of clipped input grids, relies upon particular database optimizations (e.g., 

spatial indexes) to function at the speed necessary to support portal operations.  

Spatial indexing schemes, such as the R-tree-over-GiST spatial index that PostGIS 

functions utilize, facilitate fast querying across spatial features stored in the database 

(Nguyen 2009, Keon 2010).  Spatial indexes are essential for enabling efficient 

queries against very large datasets; without them, spatial queries would resort to 

sequential scans of the data, which would run extremely slow in comparison. 

 

By generating spatial indexes on all grids stored in the database, the performance of 

queries necessary for (1) real-time portal responsiveness and (2) gridded data export 

for preparation of model input grids was greatly increased.  The sample comparison 

below demonstrates the speed of a real-world query against the GEBCO_08 grid that 

utilizes the spatial index vs. the identical query with the spatial index disabled (pre-

pending an underscore on the PostGIS function name ST_Within disables usage of 

the spatial index, which simulates the absence of a spatial index on the column).  In 

this comparison, all gridded points within a bounding box of two degrees longitude 

by one degree latitude were extracted: 
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 QUERY #1 (spatial index enabled) 
 

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat 

FROM gebco30 

WHERE ST_Within(geom, GeometryFromText('POLYGON((-125 44, 

-125 45, -123 45, -123 44, -125 44))', 4326)); 
 

28800 rows returned 

query time: 342 ms 

 
 QUERY #2 (spatial index disabled) 
 

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat 

FROM gebco30 

WHERE _ST_Within(geom, GeometryFromText('POLYGON((-125 44, -125 45, 

-123 45, -123 44, -125 44))', 4326)); 
 

28800 rows returned 

query time: 489180 ms 

 
 
The sample query run with the spatial index disabled results in a query execution 

time many orders of magnitude slower (489.18 seconds vs. 0.34 seconds) than with 

the spatial index enabled.  Similarly, the creation of indexes on the Cartesian x and y 

columns of every grid table facilitates fast querying of data based on the indexed 

values.  This is particularly beneficial for exporting gridded data as binary files to 

deliver to ARSC for processing, since the data are queried based on sequential x,y 

point position prior to conversion to binary (Appendix D). 

 

For very large tables (e.g., GEBCO_08), a combined (i.e., “multicolumn”) index was 

generated based on the existing x and y column indexes, which provides much faster 

query response than relying solely upon the individual column indexes.  In the 

comparison below, a random set of grid points was selected by setting a WHERE 



58 
 

 

clause on the Cartesian x and y grid point location values, first on a copy of the 

GEBCO_08 grid for which indexes were built on x, y, and xy, and second on a copy 

of the same grid for which indexes were built only on x and y. 

 
 QUERY #3 (with x, y, and xy spatial indexes) 
 

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat 

FROM gebco30 

WHERE x < 19048 and x > 11429 and y < 98 and y > 21; 

 
578968 rows returned 

query time: 3370 ms 

 
 QUERY #4 (with x, y spatial indexes only) 
 

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat 
FROM gebco30 

WHERE x < 19048 and x > 11429 and y < 98 and y > 21; 

 

578968 rows returned 
query time: 7551 ms 

 

The difference in query speed is not nearly as dramatic as in the previous spatial 

query example, but use of the multicolumn index decreased query execution time by 

more than half of the time (3.37 s vs. 7.55 s) required using single-column indexes.  

This is a significant performance gain that is particularly effective when querying 

large sets of points, or when concurrent queries place a high load on the database 

server.  Gains in overall database performance were also obtained by modifying 

postgresql.conf parameters as described in Table 2.3.  These configuration 

modifications are particularly helpful for write-heavy operations such as initial grid 

loading. 
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2.7 Discussion 

The specialized handling required for large spatial datasets used in the TCP presents 

a challenging set of constraints that must be met in near-real-time scenarios.  

Successfully meeting those constraints and generating the inputs required by the 

model codes at ARSC requires tight integration among system components, as well 

as the development of specialized code to (1) prepare and package spatial data and 

metadata for simulation modeling jobs, and (2) automatically process the 

spatiotemporal output data into useful products. 

 

2.7.1 System Integration 

The TCP’s integration of the input bathymetry grids, spatial database, and web portal 

system at NACSE, together with the supercomputing resources at ARSC, represents 

a unique implementation of a distributed scientific portal framework.  A number of 

important factors contribute to system operations; one of the key factors is the 

common model parameterization scheme, which enables job configuration within a 

single interface (the web portal) and facilitates job processing at ARSC.  Leveraging 

the computational resources at ARSC allows the fast computation of complex 

modeling scenarios that would otherwise be difficult (or impossible) to compute in a 

timely fashion. 

 

Gains in multi-core processor speed may make local processing of model codes more 

feasible, but large tsunami modeling jobs will still require the parallel processing 
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advantage of a large computational cluster or supercomputer.  Running parallel 

computational tsunami modeling operations on a graphics processing unit (GPU) 

presents interesting possibilities for relatively low-cost, yet fast, computation across 

large domains.  This approach was tested using the set of linear shallow-water 

equations by Schmidt et al. (2010) who, using a single GPU, found an increase in 

processing speed by a factor of eight over the processing speed required by a single 

CPU. 

 

2.7.2 Portal Design and Spatial Data Handling 

The methods described for spatial data configuration, storage, and analysis in support 

of tsunami computational modeling enable fast access to large quantities of spatial 

data both in a web-based context and for export and packaging of grids in 

preparation for processing.  Open source database and spatial data processing 

software packages constitute an effective platform for importing, exporting, 

querying, and manipulating grids used as inputs for tsunami numerical modeling.  

APIs provided by some of the products give portal developers the ability to design 

and implement custom solutions for particular applications.  GIS-based mapping and 

visualization aids help the user to define the extent of interest and grid nesting 

arrangement for a model run.  As others have noted (e.g., Merati et al. 2010), these 

capabilities are extremely useful in hazard assessment and modeling tools. 
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Access to data and a common parameterization interface facilitates the comparison 

of both hypothetical and actual tsunami events across multiple models.  An important 

benefit of the TCP system is the ability to parameterize a single simulation and run it 

across multiple models, all within the same interface.  The TCP represents a useful 

implementation of a scientific web-based portal that gives users access to high-

performance computing resources.  The system was written specifically for this 

project – no framework was used in its development, although such frameworks have 

since been developed (e.g., Van Hemert et al. 2011). 

 

Maintaining bathymetry and coastal topography grids in a relational database gives 

researchers easy access to the data and associated metadata via a web-based 

interface, and enables fast spatial queries for real-time alignment and validation 

checks performed by the portal interface.  Spatial indexing is essential for enabling 

fast spatial queries in the database.  The use of multicolumn indexes in particularly 

large grid tables also decreases query time, reducing the total time required to 

configure a new model run.  A disk space penalty is incurred when an index is built 

on a grid table.  For instance, the table containing the GEBCO_08 grid (including 

spatial objects) occupies approximately 59 GB of disk space on the production 

system, while the four column indexes (x, y, xy, and spatial) created for that table 

occupy approximately 112 GB.  However, the efficiency in query speed gained by 

effective index usage far outweighs the associated disk space penalty. 
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2.7.3 Automation and Output Data Products 

A key feature of the TCP system is automation – in particular, the automated 

processing of spatial data as inputs for analysis and of output time-series data for 

interpretation and visualization.  While the spatial database greatly facilitates the 

exploration and selection of grids via the web-based interface, and the PostgreSQL C 

API enables fast data extraction queries via external code, the spatial database itself 

may not be the fastest solution for extracting and packaging data to prepare inputs 

for analysis.  Since the initial development of the TCP system, advancements in open 

source GIS toolkits and scripting languages such as Python have provided improved 

compatibility with native formats such as netCDF, a common format used for 

gridded bathymetry data.  It should be possible today to develop a grid extraction 

tool written in Python that uses the GDAL Python API to dynamically clip and 

extract netCDF files (i.e., read from and write to netCDF directly, which GDAL 

supports).  However, any potential speed improvement may be insignificant in the 

context of the portal system, which processes jobs in a queued manner depending 

upon resource availability at ARSC. 

 

Although tsunami model output data are often used to produce visualizations or 

quantitative comparisons of varying event conditions, the output products can also be 

used as inputs for visualization of simulated inundation of the modeled time-series 

phenomenon, or utilized in other types of simulation modeling such as human 

evacuation behavior during tsunami events.  To support this type of simulation 
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modeling, the model codes must calculate and return U and V velocity vectors along 

with the other output data.  Two of the model codes currently in the TCP system 

support the computation of these output products as an optional feature.  Other non-

web-based visualization tools can also utilize the output data products as inputs.  For 

instance, Janik et al. (2007) developed a Java-based software tool for direct 

exploration and visualization of TCP output data products.  The tool can be triggered 

from the TCP interface via Java Web Start to begin exploration of a user’s output 

data.  Similar tools have been developed by other groups:  Vance et al. (2007) 

developed a Java-based tool that utilizes the Visualization Toolkit and ESRI’s 

ArcObjects to support exploration and visualization of tsunami simulation output 

data.  Merati et al. (2010) developed Java-based tools for exploration and 

visualization of simulated NOAA tsunami inundation data. 

 

2.8 Conclusion 

The TCP is a unique web-based system in which three tsunami simulation model 

codes can be configured using a common parameterization scheme, multiple global 

and local bathymetry data are available for selection, and complex simulation jobs 

are processed quickly on ARSC supercomputers.  The TCP’s integration among web, 

database, and supercomputing systems, combined with its support of disparate 

computational models in a common environment, represent a model platform that 

can be emulated in other disciplines where a collection of computational models in a 

comparative environment is required. 
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Cyberinfrastructure is characterized by transformative computational approaches 

leading to technological innovations that can be used by broader communities 

(Atkins et al. 2003).  The specialized resources and abilities of multiple research 

groups and domain experts were leveraged to develop the TCP system and provide 

access to multiple tsunami computational models within a common interface.  This 

cyberinfrastructure approach has greatly expanded the audience for the models and 

has made it possible for the first time to perform in-depth comparisons of different 

models and observe the effects of alternative algorithms step by step.  Model runs 

with iterative changes can be conducted simply by modifying configuration 

parameters in the web portal and submitting the jobs for processing, and the results 

can be compared by distributed teams of researchers. 

 

The tsunami research community has benefitted from these capabilities.  An equally 

notable contribution is the design of the TCP.  The portal system architecture is not 

limited to the tsunami modeling domain – it is extensible to other computational 

domains such as weather modeling or ecological modeling, in which alternative 

modeling approaches need to be exercised broadly and compared to increase 

scientific understanding.  Improvements to the TCP could include the porting of new 

modeling codes, as well as the addition of more high-resolution datasets providing 

bathymetry and coastal topography coverage of near-shore areas vulnerable to 

tsunami inundation, and more advanced visualization tools. 
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3.1 Abstract 

Modeling spatiotemporal phenomena can provide insight into the potential behavior 

of simulated objects during hypothetical events.  Simulation frameworks are one 

means of modeling such scenarios, and become more flexible when developed in a 

generalized fashion that facilitates the automated generation of output based on 

variable input parameters.  By wrapping a simulation framework within a web-based 

system, users can not only assign input parameters of their choosing, but also run a 

simulation and explore output data in a dynamic, animated, map-based context. 

 

The framework described here utilizes tsunami simulation data and user input to 

generate a combined web-based tsunami visualization and simulation model of 

human response to tsunami inundation.  Input parameters that define the human 

population and response are provided by the user and guide the automated 

development of a simulation model scenario of spatiotemporal human response to a 

hypothetical tsunami inundation event.  Simulated human movement is calculated 

per time step on the processing server using casualty model algorithms informed by 

behavioral research and variables such as water depth and road networks, while a 

mix of server-side and client-side code renders the mapping interface and supports 

user interaction within the web browser.  Interactive controls included in the web-

based simulation viewer allow the user to manipulate the map display and query the 

underlying data either manually by time step or interactively while the animation is 

underway. 
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Vector-based simulation data stored as files or spatial objects in a relational database 

(PostgreSQL with PostGIS) are overlaid on raster data and accessed on-the-fly to 

render the animation, which is displayed in a web interface developed using PHP and 

open source mapping tools such as OpenLayers, MapServer, and GDAL.  The 

server-side simulation framework is written in a mix of custom C++ and Python 

code. 

 

In a web-based system, an effective user experience is defined to a large extent by 

the responsiveness of the web-based interface.  To that end, performance 

enhancements on both the server- and client-side were addressed, including web and 

database server configuration, database indexing, and spatiotemporal data 

representation. 

 

3.2 Introduction 

Property damage and potential loss of life due to tsunami inundation are relevant 

concerns in coastal communities.  The 2004 Indian Ocean tsunami and the 2011 

Tōhoku tsunami both caused extreme damage to coastal communities and raised 

awareness of tsunami danger around the world (Titov et al. 2005, Geist et al. 2006, 

Dunbar et al. 2011, Gupta 2011).  Simulating potential human response to a modeled 

tsunami inundation event can lead to a better understanding of how a population 

might move in such a scenario.  The development and implementation of an 

automated simulation framework system to process multiple inputs and produce 
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simulation output for use in visualization represents a significant research challenge, 

one that is addressed in this study. 

 

3.2.1 Tsunami Evacuation 

Although U.S. states along the Pacific coast have tsunami awareness programs and 

evacuation maps in place (e.g., Oregon.gov 2012), tsunami hazard management 

plans in many coastal counties are lacking in implementation (Tang et al. 2008, 

Lindell and Prater 2010).  Several different types of tsunami modeling and human 

evacuation scenarios have been conducted for areas along the U.S. Pacific Northwest 

coast (e.g., Geist and Parsons 2006, Dominey-Howes et al. 2010, Priest et al. 2010, 

Schneider 2011, Karon and Yeh 2011).  Simulating potential human response during 

a tsunami evacuation scenario can help researchers and local planners understand 

risks to the community under varying population composition and tsunami 

inundation conditions.  Designing a unified interface that allows users to conduct 

simulation scenarios, examine the output data, and view the results is a challenge, 

and work remains to effectively simulate human movement during tsunami 

evacuation scenarios and visualize output in a user-friendly fashion.  Automating the 

production of simulation output based on user input is an added research challenge.  

This study examines the town of Seaside, Oregon as a test case for modeling tsunami 

inundation and human movement during a tsunami evacuation scenario generated by 

a custom simulation framework controlled via a web-based interface. 
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3.2.2 Simulation Modeling 

To model dynamic phenomena, one must consider change in objects and their 

attributes across both space and time.  Complexities arise from spatial and temporal 

representation of the objects and their attributes, analysis and characterization of 

interactions among objects, effective visualization, and usability of simulated output.  

Fast processing of potentially large datasets presents an additional challenge in 

applications for which real-time responsiveness is required.  In particular, modeling 

potential human movement across space and time is a challenging task that is 

important to many research fields (Yu and Shaw 2008).  Representation of 

spatiotemporal data in relational databases is a longstanding research challenge (e.g., 

Yuan et al. 2005, Le 2012), and many approaches have been devised for analyzing 

spatiotemporal data describing human movement (summarized in Andrienko et al. 

2011).  Through the use of specific computational techniques, relational database 

engines, and effective visualization methods, such analyses can provide both 

understanding and prediction of potential human movement (Andrienko et al. 2007, 

Yu 2007). 

 

Computational simulation frameworks can provide a useful means of addressing the 

challenges inherent to analysis of spatiotemporal data and movement prediction.  

Properly designed, a simulation framework can efficiently process large amounts of 

spatiotemporal data, predict potential human movement, and help the user interpret 

output to provide better understanding of the modeled event.  Simulation frameworks 
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are typically designed to be run in a “closed” system (i.e., in specialized software 

running on the researcher’s computer or on a localized computer network).  A 

researcher might define a set of input parameters, run a simulation, and interpret the 

results as raw data in a spreadsheet, or perhaps in a visualized form in their 

specialized software package.  Simulation frameworks become more flexible when 

developed in a generalized manner that facilitates the automated generation of 

simulation output based on variable, user-defined input parameters.  Enabling 

input/output access to a simulation framework from within a web-based interface 

gives researchers the ability to access and run simulations without requiring any 

specialized software on their computer apart from a standard web browser.  In this 

manner, a user can guide the input parameterization of the simulation, as well as the 

visualization of simulated output, all from within a common user interface.  User 

interactivity is an important feature common to effective web-based visualizations.  

Giving the user the ability to interactively guide the work of the system can improve 

a simulation by incorporating the user’s expert knowledge (Andrienko et al. 2007). 

 

3.2.3 Spatiotemporal Data Representation 

Effective representation and display of time-series data in a spatial context is a 

challenging problem that has been explored in many forms (Miller 1991, Langran 

1992, Yuan 1996, Peuquet 2002, Kapler and Wright 2005, Yu 2006, Yu and Shaw 

2007, Miller and Bridwell 2008).  The earliest approach, developed by Hägerstrand 

(1970) and often used today in 3D spatiotemporal geovisualizations, is the concept of 
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a space-time prism with space as the horizontal dimension and time as the vertical 

dimension (Figure 3.1). 

 

 

Figure 3.1:  Conceptual diagram representing the space-time prism (after Miller 
1991, Raubal et al. 2007). 
 

Although the space-time prism is effective for visualizing relationships in space and 

time, it is less effective at helping the user understand the actual spatial context of 

temporal phenomena.  Conversely, although static cartographic maps are very 

effective at displaying spatial context and can convey some spatiotemporal 

relationships to the viewer when temporal snapshot data are overlaid, static maps are 

inherently limited in effective representation of changing temporal information.  

Well-designed dynamic or animated maps can better express spatiotemporal 

relationships than static cartographic maps.  Although map-based animation of 
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movement over time is sometimes characterized as having limited effectiveness (e.g., 

Andrienko et al. 2011), map-based approaches remain one of the best methods of 

data visualization and exploration, particularly when developed as dynamic, 

interactive systems that integrate spatiotemporal data.  Such data are often 

represented as an individual’s movement over time, in the form of space-time paths 

(Hägerstrand 1970, Kraak 2003, Shaw et al. 2008) or geospatial lifelines (Mark 

1998, Hornsby and Egenhofer 2002).  Figure 3.2 displays a generalized diagram of a 

space-time path. 

 

 

Figure 3.2:  Conceptual diagram representing an individual’s space-time path (after 
Miller 1991). 
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3.2.4 Animation of Spatiotemporal Data 

Animated representations of spatiotemporal phenomena are often produced as static 

video files or simple Adobe Flash-based animations.  Interactivity can be 

programmed into advanced Flash-based animations via frameworks such as Flex 

(Adobe 2012), for example, and useful tools and toolkits can be constructed in this 

manner (e.g., Van Ho et al. 2011).  However, the user is often limited to a set of 

fixed choices for manipulating the display of maps or content in the animation.  

Moreover, controls for querying or retrieving information may not function while an 

animation is in progress, and Flash itself is susceptible to security vulnerabilities.  

Although non-interactive data visualizations may be useful, they can limit the level 

of information and understanding the user gains from the experience.  User 

interaction with the underlying data is typically limited to querying static layers in a 

non-animated system or running pre-defined queries in a system that may support 

animation, and support for in-depth exploration of spatiotemporal datasets within 

web-based applications remains limited.  Advances in web-based technology and 

both client-side and server-side processing enable the development of sophisticated 

query and visualization tools that can run within a web browser. 

 

3.2.5 Evacuation Modeling 

Time-series phenomena such as modeled tsunami inundation events provide good 

test cases for the development of interactive web-based visualizations that are both 

data-rich and visually interesting.  Tsunami simulation modeling and visualization of 
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results are important methods for helping researchers understand the potential 

behavior of a tsunami flow.  It is also important to understand how people may 

respond to a tsunami inundation event or disaster warning.  Bernard et al. (2006) 

noted:  “Little research has been done on the human response to tsunamis.  These 

studies would represent a new frontier in modelling the response of humans to this 

threat.”  Similarly, Lindell and Prater (2010) called for research integrating 

computer-based analysis tools for evacuation simulation and planning in Oregon and 

Washington. 

 

In this study, a prototype system was designed that utilizes modeled tsunami 

simulation data representing water depth and location in both space and time as an 

input into a custom-built simulation framework.  The Seaside, Oregon region, which 

is at risk of tsunami inundation from a local Cascadia earthquake and tsunami 

(Figure 3.3), was used as a test case in the prototype development.  Many coastal 

communities in the U.S. Pacific Northwest have nearby topographic features that rise 

significantly above sea level, providing locations for individuals to ascend to safety 

in the event of a tsunami.  The community of Seaside remains considerably flat for a 

significant distance inland, meaning an incoming tsunami flow could potentially 

travel quite far, making evacuation in the event of a tsunami more difficult than in 

other coastal communities. 
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Figure 3.3:  Tsunami risk area in the Seaside, Oregon region (NANOOS 2012). 

 

 

 

 



83 
 

 

Pre-existing high-resolution tsunami inundation data for the Seaside region were 

used during prototype development, but the system can also utilize modeled tsunami 

data created as output products from the Tsunami Computational Portal (TCP), a 

web-based research portal that provides generalized access to multiple tsunami 

computational codes and runs model simulations on supercomputers.  The modeled 

data are combined with data describing a hypothetical population, structures, roads, 

and other features to simulate potential human response to a tsunami inundation 

event. 

 

3.2.6 Study Goals 

The prototype system was developed with six primary goals in mind: 

 
1. Develop a framework for simulating potential human response to a modeled 

tsunami inundation event. 

2. Automate the production of simulation output and geovisualizations that 

incorporate the output data products. 

3. Create a web-based system to interface with the simulation framework, so 

that all framework features are accessible and configurable via a web 

browser. 

4. Enable user interactivity features to help drive simulation generation, and to 

enhance usability of simulation output. 

5. Develop a web-based mapping and visualization tool capable of animating 

time-series data in a spatial context, while allowing simultaneous use of map 

navigation and query functions to examine the data driving the animation. 

6. Attempt to build and integrate the simulation framework, web-based system, 

and related processing code using open source software tools. 
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A number of techniques were employed to create the simulation framework, 

including a range of computational, database, and mapping and visualization 

technologies.  The simulation framework models not only potential human 

movement but also the interaction of moving objects (wave inundation and human 

movement) over time. 

 

3.3 Related Work 

Simulation frameworks, tsunami modeling, visualization, modeling of human 

movement, and other topics addressed in this study are active areas of research 

across multiple disciplines.  In this section, related research is discussed in the 

context of the main themes explored by this study. 

 

3.3.1 Simulation Frameworks 

Advances in computing technology have made it possible to simulate large, complex, 

dynamic systems using relatively inexpensive hardware resources.  By linking 

custom software tools with existing software packages, a powerful framework for 

processing inputs and generating simulation outputs can be produced.  Simulation 

frameworks have been developed for modeling behavior in many disciplines; they 

are commonly developed in the computational sciences for research projects such as 

simulating wireless sensor network performance in adaptive environments (Niazi and 

Hussain 2011) or modeling cloud computing configuration and resource provisioning 

(Calheiros et al. 2010).  Simulation frameworks have also been implemented in the 
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biological sciences (e.g., Dalquen et al. 2012), the agricultural sciences (e.g., 

McCarthy et al. 2010), and other research areas.  The simulation framework 

developed for this study uses a uniquely multidisciplinary approach in its design and 

implementation, incorporating elements from geography, tsunami simulation, 

hydrodynamics, structural engineering, and human factors analysis. 

 

3.3.2 Tsunami Modeling and Visualization 

Output data from tsunami modeling serve as an important input data source for the 

simulation framework developed for this study.  Tsunami modeling involves the use 

of complex computational codes to simulate tsunami wave generation, propagation 

across the ocean, and inundation on shore.  A number of authors have described the 

research behind tsunami modeling and the related algorithms and computational 

processing requirements (e.g., Geist et al. 2006, Synolakis and Bernard 2006, Gisler 

2008, Lynett 2011, Lynett and Liu 2011).  Tsunami computational codes that model 

tsunami propagation across the ocean often process multiple nested grids at 

increasingly higher spatial resolutions as they progress toward near-shore areas.  

These computational tasks can require significant processing power (i.e., 

supercomputers or computational clusters) to reach completion in a reasonable 

amount of time. 

 

Several tsunami computational models have been developed and are in use today.  

One of the most commonly used models is NOAA’s Method of Splitting Tsunami 
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(MOST), a suite of numerical codes for modeling tsunami generation, propagation, 

and inundation (Titov and González 1997).  The TUNAMI-N2 (Tohoku University's 

Numerical Analysis Model for Investigation of Near field tsunamis) model is also 

commonly used for developing tsunami simulations (Imamura et al. 2006).  The 

Tsunami Computational Portal (Keon et al. 2009, TCP 2012) incorporates three 

tsunami computational model codes (COMCOT, UAF Tsunami, and Tsunami 

CLAW) that share a common parameterization scheme and are made available to 

researchers via a web-based portal interface.  The TCP’s output data products can be 

used as inputs by the simulation framework developed for this study. 

 

In addition to tsunami computational models, NOAA researchers have developed a 

simulation framework that integrates modeled tsunami simulation output with data 

analysis and visualization capabilities in a GIS-based system (Vance et al. 2007).  

Their Java-based software application uses Esri’s ArcEngine and ArcObjects 

products, as well as the Visualization Toolkit 3D API, and links directly to the 

Regional Ocean Modeling System (ROMS) and MOST models to visualize and 

analyze tsunami runup data.  NOAA has also developed Python- and ArcGIS-based 

tools to process and visualize modeled tsunami propagation and inundation data 

(Merati et al. 2007).  More recently, NOAA programmers developed the Community 

Model Interface for Tsunami (ComMIT) tool, a Java-based application that allows a 

user to control input parameters for the MOST model and access the model output 

files for visualization and analysis, and the Tsunami GIS application, a custom 



87 
 

 

ArcGIS-based tool that facilitates the integration of gridded tsunami inundation 

output data with vector-based socioeconomic and infrastructure data (Merati et al. 

2010).  U.S. Geological Survey personnel developed a GIS-based approach for 

modeling sea level rise (including potential surge effects from tsunamis) at global, 

regional, and local scales via statistical summary data representing elevation, land 

cover, and population, and produced non-interactive animations of their simulation 

output (Usery et al. 2010). 

 

3.3.3 Modeling Human Movement 

Human movement across space and time can be represented using time geography 

concepts such as those described by Hägerstrand (1970) and Miller (1991).  By 

implementing Hägerstrand’s space-time prism using a network-based approach, an 

individual’s potential path can be calculated and represented visually in a two-

dimensional GIS environment (Miller 1991, Miller and Wu 2000) or in a three-

dimensional GIS (Yu 2007, Yu and Shaw 2008).  With spatiotemporal data 

describing human movement, that individual’s space-time path can be visualized, 

queried, and summarized (Mountain 2005).  The context in which a person’s 

movement occurs can affect the spatial and temporal relationships that influence that 

person’s decision-making process.  Andrienko et al. (2011a) developed a conceptual 

framework and general taxonomy of techniques for analyzing movement data, and 

Andrienko et al. (2011b) analyzed movement data in their spatiotemporal context in 

order to describe relationships among objects as events. 
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In simulated evacuation scenarios, human movement is often modeled along existing 

road networks leading to evacuation points (e.g., tsunami shelters on high ground in 

coastal communities).  The shortest-path method is commonly used to model 

movement along a route from start to end point (Katada et al. 2006, Chen and Zhan 

2006), although dynamic routing and agent-based modeling approaches are 

increasingly used (Liu et al. 2008, Goto et al. 2012, Mas et al. 2012, Nagarajan et al. 

2012).  Network flow models (e.g., Cova and Johnson 2003) can be used to develop 

optimal routing plans for human movement in traffic-based scenarios. 

 

3.3.4 Tsunami Evacuation Simulation 

Simulating an evacuation simulation in response to a disaster such as a tsunami can 

be treated as a specific case of modeling human movement.  Katada (2003) 

researched tsunami inundation events and human behavior in disaster situations and 

designed a simulation system to predict human movement during hypothetical 

evacuation scenarios.  His work was influenced by Oikawa and Katada (1999), who 

studied the effects of flood experience and human behavior on evacuation scenarios, 

and Katada et al. (2000), who developed an early, related version of a scenario 

simulator for dissemination of disaster warnings.  As part of the work that followed 

Katada (2003), a tsunami scenario simulator was developed, which took into account 

human factors engineering and other simulation variables such as warning 

transmission type and timing (Katada et al. 2004, Wolman 2005).  Later, Katada et 

al. (2006) developed a GIS-based version of the simulation framework and used it to 
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produce several evacuation scenarios for the Owase, Japan area.  In a related effort, 

the researchers developed a web-based interface to present the Owase simulation 

output, incorporating non-interactive video files that portray four individual, pre-

configured simulations of human response to a tsunami event (OWASE 2012).  

These simulations were used by Goto et al. (2010) for disaster reduction education 

and research.  Uno and Kashiyama (2008) developed a disaster evacuation 

simulation system based on a multi-agent model, using GIS data and routing 

algorithms to model human movement.  Goto et al. (2012) also developed a multi-

agent simulation model.  Using a modeling approach similar to Katada et al. (2006), 

Karon and Yeh (2011) conducted a simulation of human response to a tsunami 

inundation event in the Cannon Beach, Oregon area.  Their simulation framework 

was implemented as a system that generated animated output as video files 

representing various scenarios (Tappister 2012).  All of these simulation systems 

were developed as locally-installed software products and produce video-based 

output that cannot be queried for further information.  Moreover, they are limited in 

the use of tsunami inundation modeling data as an input to inform the simulation of 

water depth at each time step. 

 

Similar to Katada’s warning dissemination research, Nagarajan et al. (2012) 

developed an agent-based model of multiple agents (households) in a hypothetical 

community to simulate the influence of human behavior on message transmission.  

Clerveaux et al. (2008) used the Katada et al. (2006) tsunami evacuation scenario 
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tool for simulating a tsunami inundation event in the Turks and Caicos Islands, 

focusing on warning message dissemination challenges in multi-language 

communities.  Drawing upon community input, Kobayashi et al. (2007) used a 

unique disaster simulation system with a tangible user interface to support 

collaborative planning of disaster warning and damage prevention.  Liu et al. (2007) 

worked with community members to help understand tsunami evacuation behavior 

and used their input, in part, to help design a multi-agent evacuation simulation 

system.  Mas et al. (2011) examined and modeled the evacuation decision process 

based on human risk perception in tsunami scenarios and, using modeled tsunami 

wave output data from the TUNAMI-N2 model combined with an agent-based 

modeling approach, Mas et al. (2012) simulated a potential evacuation scenario for 

the Arahama Town area in Japan, which was inundated during the destructive 2011 

Tōhoku tsunami. 

 

3.3.5 Casualty and Loss Estimation 

The modeling of human movement in response to a tsunami inundation event must 

incorporate some method of determining the conditions under which a person would 

be overtaken by the tsunami flow.  Many variables must be considered when 

estimating casualties in this manner.  Koshimura et al. (2006) developed a tsunami 

casualty estimation method based on a simple model of hydrodynamic forces as they 

affect the human body, tested the method using tsunami simulation data for the 

Seattle, WA area, and produced a tsunami casualty index to show the casualty 
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potential at a location.  While they did consider a person’s weight in their casualty 

estimation equation, they did not consider other anthropometric variables.  Yeh 

(2010) developed a tsunami casualty estimation method that takes into account 

gender and age factors.  Using mean anthropometric data values from Kroemer et al. 

(1997) including height, weight, and eight body measurements (foot width, shoulder 

breadth, etc.), Yeh developed equations to estimate casualties while considering two 

different failure modes (force balance and moment balance).  Both Koshimura et al. 

and Yeh made the assumption that when a person is swept off their feet by the 

tsunami flow, they are considered a casualty.  Yeh’s tsunami casualty estimation 

method is implemented in the simulation framework developed for this study. 

 

Several similar efforts have developed methods for estimating loss of life due to 

flooding.  Jonkman et al. (2008) developed estimation methods for different types of 

floods in different regions, and related the loss of life to flood characteristics and 

possibilities for evacuation.  They also conducted a comprehensive review of extant 

methods for casualty estimation due to flooding, including human instability in 

flowing water from tsunami inundation.  Usery et al. (2010) considered tsunami 

surge effects at multiple scales and the resulting impact on population.  A number of 

studies have developed computer-based flood evacuation models and simulations, or 

examined the use of integrated geographic information systems for flood risk 

assessment and management (e.g., Zerger and Wealands 2004, Simonovic and 
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Ahmad 2005, Maantay et al. 2010).  Remotely sensed data have also been used for 

estimating coastal vulnerability (Koshimura and Takashima 2005). 

 

In addition to the human impact of tsunamis, it is also important to predict the 

potential impact of tsunamis on the built environment.  GIS-based approaches are 

often used for modeling the vulnerability of buildings to tsunami inundation (Wood 

and Good 2004, Tarbotton et al. 2012), and Leone et al. (2011) developed a spatial 

model of tsunami risk assessment.  The Papathoma Tsunami Vulnerability 

Assessment (PTVA) model establishes an assessment equation based on building 

design, condition, and surroundings (Papathoma and Dominey-Howes 2003).  

Revised twice, the model has been used to conduct building assessments of several 

study areas around the world (Papathoma et al. 2003, Dall’Osso et al. 2009, 

Dall’Osso et al. 2010, Dominey-Howes et al. 2010).  Other numerical modeling 

approaches to vulnerability assessment have been developed (e.g., Wood and Good 

2004, Omira et al. 2010), and Eckert et al. (2012) used digital surface models 

derived from remotely sensed data to assess tsunami risk to structures in Egypt.  

Increasingly, “fragility functions” are used to mathematically estimate the 

probability of house/structural damage due to tsunami inundation (Koshimura et al. 

2009a, Koshimura et al. 2009b, Reese et al. 2011, Suppasri et al. 2012). 
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3.4 Simulation Framework 

The simulation framework developed for this study includes the software and custom 

code that processes input data, runs the simulation model, generates output data, and 

runs the web-based results interface.  To simulate potential human movement in 

response to a tsunami event, the simulation framework must: 

• Read large gridded tsunami inundation input datasets. 

• Generate an initial population distribution for the community of interest, 

place people in known residential and commercial structures, and write the 

data to a spatial database. 

• Route the population along an established road network toward identified 

evacuation locations. 

• Compute the intersection of tsunami inundation data with population 

locations at each time step (i.e., simulated moments in time, separated by a 

defined interval) and, using human factors data and a casualty determination 

algorithm, compute whether casualties occur and write the spatiotemporal 

data to the database. 

• Generate visualizations of the output in an interactive map-based context that 

allows data exploration. 

 

3.4.1 Framework Architecture 

The simulation framework is composed of the hardware (processing and database 

servers), software (custom server-side and client-side code, APIs, relational database 

management system), and input data (tsunami inundation, GIS framework) that run 

the simulation model and produce outputs used in queries and visualizations.  Figure 

3.4 provides a diagrammatic description of the framework architecture.  
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Figure 3.4:  Diagram of the simulation framework system architecture.  Software 
packages used are listed beside each diagram element, while objects passed from one 
element to another are listed beside the arrows.  Tsunami inundation input data are 
generated via a separate tsunami modeling framework (the TCP or another modeling 
tool). 
 

One goal of this study was to attempt to build the entire simulation framework using 

open source software tools, in addition to custom code.  The open source software 

packages used by the simulation framework are listed in Table 3.1, along with the 

purpose for which each package was used.  Custom code for the study was written in 

the programming languages C++, Python, PHP, JavaScript, and HTML, as well as 

the pl/pgSQL procedural database language. 
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Table 3.1:  Open source software packages used by the simulation framework, and 
the purpose for which they were used. 

Software Package Purpose 
PostgreSQL 
(postgresql.org) 

Storage and management of input and output data used by 
the simulation framework. 

PostGIS 
(postgis.refractions.net) 

Support for spatial objects and operations within 
PostgreSQL, enable spatial queries. 

GEOS 
(geos.osgeo.org) 

OpenGIS Simple Features operations used within 
PostgreSQL/PostGIS. 

PROJ.4 
(proj.osgeo.org) 

Coordinate system transformations on spatial objects 
stored in the database. 

GDAL 
(gdal.org) 

Process water depth data into TIFFs, and process other 
raster datasets. 

OGR 
(gdal.org/ogr) 

Process vector datasets, convert vector output from 
PostgreSQL/PostGIS to GeoJSON format. 

MapServer 
(mapserver.org) 

Prepares map layers on the server for inclusion in the 
OpenLayers web mapping and visualization interface. 

OpenLayers 
(openlayers.org) 

Enables the web mapping and visualization interface 
including base maps, vector data, and animated results. 

Highcharts 
(highcharts.com) 

Client-side charting – enables interactive charting 
capabilities via JavaScript. 

Python 
(python.org) 

Scripting language used for server-side tasks in the 
simulation framework. 

PHP 
(php.net) 

Server-side web programming language that drives the 
simulation results web interface. 

 
 

3.4.2 Spatial Database 

Spatiotemporal data describing human movement are represented in the database by 

time-stamping at the record level – each simulated person is represented as a 

database object that is assigned a set of time stamps, locations, and status data by the 

simulation framework.  This approach provides greater relational flexibility than the 

traditional “snapshot” method of storing a separate GIS layer to represent each time 
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step, yet, with proper indexing, also allows for extremely fast queries.  Figure 3.5 

displays a generalized diagram of the database schema used to store data that 

describe the initial population distribution, as well as the time-series data that 

describe the state of the simulated objects at each time step of the modeled tsunami 

event.  All frequently-used columns in the database tables are indexed for fast query 

performance.  GiST (Generalized Search Tree) indexes are created on all columns 

storing spatial geometries, and can greatly increase the performance of spatial 

queries. 

 

The database used by the simulation framework is stored and managed in an instance 

of the open source PostgreSQL (2012) relational database management system with 

the open source PostGIS (2012) module included to support the storage, 

manipulation, and querying of spatial data as database objects.  PostgreSQL/PostGIS 

allow the execution of advanced spatial queries and can be accessed directly via web 

programming languages such as PHP and web mapping tools such as MapServer 

(Lime 2008, MapServer 2012).  The PostgreSQL database server instance runs on a 

dedicated Dell PowerEdge R710 server containing four quad-core 2.53 GHz Intel 

Xeon processors and 32 GB memory, with data stored across eight 320GB 10,000 

RPM serial-attached SCSI disks in a RAID 5 configuration (via a hardware RAID 

controller).  The server runs the Red Hat Enterprise Linux 6 operating system. 
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Figure 3.5:  Generalized database schema diagram representing the major database 
tables used by the simulation framework.  Simulation outputs (including time-series 
data) are written to various “Job” tables with matching IDs that relate back to the 
metadata used to generate the simulation run. 
 
 
3.4.3 Input Data Sources and Data Preparation 

Input data for the simulation framework come from three primary sources: (1) Input 

parameters defined by a user on the settings web page (Figure 3.6), (2) tsunami 

simulation modeling output data, and (3) GIS data for the modeled community.  The 

settings web page allows the user to select a predefined set of tsunami simulation 

output data to use as an input into the simulation model, as well as the initial 

population size, general time of day (morning, afternoon, evening, night), the time  
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Figure 3.6:  Settings web page for defining the input parameter settings used by the simulation model. 
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step at which to begin the evacuation process, and the evacuation points to use as 

destinations.  Tsunami simulation output data consist of a wave series file 

representing water depth at each time step of the simulated tsunami event, as well as 

U and V velocity vector files that are used to determine the force and direction of the 

tsunami flow. 

 

GIS data were essential to the development of the simulation framework.  Data 

representing roads, bridges, and taxlots were obtained from Clatsop County, OR (the 

county in which Seaside is located).  At the time of initial development, a detailed 

GIS layer representing buildings (structures) in Seaside could not be obtained.  

Instead, a structures layer was digitized from high-resolution (0.5 m) aerial imagery 

provided by the State of Oregon.  The digitized layer was georeferenced and 

converted to shapefile format, then loaded into the spatial database.  The Clatsop 

County GIS layer representing taxlots contained attributes such as structure age and 

type, year built, and a three-digit “stat_class” code representing a classification of 

building type and land use. 

 

After loading the taxlot GIS data into the spatial database, PostGIS spatial queries 

were developed to identify the intersection of taxlots with the digitized structure 

data, spatially assigning taxlot ID, street address, and the stat_class code as attributes 

to each structure polygon within the database.  The resulting attributed structures 

data were used to (1) identify starting locations for the initial population distribution, 
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and (2) coarsely distribute the starting population among structure type (i.e., 

residential vs. commercial) based on the general starting time of the simulation.  A 

similar assignment of residential vs. commercial/industrial building types based on 

the stat_class attribute was used by Dominey-Howes et al. (2010) for estimating 

building vulnerability and property loss from a tsunami event affecting the Seaside 

community. 

 

In this study, all simulated individuals were routed along the established road 

network in the Seaside community.  Each individual moved toward one of three 

official evacuation locations (whichever location is closest to the individual at the 

start of the simulation process), identified by DOGAMI (2005).  Routing along the 

road network was performed using the Dijkstra shortest-path algorithm, as initially 

described in Dijkstra (1959).  Several steps were followed to prepare the road 

network for use in this manner: 

 
1. A spatial data layer representing roads in the area was obtained in Esri 

shapefile format. 

2. The roads layer was imported into the existing PostgreSQL/PostGIS spatial 

database. 

3. Elevated road segments (bridges) were identified and their average height 

above ground level was recorded in the database. 

4. A representation of the roads layer as a network of edges and vertices was 

produced. 
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Following preparation of the roads network, the Dijkstra shortest-path algorithm was 

applied to the simulated population in order to route them along the prepared 

network.  The assumed evacuation speed, based on a pedestrian walking rate for 

average adult males (1.65 m/s) and females (1.37 m/s) suggested by Eubanks (1994) 

and used in Yeh (2010), was used to advance each individual a certain distance along 

the road network at each time step.  The routed location of each individual at each 

time step was recorded in the spatial database and later used in the modeling process. 

 

3.4.4 Casualty Determination 

To determine the status of each individual at each time step, certain assumptions 

must be made about generalized body types to determine whether an individual is 

overtaken by the water depth and velocity at their location.  Yeh (2010) evaluated 

gender and age factors in tsunami casualties and, using mean values of 

anthropometric measured data from Kroemer et al. (1997), developed casualty 

curves representing the critical conditions that cause casualties during tsunami 

inundation flows.  The casualty curves are plotted on charts of inundation depth vs. 

flow speed, with distinctions made among male and female body types, and adults 

vs. children.  Table 3.2 contains the anthropometric values used in this simulation 

model.  In this study, adult male and female body types are evaluated. 

 

Casualty determination is calculated by a series of algorithms that take into account 

the anthropometric values, water depth, force, and direction of the tsunami flow.  
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These algorithms are implemented on the processing server in a C++ program that 

iterates across all individuals still standing at each time step of the simulation.  The 

first evaluations determine (1) whether there is any water present at that time step (if 

false, no casualty exists), and (2) whether the water speed is equivalent to zero (if 

true, no casualty exists).  Next, each individual’s hip height is compared to the water 

depth at the current time step.  Following Yeh (2010), values representing the wetted 

area of a human body (A), the centroid of the area A relative to ground level (Ay0), 

and the submerged volume of the individual’s body (V) are calculated for each 

individual.  If the water depth is shallow (below hip height), A, Ay0, and V are 

calculated using body parameters representing the lower half of the body; otherwise, 

the values are calculated using the full set of body parameters.



103 
 

 

Table 3.2:  Mean values of anthropometric measured data for U.S. adult male and females (Kroemer et al. 1997), used by 
Yeh (2010) to calculate casualty curves for individuals subjected to tsunami flow.  The values in this table are used in the 
casualty determination algorithm built into the simulation model. 

 

 

Age and 
gender 

Height 
(m) 

Weight 
(kg) 

Foot 
width 
a (m) 

Hip 
breadth 
b (m) 

Shoulder 
breadth 
c (m) 

Hip 
height 
hb (m) 

Shoulder 
height 
hc (m) 

Foot 
length 
d (m) 

Abdominal 
depth 
e (m) 

Chest 
depth 
f (m) 

Moment 
arm 
x (m) 

Adult 
male 175.6 78.0 0.202 0.367 0.492 0.928 1.443 0.101 0.236 0.243 0.300 

Adult 
female 162.9 62.0 0.180 0.385 0.433 0.862 1.334 0.090 0.219 0.239 0.278 
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The C++ code block below handles the conditional calculations involved in casualty 

determination (the code that implements these algorithms is provided in more detail 

in Appendix E).  The set of equations in the first conditional statement represents the 

calculations performed if water depth is below hip height. 

 
if ( h < hb ) { 

 
  A = a*h+(b-a)*((h*h)/(2.*hb)); 

 

  Ay0 = ((a/2.)*(h*h)+((b-a)/(3*hb))*powf(h,3.)); 

 
  V = h * 3.1415926 * ((a + (b - a) * (h/hb))/2.) * 

   ((d + (e-d) * (h/hb))/2.); 

 

} else { 
 

  A = ((a + b)/2.)*hb+b*(h-hb)+((c-b)/(2.*(hc-hb))) * 

   (h-hb)*(h-hb); 

 
  Ay0 = ( (a/2.)*hb*hb+((b-a)/3.)*hb*hb+(1./(6.*(hb-hc))) * 

   (3*c*h*h*hb-(2*b+c)*powf(hb,3.)+3*b*hb*hb*hc+h*h * 

   (2.*(b-c)*h-3.*b*hc))); 

 
  V = hb * 3.1415926 * ((a + (b - a) * (h/hb))/2.) * 

   ((d + (e-d) * (h/hb))/2.0) + (h-hb)*3.1415926 * 

   ((b+(c-b) * ((h-hb)/(hc-hb)))/2.) * ((e+(f-e) * 

   ((h-hb)/(hc-hb)))/2.0);      
}  

 

An individual can be displaced by a tsunami flow by two different failure modes.  

The first is based on force balance and occurs when the force of the tsunami flow 

surpasses the individual’s frictional force (i.e., their ability to remain standing 

against the flow).  When the flow force exceeds the frictional force, the individual is 

assumed to be brought down by the tsunami flow and displaced in the flow direction 

(i.e., carried away).  The second mode is based on moment balance and occurs when 

the moment of the flow exceeds the moment of the individual – that is, the rotational 
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force exerted by the flow exceeds the individual’s ability to remain standing, causing 

them to be knocked over into the flow.  Following calculation of the values A, Ay0, 

and V, the code below determines whether an individual will succumb to either force 

imbalance or moment imbalance, or remain standing, based on the anthropometric 

values and data describing water depth, velocity, and direction at their location.  If 

they are determined to be a casualty, they are marked as such in the database at that 

time step, and not evaluated in subsequent time steps. 

 
if (w < (sigma*V)) { 

  Location currentPersonLocation = p->get_location(); 

  p->set_dead(true); 

  return; 
} 

 

wsv = w-sigma*V; 

um = sqrt((2.*wsv*x)/(Cd*Density*Ay0)); 
uf = sqrt((2.*ff*wsv)/(Cd*Density*A)); 

minu = HSDMIN((um),(uf)); 

 

if ((speed/minu) < 1.) { 
  return; 

} else { 

  p->set_dead(true); 

} 

 

3.4.5 Simulation Model 

The simulation model operates on a time-step basis, as defined by the tsunami 

inundation input data used in the model run.  The state of all objects is calculated and 

evaluated at each time step, resulting in model outputs that are written to the 

filesystem (e.g. time-series grids representing tsunami inundation), and to the 

database (e.g., time-series data representing the position and state of each modeled 

individual at each time step).  Figure 3.7 illustrates the modeling process and the 
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flow of logic in the simulation model, while Figure 3.8 describes the sub-process that 

evaluates each person’s casualty status at each time step as the simulation progresses. 

 

The simulation model accepts user-defined parameters as inputs that determine, in 

part, the initial population distribution in the community of interest.  Based on the 

taxlot information related to the structures data stored in the spatial database, 

structures are identified as residential or commercial (including businesses, schools, 

medical facilities, etc.).  The randomly generated population is distributed among the 

structures in the community depending upon the general time of day assigned by the 

user (i.e., early morning, daytime, evening, or night).  Table 3.3 displays the 

percentages of occupancy assigned by structure type, depending upon the simulated 

time of day – in general, more people are assumed at home at night than during the 

daytime (the simulation model assumes the event occurs on a weekday), based on 

data from the American Time Use Survey (2012).  This population distribution 

represents the starting condition for the simulation model. 
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Figure 3.7:  Flowchart representing logic flow in the simulation model.  The “Route 
along road network” and “Evaluate casualty status” sub-processes are described in 
more detail elsewhere in the document.
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Figure 3.8:  Flowchart representing the casualty evaluation sub-process.  This sub-
process executes the casualty determination algorithm as part of a loop process in the 
larger simulation model.  The casualty status for each person is evaluated at each 
time step within the loop, and the status is written to the database as part of the time-
series information stored for each person. 
 

 

 

 

 



109 
 

 

Table 3.3:  Estimated percentages of occupancy by structure type across different 
periods of a typical weekday. 

General 
location 

Early 
Morning Daytime Evening Night 

Residential 70 20 60 90 
Commercial 30 80 40 10 

 

 
Once assigned to a structure, a person is ready to be moved onto the road network 

during the first time step of the simulation.  By modeling the movement of the 

population in a synchronized fashion with the tsunami inundation data (i.e., time 

steps), the simulation model assumes that all members of the population receive the 

tsunami warning at the same time, and begin moving simultaneously. 

 

3.4.6 Output Data Products 

As indicated in Figures 3.6 and 3.7, the simulation modeling process generates 

multiple output data products for each model run.  The output data products are 

summarized in Table 3.4.  A Python script run early in the processing chain of events 

generates a randomized initial population distribution, using spatial database queries 

to place individuals in known structures.  This output data product is produced as a 

file, which then serves as an input data source for subsequent steps of the modeling 

process.  Water depth at each time step is read from a binary wave series input file 

by a C++ program that calls a GDAL function to generate a TIFF image representing 

water depth for each time step.  The TIFF images are used for visualizing water 
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depth in the results interface, and are generated once for the related simulation and 

then stored for later use (i.e., they are not generated dynamically every time the 

simulation is viewed). 

 

Table 3.4:  Output data products generated by the simulation framework. 

Output Data 
Product Format Description 

Population 
distribution 

ASCII 
file 

File containing initial randomly-generated 
population distribution assigned to structures 
in the study area; created by Python script. 

Water depth Binary 
files 

TIFF images generated via C++ and GDAL, 
one per time step representing water depth 
across the domain, used as a semi-transparent 
map overlay. 

Space-time path Spatial 
database 

Data representing each simulated individual’s 
location in space and time, for each time step.  
Used for queries and generation/animation of 
space-time paths. 

Casualties Database 
Record of each individual’s casualty status at 
each time step as calculated by the casualty 
determination algorithm. 

 

 
The routing algorithm advances each individual along the road network, recording 

their position in space and time in the spatial database.  Those data are used for 

visualizing the progression of each individual on the animated map, as well as for 

satisfying queries and displaying an individual’s space-time path on the map.  As the 

simulation model advances, the casualty determination algorithm evaluates each 

individual’s casualty status at each time step and records that status in the database.  
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Those data are used for visualizing each individual’s status on the map and are 

particularly effective for identifying change over time during animation.  A custom 

database function (Appendix F) calculates simulation run summary statistics at the 

end of the process. 

 

3.4.7 Simulation Results Interface 

Once a simulation model run is complete the output can be viewed in the web-based 

results interface (Figure 3.9).  All automated output products (time series population 

data, individual space-time paths, modeled water depth as TIFFs) are automatically 

made available in the interface.  The results interface contains: 

•  A dynamic map with multiple base layers that supports animation of the 

time-series result data and an individual’s space-time path. 

• An interactive chart displaying water depth across all time steps at any 

clicked point on the map. 

• A dynamic table containing a selected individual’s data for each time step. 

• Controls for navigating among the set of time steps, starting and stopping the 

animation, and interpreting a user’s map click. 
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Figure 3.9:   Simulation results web interface.  The map and chart are rendered 
dynamically and are interactively linked (i.e., clicking one updates the other).  This 
figure displays the starting condition, and the layer switcher is expanded to display 
the available base layer and overlay options. 
 
 
 

 Mapping and Animation Tool 3.4.7.1

The mapping and animation tool enables exploration and visualization of both the 

tsunami inundation data and the simulated human response (i.e., movement of all  
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simulated individuals across all time steps).  By clicking the “Next” or “Previous” 

buttons the user can step through time steps one by one to view the conditions at 

each time step.  Alternatively, the user can jump directly to a numbered time step of 

interest, automatically loading the data for that time step.  Clicking the “Start 

Animation” button causes the interface to progressively load the simulation result 

data for each time step in an automated fashion, enabling the user to view evacuation 

movement as an interactive animation.  All map operations are accessible during 

animation – panning, zooming, layer substitution and toggling, water depth chart 

display update, and data table generation can all be performed during animation, as 

well as when the animation is stopped.  At each time step, the database is queried to 

determine whether an individual’s map symbol should be a green circle, indicating 

they are still evacuating, a red dot, indicating that they were overtaken by the 

tsunami flow at that time step, or a red X, which indicates their final routed position 

in subsequent time steps.  Figure 3.10 shows the interface at time step 100.  In this 

figure, the routed individuals have already navigated the city streets and are moving 

along main routes to the evacuation points. 

 

The simulation results web interface was built using PHP code on the server-side, 

and JavaScript and HTML on the client-side.  JavaScript is heavily used in the 

interface codebase to provide tight integration among the OpenLayers-based 

mapping/visualization component, the animation controls, and the dynamic chart 

constructed using the Highcharts package.  Additional client-side code sends  
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Figure 3.10:   Simulation results web interface displaying time step 100.  The red line 
on the chart moves automatically to indicate the current time step on the water depth 
profile.  Individuals are moving along established evacuation routes. 
 
 

asynchronous JavaScript and XML (AJAX) requests to the server, which enable 

dynamic updating and loading of additional content on the results page without 

requiring a page reload for each request (i.e., the map can be clicked at any time to 

update the chart or return other data, without reloading the map view). 
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The OpenLayers client-side mapping toolkit is fully JavaScript-based, enabling tight 

integration with other client components, both in terms of code (Appendix G) and 

functionality.  The OpenLayers map interface developed for this study includes the  

four standard Google Maps base layers (streets, terrain [aka “physical”], satellite, 

hybrid), as well as the Esri Ocean Basemap layer, which is implemented as an 

ArcGIS REST API layer via OpenLayers.  All base layers can be included natively 

in the OpenLayers code.  To include raster and vector layers stored locally (on the 

website domain serving the map), a server-side mapping engine must be used.  The 

open source package MapServer was used to render wave runup (raster), population 

(vector), water depth points (vector), and space-time paths (vector) for this study.  

Each time a map view is generated, OpenLayers sends a request to MapServer for 

the layer(s) making up the overlay view, and MapServer returns an image that 

OpenLayers composites with the rendered client-side map to produce the output the 

user sees in the map window.   Through Proj.4, OpenLayers can reproject layers on 

the fly (e.g., to Google’s “Spherical Mercator” projection) for integration with the 

map view. 

 

The tsunami simulation data used in this study modeled an extreme tsunami 

inundation event, with a maximum water depth of nearly 20 m in some areas 

(evident in the chart in Figure 3.10, for example, around time step 120).  Figure 3.11 

displays the conditions at time step 130, after the first and largest inundation event 

has arrived on shore. 
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Figure 3.11:   Simulation results web interface displaying time step 130.  In this 
extreme simulation scenario, nearly all individuals are marked as casualties by this 
time step. 
 
 

 Interactive Chart 3.4.7.2

When the user selects the “Update water depth chart for selected point” radio button 

(the default selection) and clicks a desired point on the map, a yellow marker is 

placed on the map (as in Figure 3.11), the selected pixel coordinates are transformed 
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to latitude and longitude, and an AJAX call is made to a C++ utility program that 

reads the binary tsunami wave series file and retrieves the water depths across all 

time steps at the requested point.  The data are returned from the server in JavaScript 

Object Notation (JSON) format, delivered to the client, and processed by the chart 

code (Appendix G) to dynamically create the filled line chart without reloading the 

web page.  The dynamic chart has several features (some are displayed in Figure 

3.12): 

 
• Hovering the mouse cursor over the chart area displays the water depth value 

at the time step indicated by the cursor. 

• Clicking and dragging the mouse cursor across the chart area causes the chart 

to zoom in to the selected region to display finer detail.  The chart also 

automatically adjusts the X and Y axes to the new data range if necessary. 

• The chart area is active and is linked to the map display – clicking on the 

chart area causes the map to jump to the selected time step and load the 

related map data, and also update the time step and casualty count. 

• A red, vertical tracking line on the chart area indicates the currently selected 

time step and moves dynamically when the animation mode is running, 

making it easy to track the current position and correlate the chart with the 

map view. 
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Figure 3.12:  Examples of the interactive water depth chart.  Each time step in this 
example represents an 18 second interval.  Top: the chart has been clicked to set the 
map animation to time step 141 (red line), while the cursor hovers over time step 375 
to display water depth.  Middle: an area is highlighted by dragging the mouse cursor.  
Bottom: the chart is zoomed in to the highlighted area. 
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 Space-Time Path Construction and Rendering 3.4.7.3

An individual’s path representing their movement in space and time during the 

duration of the simulation can be displayed simply by clicking on their map marker.   

Figure 3.13 displays full and zoomed-in views of a space-time path displayed on the 

results interface map.  Because the space-time path is rendered dynamically as a 

vector layer based on the current time step and view extent, it is re-rendered correctly 

as the user performs any map operations such as zooming and panning, and it also 

becomes animated if the user chooses to start animating the map view.  During 

animation, the individual’s current position on the space-time path is highlighted as a 

yellow segment.  Moreover, data retrieval and space-time path rendering can occur at 

any time (e.g., if an animation is already underway the user can select the “Open data 

table…” radio button, click near an individual on the map, and the space-time path 

will automatically be rendered and animated).  Clicking near a different individual 

will update the map with the new space-time path while the animation continues. 

 

When a user selects the “Open data table…” radio button and clicks near an 

individual on the map, a custom PHP function (getPathPoints(); see the “db.php” 

section in Appendix G) performs a spatial query via an AJAX call to retrieve all 

points representing the individual’s space-time path.  The returned point data are 

processed into the GeoJSON format by the ogr2ogr utility and returned to the client, 

where custom JavaScript code and OpenLayers are used to create and render a 

colorized track on the map representing the individual’s space-time path.   
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Figure 3.13:  Clipped map views representing an individual’s fully rendered space-
time path (left) and a zoomed-in view of the path origin (right).  The currently 
selected time step is visible as the segment highlighted in yellow. 
 

 
This is accomplished by using the built-in OpenLayers.Layer.PointTrack vector layer 

type.  Although PostGIS can output data directly to the GeoJSON format via the 

ST_AsGeoJSON() function, only the geometries can be exported (i.e., no attributes 

are included).  By retrieving an individual’s space-time path data directly from the 

database, both the geometries and attributes can be encoded as GeoJSON via ogr2ogr 

and passed to OpenLayers, allowing feature labeling as well as vector layer 

symbolization on the map. 
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 Interactive Data Table 3.4.7.4

As the space-time path is rendered on the map, an interactive data table is also 

constructed and displayed in a popup browser window (Figure 3.14).  The columns 

in the data table can be sorted – clicking a column heading will sort the table on that 

column, toggling between ascending or descending order.  The data table is 

interactively linked to the results interface window, so that clicking a table row 

highlights it and causes the results interface to jump to the selected time step 

indicated in the table, simultaneously updating the map, counters, and red indicator 

line on the chart.  The matching highlighted yellow segment of the individual’s 

space-time path is also updated, giving the user an effective way to view the selected 

individual’s evacuation progress and casualty status at any time step, in the context 

of the incoming tsunami inundation.  Links in the table window provide downloads 

of the data contained in the table in shapefile or text (comma-separated value) 

formats, both of which are built dynamically upon the user’s request. 

 

The data table (Figure 3.14) was implemented using the DataTable class from the 

Google Visualization API (2012).  Upon detection of a map click, a custom PHP 

function is called (getTimeSeries(); see the “table.php” section in Appendix G) that 

(1) performs a spatial query in the database to retrieve that individual’s time series 

data, (2) processes the result, and (3) delivers the formatted data to the 

google.visualization.DataTable JavaScript object, which in turn renders the data as 

an interactive table. 
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Figure 3.14:  Data table with matching map view.  A map click on an individual of 
interest highlights that individual’s space-time path for the simulation event, and 
displays an interactive table of the individual’s status at each time step.  In this 
example the evacuation began at time step 10 of the simulation, so the tenth routed 
segment (20th time step overall) is highlighted on the space-time path. 
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3.5 Discussion 

Casualty simulation is an important method for estimating risk to coastal 

communities in the event of a tsunami.  Simulation models can help make the 

concept of tsunami inundation real and intelligible to communities that could be at 

risk.  Watching a representation of a tsunami flow inundate land on an interactive 

map is interesting, but watching how the flow could affect individuals in a 

community, as well as animate and query their simulated movement over time and 

space, can provide a deeper understanding of its potential effect. 

 

The simulation framework developed in this study is a prototype system designed to 

test the automation of simulation model runs and output generation based on user 

input, and to display the results in an interactive, usable, web-based context.  

Although significant effort went into examining theoretical aspects of spatiotemporal 

data representation and analysis, casualty determination approaches, and other 

important issues, the main focus of the study was on code and framework 

development in support of the stated study goals.  There are many aspects of the 

prototype system that could be enhanced and improved with additional work – those 

aspects are discussed in this section, along with alternative approaches. 

 

3.5.1 Casualty Determination and Evacuation Movement 

One of the unique strengths of this simulation framework is the incorporation of the 

casualty model that evaluates various criteria to determine whether a person can 
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remain standing in a tsunami flow at each time step of the simulation.  The 

simulation framework developed by Katada et al. (2006) was sophisticated; 

however, once an area was inundated by a tsunami, all people within the area were 

automatically assumed dead (i.e., no casualty model was implemented in that 

framework). 

 

Although this prototype system does include a casualty model, it is currently limited 

to simulating adult male and female body types.  Extending the system to simulate 

the additional body types defined by Kroemer et al. (1997) would likely result in a 

more realistic assessment of evacuation movement and casualty determination.  The 

similarity in the fixed set of adult male and female body type parameters is evident in 

the visualization output, where individuals can often be observed traveling an 

identical route while landing at the same point at each simulated time step.  

Modeling additional body types based on age and gender, and introducing some 

degree of variation within the anthropometric parameters representing them, should 

result in a more realistic simulation model and visualization output.  To further 

extend this system into a true agent-based model, the simulation model could be 

redesigned to assess the position and group density of nearby individuals at each 

time step, as well as nearby topographic features (e.g., an individual could cross an 

empty lot as a shortcut rather than remaining on the road network) and other 

environmental variables. 
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In its current implementation, the simulation framework advances simulated humans 

a measured amount along their routed tracks at each time step, based on the 

estimated walking speeds of male and female adults.  The temporal resolution of the 

time steps is defined as an input parameter during the tsunami modeling 

parameterization process that generates the tsunami simulation and is often defined 

on the order of seconds, but may also be as long as minutes in scale.  The simulation 

framework could be configured to represent human movement on a finer temporal 

scale by generating position data more frequently than the fixed temporal scale of the 

tsunami simulation.  However, while position data could be updated more frequently, 

casualty determination data (i.e., indicating whether the subject has become 

inundated by the tsunami flow) could only be updated on the fixed temporal scale of 

the tsunami simulation. 

 

Because this study focused on prototype framework design, one of the assumptions 

made is that all individuals in the modeled population begin moving at the same time 

(i.e., they all receive a tsunami warning and act upon it simultaneously).  Future 

enhancements could include the ability to vary warning transmission type (radio/TV 

announcements, siren, police notification, etc.) and timing, as in Katada et al. (2006), 

or perhaps take into account warning transmission using a neighbor-to-neighbor 

agent based modeling approach as in Nagarajan et al. (2012).  An additional 

consideration is the subtle decision factors that are more difficult to quantify.  For 

instance, although the average male may be able to run faster than the average 
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female (cf. Kroemer et al. 1997), if the two individuals have a relationship of some 

kind, would the male run faster?  The male evacuee may decide to run at the same 

speed as the female evacuee.  Factors such as these could be explored further and 

perhaps represented in some fashion in a future version of the simulation framework. 

 

3.5.2 Data Sources and Issues 

As with most projects that rely upon multiple sources of spatial data as inputs for 

analysis and interpretation, a certain amount of error is introduced by the data 

sources.  In this study, error could be present in the spatial data representing roads 

and structures for the Seaside area.  Examples of error could include misattribution 

of structure type, missing structure data, or problems with the road network 

topology.  In a prototype system, however, in most cases these issues are secondary 

to any larger issues that would cause the data to not function properly when used 

within the simulation framework. 

 

This simulation framework (indeed, any simulation system requiring such data) 

would also benefit from higher-resolution tsunami runup data, which would allow 

more precise estimation of casualties.  Low-resolution tsunami inundation data 

represent a source of potential error in a simulation framework.  Since modeled 

water depth is the same for all individuals within a given grid cell, any individuals 

matching the casualty model conditions who are spatially located within that grid 

cell will be evaluated against that water depth, even if their locations are several 
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meters apart at that time step.  Advances in high-resolution bathymetry data mapping 

(e.g., via LiDAR technology), together with better techniques for modeling wave 

propagation in near-shore environments where bathymetry and topography data 

merge, will lead to more realistic simulations of wave runup and calculations of 

water depth per grid cell. 

 

The spatial database was populated with additional structure-related data that were 

not used in the prototype system.  The simulation framework could be extended to 

include estimation of losses due to structural damage, similar to Dominey-Howes et 

al. (2010), who conducted building damage estimation for the town of Seaside using 

structural data in the event of a tsunami. 

 

Although data representing temporal phenomena are becoming increasingly 

important and available (e.g., climate data, sensor network data), representation of 

spatiotemporal data in spatial databases and generalized GIS tools for working with 

spatiotemporal data remain limited.  Esri has made progress with enabling support 

for temporal data in their software products – ArcGIS 10 introduced new support and 

tools for working with temporal data, capabilities which are enabled in both ArcGIS 

Desktop and in ArcGIS Server applications (ArcGIS Help 2012).  Esri’s approach is 

to store time stamps at the feature level rather than storing separate layers to 

represent snapshots in time.  Some relational database software products such as 

TimeDB (2012) are built specifically to handle temporal data in an object-relational 
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fashion, and typically only store changes to each database object over time to 

minimize database size and complexity.  In the prototype system developed for this 

project, the database objects (i.e., simulated evacuating individuals) are moving at 

every time step for which they have not been overtaken by the tsunami flow, so 

information about their position and state is stored for every time step prior to 

reaching a casualty state. 

 

3.5.3 Hardware and Software Technology 

Fast performance is a challenge in any web-based system.  In this prototype system, 

the spatial database, which drives many of the processes related to the web interface, 

is stored on a dedicated server with plenty of processing power and memory, fast 

SCSI disks and internal and external network connections.  The database server 

parameters are optimized for read performance, and the database tables are properly 

indexed to optimize both spatial and non-spatial query performance.  The Apache 

web server and PHP installation are also optimized for fast generation and 

transmission of web pages.  While all of this is necessary for fast performance in 

general, it is especially important for the interactive web-based display in this 

prototype system, where the animation performance depends upon fast transmission 

of data from the server to the client. 

 

Continued advances in web-based technology for spatial visualization (e.g., 

Anderson et al. 2011) will make more techniques available for the development of 
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complex interactive web-based systems.  For instance, web mapping applications 

that dynamically render spatial features (i.e., as vector data features rather than as a 

generated map image) may benefit from compression of vector data on transmission 

from server to client (e.g., Bashar et al. 2012).  However, although this approach 

may lessen server-side load under heavy usage, it can impose a performance penalty 

on the client-side if many features are requested in the map view.  Another example 

is the potential of vector-based rendering via HTML5 or scalable vector graphics 

(SVG) – each has some important differences, but also represents an important new 

method for creating map-based graphics in a web browser. 

 

3.5.4 User Interactivity 

A goal of this study was to provide an interactive web-based interface for displaying 

results that included animation capability in an easy-to-use form, while conveying 

important information about the content.  In considering the general user experience, 

some studies indicate that animations are no better than static diagrams at helping 

people understand concepts portrayed in the content (Hegarty et al. 2003, Mayer et 

al. 2005, Kim et al. 2007).  However, animations that incorporate interactive controls 

provide additional benefits over fixed animations and static graphics (Tversky et al. 

2002, Betrancourt 2005).  Map-based animations that include tools for starting, 

stopping, zooming, panning, etc., give users control over the functioning of the 

animation, which allows them to discover data and relationships at their own pace.  

Furthermore, implementing the animated mapping interface in a web browser 
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increases accessibility and, potentially, ease-of-use.  The next phase of prototype 

development will include usability testing conducted by selected users in a controlled 

environment. 

 

3.6 Conclusion 

The intent of this study was to develop a prototype framework for simulating 

potential human movement in response to a hypothetical tsunami inundation event.  

Spatiotemporal tsunami inundation data and other spatial data describing the Seaside, 

Oregon region were used as inputs to the simulation framework.  One of the primary 

goals was to automate the production of simulation output, based on user input, and 

also automate the inclusion of the output in a web-based data exploration and 

visualization interface.  These goals were accomplished by developing custom 

software tools on both the server- and client-side, and implementing those tools in a 

framework system that integrated them with a centralized spatiotemporal database as 

well as key open source software tools. 

 

As part of the simulation framework, modeled individuals were (1) routed along an 

existing road network and (2) evaluated at each time step of the simulation using a 

casualty determination algorithm.  Although certain assumptions had to be made 

(i.e., using a standard set of body parameters for males and females), the inclusion of 

the casualty model, itself based upon research evaluating human stability in tsunami 
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inundation conditions, gives a firm basis for determination of casualties given water 

depth and velocity conditions at any time step. 

 

An additional research challenge addressed in this prototype system is the animation 

of time-series simulation output data within a web-based mapping and visualization 

interface.  The goal was to give the user full control over the interface (including 

querying the underlying time-series data) at any time, even while the animation is 

underway.  The additional features (dynamic interactive chart, animated space-time 

path, interactive data table) can provide the user with extra insight into the time-

series data, the tsunami inundation conditions, and the casualty state at each time 

step.  This goal was successfully accomplished using a mix of custom code with 

open source software packages such as OpenLayers, MapServer, Highcharts, and 

GDAL/OGR. 

 

The prototype system developed in this study demonstrates an effective simulation 

framework for the automated modeling and visualization of spatiotemporal data.  

The framework can be expanded upon to provide additional functionality, or used as 

a foundation for developing a similar system in another discipline that requires the 

simulation, analysis, and display of spatiotemporal data. 
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4.1 Abstract 

Raster-based datasets (grids) provide a simple yet powerful data structure for storing 

numerical data and performing spatial and statistical analyses across several datasets 

(i.e., map algebra).  Each grid can contain a data representation for a given time 

period, enabling analysis over time.  However, grid file sizes can be very large, 

particularly at high grid cell resolution.  Performing statistical calculations on 

multiple grids across varying spatial and temporal scales can be computationally 

intensive, typically requiring a specialized geographic information system (GIS) or 

image processing software package. 

 

The PRISM Climate Group produces modeled climate grids representing 

precipitation, minimum temperature, maximum temperature, and mean temperature 

for the conterminous U.S. at 800 m resolution over multiple time scales (daily, 

monthly, and annual).  With currently over 49,000 climate grids available, grid 

loading and processing times can become prohibitively long, particularly when 

performing analyses across large temporal and/or spatial scales.  Leveraging and 

extending a custom server-side solution designed in-house for quickly processing 

multiple grids, the GridStats system was developed to provide fast, targeted 

statistical summary and analysis capabilities across virtually any set of PRISM 

climate grids. 
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The GridStats system is a scalable, extensible, web-based framework that provides 

fast access and analysis capability to all PRISM climate grids.  Any available 

gridded PRISM climate parameter can be analyzed over user-selectable space and 

time ranges using an extendable set of statistical methods.  The system is accessed 

via a web browser, which provides user-level control over all parameter settings, as 

well as dynamic map-based spatial selection aids to help identify and select a 

bounded region for analysis.  When a request is submitted, custom server-side code 

processes the requested grid set and returns output that can be viewed and explored 

in the resulting web pages, which feature synchronized input/output dynamic maps 

for comparison, as well as dynamically-built interactive charts that display both 

plotted data points and statistical information (mean, ±1 standard deviation, centered 

moving averages). 

 

The GridStats system is unique in its ability to process large sets of relatively high-

resolution (800 m) gridded climate data very quickly, span virtually any combination 

of spatial and temporal ranges within the available datasets, perform statistical 

calculations over space and time, and render the output in dynamic tools that allow 

further data exploration, while requiring no specialized software apart from a 

standard web browser. 
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4.2 Introduction 

Climate data, such as accumulated precipitation on a monthly time scale, are 

typically stored in raster GIS formats (grids).  Inherent to each grid are elements of 

time (the time interval represented by the grid) and space (the spatial extent covered 

by the grid and the grid resolution).  Large collections of climate grids enable the 

analysis of climate parameters over varying spatial and temporal scales.  By altering 

the spatial extent (i.e., clipping a grid to a defined extent) and selecting a time series 

of interest (e.g., a set of monthly grids representing January 2000 to December 

2003), any number of analyses can be performed on the collection of grids over time.  

One possibility is to perform a statistical analysis through each set of co-located 

time-series grid cells, resulting in an output grid with each cell containing the 

calculated output statistic value.  This approach is known generally as map algebra 

(Tomlin 1990) and is available in any GIS software package that supports raster 

processing, such as ArcGIS (2012), Geographic Resources Analysis Support System 

(GRASS) (2012), or Idrisi (2012).  Although web-based mapping and services have 

grown significantly in scope and availability since the introduction of Esri’s ArcIMS 

in 2000 and the introduction of the Google Maps application programming interface 

(API) in 2005, web-based raster analysis capabilities remain limited. 

 

4.2.1 PRISM Climate Grids 

The Precipitation-elevation Regressions on Independent Slopes Model (PRISM) is a 

statistical-topographic model that uses point data (weather station observations) and 
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a digital elevation model (DEM) to calculate modeled grids representing climate 

parameters across the conterminous United States (CONUS) (Daly et al. 1994, Daly 

et al. 1997).  The PRISM Climate Group at Oregon State University has produced 

gridded climate data at 4 km resolution on monthly and annual time scales since 

1995 using a sophisticated knowledge-based approach incorporating extensive 

inference, refinement, and quality assurance procedures (Daly et al. 2002, Daly et al. 

2008).  More recently, the PRISM Climate Group partnered with the Northwest 

Alliance for Computational Science and Engineering (NACSE) and has begun 

automated production of CONUS climate grids at 800 m resolution on a daily time 

scale, using a Linux-based computational cluster to facilitate time-effective 

processing of daily data.  Grids produced in this manner represent the climate 

parameters precipitation (ppt), minimum temperature (tmin), maximum temperature 

(tmax), and mean temperature (tmean). 

 

PRISM staff often need to make a quick assessment of a particular climate parameter 

across space or time, or may need to load hundreds of grids to perform a larger 

statistical summary or analysis.  Across all time series, there are currently over 

49,000 climate grids stored on the PRISM filesystem.  Performing grid processing 

operations over large spatial or temporal scales can be time-prohibitive due to (1) 

moving large quantities of data over the network, and (2) processing large quantities 

of data on a computer workstation. Moreover, sophisticated web-based grid querying 

utilities under development by NACSE and PRISM need fast access to grids for real-
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time processing.  A server-side solution was required not only for fast grid access 

and processing, but also for performing real-time statistical summaries and analyses 

on selected grid sets over space and time. 

 

4.2.2 Real-time Grid Calculations 

By nature of their format, grids provide a simple yet powerful data structure for 

storing numerical data and performing spatial and statistical analyses across multiple 

datasets.  Each grid can contain a data representation for a snapshot in time (or an 

interval), enabling analysis over both space and time.  Specialized locally-installed 

GIS software is typically used to perform grid-based analysis.  However, the 

software is usually installed on a particular computer and, in many cases, requires a 

purchased license before the software can be used.  GRASS GIS is the only full-

featured open source raster GIS software package, but for most people it requires a 

steeper learning curve than commercial software, even with the Quantum GIS (QGIS 

2012) software package as a front end.  Data size and format can also serve as 

impediments to fast processing of grids, particularly if large quantities of gridded 

data need to be loaded across a network for processing. 

 

With a powerful server or clustered server environment, centralizing grid storage and 

processing on the server-side can speed delivery of the output product to the client, 

whether the client is a locally-installed GIS software package or a web browser.  

This is the driving concept behind ArcGIS Server (ArcGIS 2012), which recently 
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began offering more server-side grid processing capabilities (ArcGIS Resource 

Center 2012), and similar software products.  However, dynamic grid processing 

(i.e., not just delivering data, but rather performing complex grid processing 

operations and delivering the output) in a server environment remains a challenge.  

Programmatic approaches offer the most flexibility for designing a server-side grid 

processing solution, but can also require significant effort to build.  Significant 

advances in open source GIS software over the past decade have resulted in powerful 

server-side software components such as the Geospatial Data Abstraction Layer 

(GDAL 2012), OGR Simple Features Library library (OGR 2012), MapServer (Lime 

2008, MapServer 2012), and PostGIS (PostGIS 2012), all of which can potentially be 

leveraged and combined with custom software to create a grid processing system. 

 

If the grid processing work can be moved to the server, and the client only requires 

operations such as data exploration, visualization, and querying of the output data, 

custom web-based tools become ideal candidates for a client interface.  Requiring no 

specialized software apart from a standard web browser, web-based tools have the 

benefit of being accessible from virtually anywhere.  With the current panoply of 

advanced JavaScript-based client-side libraries designed to enhance the user 

experience, such as OpenLayers (OpenLayers 2012), jQuery (jQuery 2012), and 

Highcharts (Highcharts 2012), and the availability of powerful techniques for 

making asynchronous calls to server-side processes to retrieve data, web-based 

interfaces designed today can be more useful and powerful than ever before. 
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Using the internet as the basis for a grid analysis framework requires inherently fast 

approaches to grid processing and delivery.  Although it is possible, for example, to 

develop a web-based system that e-mails the user when a computationally-intensive 

job is complete, the user experience is greatly enhanced by near-real-time processing 

and delivery of the output products.  This necessitates a streamlined grid processing 

solution on the server-side, capable of quickly handling complex grid processing 

operations as well as multiple simultaneous requests. 

 

4.2.3 Project Goals 

The intent of this project was to implement a usable web-based approach for 

analyzing PRISM climate grids over varying spatial and temporal scales.  

Leveraging the structured system of PRISM climate grids and extending a 

previously-developed grid processing toolkit, the GridStats system was developed 

with these goals in mind: 

 
1. Determine the feasibility of performing statistical analyses across multiple 

grids in a real-time web environment. 

2. Create a web-based system for calculating statistics across multiple grids 

over user-defined spatial and temporal scales. 

3. Leverage the custom server-side solution (the GridServer) designed in-house 

for quickly processing multiple grids and extend its point-based processing 

capability to process regions across multiple grids. 
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4. Design a system that can handle the processing power necessary for 

calculating analyses across the high resolution (800 m) PRISM grids. 

5. Design user interactivity features that help the user properly define input 

parameters and interpret the output data. 

6. Incorporate dynamic mapping tools, both for setting the initial area of interest 

and for exploring the statistical output grids. 

7. Develop dynamic, interactive charts that display the output data and allow 

their exploration, plus incorporate in-chart statistical reference aids. 

8. Attempt to build the system framework, statistical analysis, and grid 

processing code using open source software tools. 

 
A range of hardware, software, database, mapping, analysis, and development 

techniques were used in the design and implementation of the GridStats system.  The 

overarching goal of the project was to combine this complex set of elements into a 

system that provides automated, easy-to-use exploration and analysis of large 

datasets in a web-based context.  Developing a modular framework that can be used 

with additional climate parameters, raster data types, and statistical methods was also 

an important consideration in this project. 

 

4.3 Related Work 

Several topics associated with this project such as climate mapping, web-based grid 

processing, temporal map algebra, and calculation of grid statistics have been 



155 
 

 

examined by others.  In this section, related research is discussed in the context of 

these topics, with particular attention given to the central theme of processing grids 

across space and time. 

 

4.3.1 Web-based Grid Processing 

The concept of real-time web-based processing of raster datasets has existed for 

several years (e.g., Baumann 2001).  Websites processing grids (either by querying 

grids and delivering the data to the user, or by clipping grids and delivering a grid 

product) have typically used processing scripts that either call a GRASS GIS utility 

on the server to process a set of grids, or a custom-written software tool to perform 

grid querying or clipping.  Many examples of these data analysis and delivery 

approach exist on websites today (e.g., PRISM Data Explorer 2012, USGS National 

Elevation Dataset 2012). 

 

Prior to the advent of the Open Geospatial Consortium (OGC) Web Coverage 

Service (OGC WCS 2010), no standards existed for the processing and delivery of 

raster datasets.  The WCS standard defines procedures for the processing and 

delivery of time-series raster-based datasets (“coverages”) on remote servers, with 

delivery of the output to the requesting server.  Since its introduction, OGC WCS 

capabilities have been added to certain spatial data infrastructures (SDIs), enabling 

access and analysis capabilities to any client.  For example, Bernard and Ostländer 

(2007) demonstrated the use of a WCS server that included a map algebra service for 
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assessing climate change vulnerability in Arctic regions.  Foerster et al. (2011) 

described the use of the OGC WCS and WPS (Web Processing Service) standards 

for multiple grid-based spatial analysis scenarios. 

 

The GDAL library contains driver support for the OGC WCS standard, handling any 

WCS coverage as a raster dataset, with GDAL acting as a client to the WCS server.  

In the current version (10.1) of ArcGIS, Esri enables geoprocessing services to be 

published with ArcGIS for Server.  Esri also indicates in documentation (ArcGIS 

Resource Center 2012) that server-side processing can be performed with raster 

functions and published via ArcGIS for Server.  ArcGIS for Server also includes 

support for the OGC WCS standard. 

 

4.3.2 Web-based Climate Grid Analysis 

Certain websites allow the user to retrieve data values across multiple time-series 

climate grids and calculate statistics across the selected grid sets.  The PRISM 

Climate Group developed and continues to support the PRISM Data Explorer (2012), 

designed several years ago and built around a mix of technologies including 

MapServer, JpGraph, and GRASS GIS.  The user can select a point location of 

interest via a map click or by entering coordinates manually, select a month, and then 

select a year range for which to retrieve data for that month (i.e., all Januaries from 

1934 to 1967).  When the request is submitted, a report is returned with information 

about the selected grid cell, the data values for that grid cell by year, and a filled line 
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chart graphing the data values across the time series.  The system works by sending a 

request to a script that calls a GRASS GIS utility to dynamically fetch the data 

values from the requested grids and return them to the browser.  The PRISM Data 

Explorer extracts values from 4 km resolution PRISM grids.  It works well for 

extracting data over time for a single month or all months in a range, but uses dated 

technology and lacks interactive tools for examining the output or for performing 

more sophisticated queries. 

 

WestMap, a climate grid analysis website developed through a collaboration of the 

University of Arizona, the Western Regional Climate Center (WRCC), the Desert 

Research Institute (DRI), and PRISM, enables fairly extensive analysis of PRISM 

climate grids (Comrie et al. 2006, Glueck et al. 2008, WestMap 2012).  A WestMap 

user can select a location of interest using a number of methods (states, counties, 

climate divisions, hydro units, by pixel, or by polygon).  The first four location 

selection methods use a custom imagemap-selection method, while the last two use a 

Google Maps API-based map to set a point or define a polygon.  After selecting a 

point or region of interest, the user can choose to create either a time series chart or a 

map of the region.  Time series charts display parameter data for the selected time 

interval, as well as a running mean plotted as points, and an optional summary 

statistics report for the selected data values.  Three types of maps can be generated 

for any of the climate parameters: (1) anomaly, expressed as a difference or a percent 
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of normal, (2) a composite of several years, or (3) a difference between two years (or 

two year ranges). 

 

WestMap covers states in the mountainous western US (west of Kansas) and 

analyzes PRISM 4 km climate grids.  The website is written in the PHP: Hypertext 

Preprocessor (PHP) language, with a combination of C, Fortran, Perl, and other 

languages used to dynamically retrieve data from PRISM climate grids and perform 

analyses on them.  Output charts and maps are static (i.e., there is no interactive 

component once the products are generated).  Output values cannot be retrieved from 

the resulting maps, and cannot be viewed on the chart (although there is an option to 

print them below the chart).  The generated maps and charts can be saved as images. 

 

The Nature Conservancy, in collaboration with the University of Washington and the 

University of Southern Mississippi, developed the ClimateWizard website, a tool 

that allows the user to select a state or country and learn how climate has changed 

over time in that region (Girvetz et al. 2009, ClimateWizard 2012).  As with the 

other climate grid analysis tools mentioned in this section, ClimateWizard uses the 

PRISM 4 km climate grids for analysis (in addition to other data sources).  Various 

general circulation models and emission scenarios can be selected for future climate 

projections, and resulting maps are displayed in an Esri-based interactive mapping 

tool.  Cell values can be retrieved by clicking on the interactive map, and are plotted 

on an interactive chart that displays the model and value for each data point for the 
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modeled scenarios (the data values are also supplied in a table).  Data and map 

images can be exported from the tool.  A separate custom query interface 

(ClimateWizard Custom 2012) allows more advanced analysis of global regions (50 

km resolution) or regions in the U.S. (4 km to 12 km resolution).  Advanced analysis 

options include departure analysis (from the 1961-1990 normals) and linear trend 

analysis. 

 

4.3.3 Map Algebra and Grid Statistics 

Map algebra, the operation of performing calculations through aligned grid cells to 

produce a new grid, is a key concept in grid processing (Tomlin 1990, Tomlin 1994).  

Programmatically, map algebra calculations on grid sets representing data across 

space and time (i.e., the space-time cube) can be approached as multidimensional 

array operations, where each grid is a 2-dimensional (2D) array of rows and 

columns, and the set of time-series grids aligned for processing represents the third 

dimension.  By calculating through columns of the 2D arrays (Figure 4.1), map 

algebra can be performed to produce an output array, with each output array element 

containing a calculated value.  This approach is discussed in detail by Frank (2005), 

who described an extended version of Tomlin’s map algebra for handling 

calculations across spatiotemporal raster datasets.  Frank’s extended map algebra 

provides consistent operations for single maps, time series data, and stacks of 

gridded time series data (as in Figure 4.1). 
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Figure 4.1:  Example of map algebra for spatiotemporal data.  This diagram 
illustrates calculating through grid cells (or 2D columns in a 3D array) over time to 
produce an output grid (or 2D array) containing the calculated values. 
 

Similar to Frank (2005) in concept, Mennis et al. (2005) described cubic map algebra 

functions for spatiotemporal analysis, extending standard map algebra to three 

dimensions.  Their cubic map algebra approach was tested by summarizing 

Normalized Difference Vegetation Index (NDVI) anomaly values during El 

Nino/Southern Oscillation (ENSO) phases across different land covers.  Later, 

Mennis (2010) extended and formalized this approach as “multidimensional map 

algebra” (MMA), an extension of the conventional map algebra.  MMA functions 

operate on multidimensional data in many forms, including 2-D in space and 1-D in 

time (as represented in Figure 4.1). 
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An additional map algebra approach for processing spatiotemporal data was 

proposed by Gutierrez et al. (2007), who compared raster map algebra techniques to 

Online Analytical Processing (OLAP) data cubes and described their manipulation as 

multi-dimensional arrays.  Cordiero et al. (2009) described another map algebra 

approach to extend geoalgebra and image algebra, but primarily focused on spatial 

representations and manipulations related to cellular automata rather than 

considering the temporal dimension. 

 

Grid-based statistical operations have been available in GIS software packages for 

many years.  The ESRI ARC/INFO GRID module was added in version 6.0 of 

ARC/INFO (released in 1991) and supported command-line access to raster 

operations, including statistical functions.  The core functionality of GRID was later 

used as the basis for the ArcGIS Spatial Analyst (ArcGIS Spatial Analyst 2012) 

extension, where statistical grid calculations are performed in ArcGIS today.  

GRASS GIS has supported a wide range of grid-based statistical functions since the 

1980s, and continues to be under active development.  The open source statistical 

package R (R Project 2012) provides support for spatial statistics on grids via the sp 

R package (Sp R 2012), and can be called from within a GRASS environment using 

the R/GRASS interface (R/GRASS 2012).  Bivand et al. (2008) describe many 

examples of applied spatial data analysis on grids using R.  Access to R from the 

Python programming language is available via the rpy2 module (Rpy2 2012), 

enabling programmatic calculation of statistical functions across grids imported as 
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arrays.  The NumPy (NumPy 2012) and SciPy (SciPy 2012) Python modules also 

support a range of statistical functions, and NumPy supports fast operations on grids 

as multidimensional arrays. 

 

4.3.4 Server-side Grid Processing Systems 

Server-side grid operations can require significant processing power, particularly for 

large spatial and temporal scales, but also during periods of concurrent usage.  

Having a properly-configured server dedicated to grid processing operations is one 

way ensure good performance.  However, increased usage, higher-resolution gridded 

datasets, and larger quantities of data can all lead to increased load on the processing 

server.  Other possibilities exist such as distributed computing over scientific grids 

(e.g., Giuliani et al. 2011), or the use of Amazon’s Elastic Compute Cloud (Amazon 

EC2 2012).  Siládi et al. (2012) used Amazon’s EC2 to perform parallel processing 

to predict depth of snow cover, using inverse distance weighting interpolation 

calculations in the cloud. 

 

Auer (2012) describes an intriguing approach to real-time web GIS analysis using 

the Web Graphics Library (WebGL) JavaScript API.  WebGL is based on the 

OpenGL 3D graphics library, and runs natively in the user’s browser, where it has 

access to the graphics processing unit (GPU) on the graphics card.  The GPU on 

modern graphics cards is capable of performing fast parallel processing of 

computational tasks.  Auer outlines a process for performing WebGL-based parallel 
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spatial analysis of grids.  Bryan (2012) also used a GPU-processing-based approach 

in assessment and modeling of socio-ecological systems, running tests across a range 

of processing types.  Bryan realized a performance gain using parallel GPU 

processing that was several orders of magnitude faster than with standard GIS 

software on a computer workstation.  Although parallel GPU approaches to grid 

processing are promising, they may require more research before their reliable 

implementation in a production environment can be realized. 

 

4.4 The GridStats System 

The GridStats system was designed to give PRISM Climate Group staff the means to 

quickly analyze and compare a point (single grid cell) or a region (via a drawn 

bounding box or other defined polygon boundary) over varying spatial and temporal 

scales.  The system was designed from the ground up, making extensive use of 

existing open source software packages as well as other grid processing software 

tools developed in-house (GridServer, Biltools). 

 

4.4.1 Design Intent 

The GridStats system was designed to meet user interface goals as well as particular 

development goals guiding future development.  The user interface was designed to 

be fully interactive, offering full control over all spatial and temporal scale 

selections.  Results pages have clearly-indicated controls and intuitive visualizations 

of the output data and analysis results. 
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In addition to developing the key functional code driving the grid processing 

operations, particular attention was given to modularity of the code design.  Both the 

frontend and backend codebases are designed such that additional univariate and 

multivariate statistical methods, polygon-based area selections, and climate 

parameters can be added fairly easily, without re-engineering server-side or client-

side code. 

 

4.4.2 System Architecture 

The GridStats system features an interactive web-driven utility that allows input 

selections to be defined on a settings web page, while output data can be viewed, 

explored, and exported on a set of results pages.  Complex JavaScript-based client-

side code manages input selection, asynchronous queries and responses, output 

formatting, and output visualization.  Behind the scenes, a complicated system of 

custom server-side software tools manage grid logistics, input/output, processing, 

and statistical analysis of climate grids across varying spatial and temporal scales.  

Figure 4.2 summarizes the interconnected pieces that define the system architecture. 
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Figure 4.2:  GridStats system architecture.  After input parameters are submitted via 
the website, the processing engine sends a request to either the GridServer or 
biltools, depending on the request type.  Output grids are written to the filesystem 
and output data are returned in JavaScript Object Notation (JSON) format to the 
processing engine and used in reporting and charting.  All output is immediately 
available in the results website. 
 

4.4.3 Hardware and Software 

The GridStats system requires fairly significant computational resources in order to 

process n number of grids across varying spatial and temporal scales and return the 

output to the user as quickly as possible.  Dedicated database, web, and grid 

processing servers (Table 4.1) distribute the processing load among multiple 

machines. 
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Table 4.1:  Dedicated servers used by the GridStats system.  The servers listed here 
are all connected via a 1 gigabit local network. 

Specification Web Server Database Server Grid Processing 
Server 

Server type Dell PowerEdge 
R710 Sun SF X4170 Dell PowerEdge 

C2100 

CPU Intel Xeon E5630 
(four 4-core CPUs) 

Intel Xeon X5560 
(four 4-core CPUs) 

Intel Xeon X5650 
(four 6-core CPUs) 

Memory 32 GB 32 GB 64 GB 

Disk storage 
type Local EMC NS-480 NAS Local 

Disk quantity 8 9 (half allocated to 
this server) 24 

Disk capacity 320 GB 600 GB 600 GB 

Disk speed 10K RPM 15K RPM 15K RPM 

Disk interface SCSI Fibre channel SAS 

RAID level RAID 5 RAID 5 RAID 6 

RAID controller 
type hardware hardware hardware 

Operating 
system Linux (RHEL 6) Linux (RHEL 6) Linux (RHEL 6) 

 
 

The GridStats system relies upon a range of open source software packages (Table 

4.2), as well as custom code written in PHP, Javascript, and HTML (about 5000 lines 

of code, not including GridServer modifications written in Python).  All spatial data 

queries, processing, and server-side and client-side manipulations are performed 

using open source software tools and custom-written software tools and utility 

scripts. 
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Table 4.2:  Open source software packages used by the GridStats system, and the 
purpose for which they are used. 

Software Package Purpose 
PostgreSQL 
(postgresql.org) 

Relational database system – provides storage and 
management of input and output data. 

PostGIS 
(postgis.refractions.net) 

Module that provides support for spatial objects and 
operations within PostgreSQL, and enables spatial queries. 

GEOS 
(geos.osgeo.org) 

Library incorporating the OpenGIS Simple Features 
operations, which are used within PostgreSQL/PostGIS. 

PROJ.4 
(proj.osgeo.org) 

Library that handles coordinate system transformations on 
spatial objects stored in the database. 

GDAL 
(gdal.org) 

Library for manipulating, converting, and processing 
raster data (grids) in multiple formats. 

OGR 
(gdal.org/ogr) 

Library for processing vector datasets and converting 
output from PostgreSQL/PostGIS to GeoJSON. 

MapServer 
(mapserver.org) 

Server-side software that processes map layers for the 
OpenLayers web mapping and visualization interface. 

OpenLayers 
(openlayers.org) 

Client-side mapping tool – enables web mapping and 
animated visualization of maps and output data. 

Highcharts 
(highcharts.com) 

Client-side charting tool – enables interactive charting 
capabilities via Javascript. 

jQuery 
(jquery.com) 

JavaScript library for event handling, AJAX transactions, 
HTML DOM changes, and cross-browser compatibility. 

Python 
(python.org) 

Scripting language used for server-side grid processing 
and associated tasks. 

NumPy 
(numpy.scipy.org) 

Numerical Python package, used for processing grids as 
multidimensional arrays and calculating statistics. 

SciPy 
(scipy.org) 

Scientific tools for Python, used for calculating certain 
statistics. 

PHP 
(php.net) 

Server-side web programming language that drives the 
GridStats website. 

Pyramid 
(pylonsproject.org) 

WSGI web framework that provides a fast, lightweight 
web server and enables HTTP requests to Python utilities. 

Apache 
(httpd.apache.org) 

Web server used for serving website pages and handling 
PHP-generated content. 
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4.4.4 Input Data Sources 

The GridStats system is built around the availability of a key dataset (the PRISM 800 

m climate grids) and various supporting spatial datasets used for display, 

manipulation, and grid clipping operations.  These input data sources are stored on 

the filesystem or in the spatial database, depending upon type. 

 PRISM Climate Grids 4.4.4.1

Automated PRISM modeling processes produce climate grids at both daily and 

monthly time scales (annual grids are calculated from monthly data) for the CONUS.  

The spatial extent of the climate grids is identical (i.e., CONUS) across all grids, as 

is the grid cell resolution (800 m).  Table 4.3 lists the available PRISM modeled 

climate grids by parameter and time series. 

 

All PRISM climate grids are stored in the BIL (band interleaved by line) format 

(ESRI 1999, NDIIPP 2012), also described as the EHdr (ESRI .hdr labeled) format 

in GDAL documentation (GDAL Raster Formats 2012).  The BIL format supports 

coordinate systems via a .prj file and georeferencing via the matching .hdr file.  As 

a widely-used, generalized binary raster data format, BIL is well-supported in GDAL 

raster processing operations, as well as in commercial software products from Esri 

and image processing software vendors such as ENVI and Imagine.  Stored in BIL 

format, each PRISM grid requires approximately 85 MB of disk space.  Across all 
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parameters and time series, there are currently over 49,000 available grids occupying 

nearly 5 TB of disk space on the filesystem. 

 

Table 4.3:  Climate parameters and availability of 800 m resolution time-series grids 
produced by the PRISM Climate Group.  Automated climate modeling is performed 
on a daily basis, with the most recently-available grids typically representing 
yesterday, last month, or last year, depending upon the time series of interest. 

 Time Series 

Parameter Daily Monthly Annual 

Precipitation (ppt) 1980-01-01 to 
<yesterday> 

1895-01 to 
<last month> 

1895 to 
<last year> 

Minimum 
Temperature (tmin) 

1970-01-01 to 
<yesterday> 

1895-01 to 
<last month> 

1895 to 
<last  year> 

Maximum 
Temperature (tmax) 

1970-01-01 to 
<yesterday> 

1895-01 to 
<last month> 

1895 to 
<last  year> 

Mean 
Temperature (tmean) 

1970-01-01 to 
<yesterday> 

1895-01 to 
<last month> 

1895 to 
<last  year> 

 

 Additional Spatial Data 4.4.4.2

In addition to the PRISM climate grids, a set of vector-based GIS spatial layers 

(Table 4.4) are used by GridStats.  These layers were imported into the spatial 

database and are used in both the web interface and in the grid processing system. 

 

In the web interface, the initial settings page gives the user the ability to overlay the 

states, counties, watersheds, and PLSS layers as spatial reference aids when selecting 

a location of interest.  Additionally, the state, county, and watershed layers are 
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enabled as “active selections,” whereby a user can select a polygon of interest (e.g., 

the state of Idaho) from a menu and be zoomed directly to the highlighted polygon 

on the map, while that polygon is also selected as the region of interest.  When a 

state, county, or watershed area-based request is submitted, the spatial extent 

information for that polygon is extracted from the spatial database and used for 

clipping the grid to isolate the associated grid cells for analysis. 

 

Table 4.4:  Vector-based spatial data stored in the spatial database and used in both 
the web interface and the grid processing system. 

Spatial Data Type Source 

US state boundaries Polygon National Atlas 
(nationalatlas.gov/atlasftp.html) 

US county boundaries Polygon National Atlas 
(nationalatlas.gov/atlasftp.html) 

Watershed boundaries 
(8-digit HUCs) Polygon US Geological Survey 

(water.usgs.gov/huc.html) 

Public Lands Survey System 
(PLSS) * Polygon  US DOI Bureau of Land Management 

(blm.gov/wo/st/en/prog/more/gcdb.html) 
* Currently used only for spatial reference on maps – not used in the grid processing 
system. 
 
 
 
4.4.5 Spatial Database 

The database used by the GridStats system is stored and managed in an instance of 

the open source PostgreSQL relational database management system (PostgreSQL 

2012) with the open source PostGIS module (PostGIS 2012) included to support the 

storage, manipulation, and querying of spatial data as database objects.  



171 
 

 

PostgreSQL/PostGIS allow the execution of advanced spatial queries and can be 

accessed directly via web programming languages such as PHP and web mapping 

tools such as MapServer (Lime 2008, MapServer 2012).  The PostgreSQL database 

server instance runs on a dedicated machine as described in Table 4.1. 

 

Spatial data used in this project were converted to the geographic WGS84 coordinate 

system (EPSG 4326) prior to loading into the spatial database.  This conversion was 

accomplished via the ogr2ogr command-line utility (packaged with the OGR 

library), using this command: 

 
   ogr2ogr –t_srs EPSG:4326 state_bnd.shp states_4326.shp 

 
The converted data were tested and then prepared for insertion into the spatial 

database via the shp2pgsql command-line utility (packaged with the PostGIS 

module), using this command: 

 
   shp2pgsql –I –s 4326 states_4326.shp gis.states | psql -d my_db 

 
The last section of that command (psql -d my_db) takes the output from shp2pgsql 

via a Unix “pipe” and imports it directly to the spatial database using the 

PostgreSQL psql command-line utility.  All supporting vector-based spatial datasets 

were processed and inserted into the spatial database in this manner.  GiST spatial 

indexes were generated for all of the geometry columns in the resulting spatial 

tables. 
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4.4.6 The GridServer 

The GridServer is a server-side grid processing software system designed to accept a 

request, process a grid or a set of grids, and return the resulting data to the requesting 

entity.  The GridServer was developed by NACSE specifically for PRISM 

operations, although it is extensible to any set of gridded data with a regular spatial 

extent, and provides core functionality to the GridStats system for quickly 

performing statistical operations across multiple PRISM climate grids. 

 Purpose 4.4.6.1

The purpose of the GridServer is to process requests for grid data as fast as possible 

and return the output data.  Requests typically originate from a web-based 

application, with the possibility of a large number of concurrent users, so grid 

processing must occur very quickly.  The GridServer was initially designed to 

receive a latitude/longitude point request, map it to a single grid cell, retrieve data 

from that grid cell over time (from a single grid to potentially thousands of time-

series grids), organize the output data, and return it to the requestor.  As part of the 

GridStats project, functionality was added to the GridServer to support region-based 

processing using a rectangular bounding box or a state, county, or watershed polygon 

boundary. 
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 System Design 4.4.6.2

The GridServer is written in Python and wrapped in a multi-threaded web 

application using the Pyramid (2012) framework.  Pyramid is a WSGI (Web Server 

Gateway Interface)-based system that utilizes Paster, a fast, lightweight web server.  

Running on a dedicated server (described previously in Table 4.1), the system 

handles HTTP-based requests from a web application or other client.  The 

GridServer makes use of a number of open source libraries such as NumPy, SciPy, 

and GDAL/OGR. 

 

The GridServer establishes a Unix system file handle to every available PRISM 

climate grid during initialization.  By eliminating the system overhead involved with 

establishing a file handle and opening a file programmatically, the GridServer can 

achieve very fast seek times to over 49,000 grids (that quantity is increasing daily).  

The maximum number of file handles available to the user agent running the 

GridServer process was changed from the Linux system default of 4096 to 65,536 to 

accommodate the large number of file handles required by the GridServer.  The 

system itself can accommodate a much larger number of file handles, and the user 

agent’s allocation will be increased further as larger quantities of PRISM climate 

grids are produced. 

 

NACSE performed extensive testing of grid request processing times over the 

network-based NFS filesystem vs. local disk storage and found that request 
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processing was consistently 6-7 times faster using local disk storage.  The primary 

set of PRISM grids are stored on the internal NFS filesystem to provide network 

access and ease of regular backups and need to remain there, so to maximize 

GridServer performance a local copy of the grids was made on the dedicated 

GridServer machine.  This secondary copy is synchronized with the primary source 

(1) anytime a new grid is produced, and (2) on a nightly basis via the rsync and cron 

Unix system utilities.  The GridServer maintains Unix system file handles on this 

local, synchronized set of grids and refreshes all data file handles hourly, or 

whenever a refresh is requested. 

 

When a request is received, the GridServer builds a list of the required grids based 

on the requested time series and start/end dates, reads relevant data from the grids 

using the established file handles, and processes the grids according to the request.  

For point-based requests, both the actual grid values and processed data are written, 

along with matching metadata, to a JSON object that is passed back to the requestor.  

For area-based requests, the data are first copied into a NumPy N-dimensional array 

(ndarray).  Once the relevant grid data are contained in an ndarray, it becomes much 

easier to manipulate the data for processing than working with the grids in their 

native binary format, and the NumPy package provides a wealth of numeric 

processing functions that operate on the ndarray data structure.  The retrieved data 

are then written to a new ndarray, processed as needed according to the request, and 

passed into a function that generates a new grid (or set of grids) in BIL format.  This 
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is another benefit of the BIL format – the binary data structure is non-proprietary and 

relatively easy to reproduce via Python.  Output grids are written to a filesystem 

location accessible to the web server.  Metadata describing the grids are returned in a 

JSON object, similar to point data requests. 

  GridStats Usage 4.4.6.3

After a user makes their selections on the initial settings page and clicks the Submit 

button, a request is sent to the GridServer for one of several grid processing methods.  

An example area-based HTTP request looks like this: 

 
http://<server.domain>:<port>/stats_area_years?minlon=-122.43271 

&minlat=41.33694&maxlon=-121.29877&maxlat=43.56572 

&start=1982&end=1988&param=ppt&pstat=mean 

 
 
This request is for annual precipitation data for the years 1982-1988, for a region 

defined by a bounding box drawn on the map on the initial settings page.  The 

requested statistic is “mean,” which performs the mean calculation for every grid cell 

across the years 1982-1988 within the requested region. 

 

4.4.7 Server-side Processing 

The GridStats system relies upon a range of server-side components, including a 

range of open source packages and modules used directly or accessed via APIs, and 

custom-written software tools.  Hardware and software components enabling server-

side GridStats operations are listed and described in sections 4.2 and 4.3.  Their 
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usage is described in this section, particularly for the components involved in 

calculating grid statistics. 

 Calculating Grid Statistics 4.4.7.1

Requests spanning the CONUS extent (i.e., the entire PRISM grid extent) are 

handled by making a system call to bilcalc, one of the Fortran utilities included in 

Biltools.  The bilcalc command currently supports min, max, mean, and sample 

standard deviation calculations.  All other grid statistic calculations are handled by 

the GridServer. 

 

The GridServer’s initial design intent was to handle point-based requests, retrieve 

data from matching grid cells across all grids as fast as possible, and return the data 

to the requestor.  The GridStats system leverages the GridServer’s core functionality 

of quickly retrieving and processing grids, as well as the initial point-based request 

processing methods.  However, in developing GridStats, the GridServer’s point-

based methods were extended to calculate a set of summary statistics across all grid 

cells retrieved by each point-based request, with new area-based methods developed 

for this purpose. 

 

The GridServer (in addition to other GridStats framework components, including 

both the client-side and server-side code driving the website) utilizes some key open 

source GIS code libraries.  In particular, for this project the GDAL/OGR library 
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enables reading, reprojection, and general manipulation of raster datasets (via 

GDAL), and reading, writing, reprojection, and spatial queries of vector datasets (via 

OGR).  All operations are handled programmatically, either by direct command-line 

calls, integration of Python modules, or using the GDAL/OGR features compiled 

into other open source GIS software such as MapServer. 

 

4.4.7.1.1 Extending the GridServer 

Additional functions and methods were added to the GridServer to enable area-based 

requests, which are defined by either drawing a rectangular bounding box on a map 

or selecting a desired state, county, or watershed polygon boundary.  For rectangular 

bounding box requests, the GridServer uses the bounding coordinates to clip the 

rectangular region from each input grid, read the clipped regions into a NumPy 

ndarray, conduct statistical calculations on the array elements, and return the 

processed output data as a BIL grid, along with associated metadata. 

 

Area requests that use irregular polygons as the bounding region require more 

complicated logic and processing than rectangular regions.  When the user selects a 

polygon region on the settings web page, the matching spatial database table name is 

recorded in the background, along with the numerical identifier representing the 

selected polygon.  That information is included in the GridServer request, triggering 

a clip-by-polygon operation rather than a normal clip-by-bounding-box operation.  

The Python code driving the GridServer imports the OGR module, which enables a 
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query to be issued to the spatial database to retrieve the encoded geometry for the 

polygon of interest.  The form of that query is: 

 
SELECT AsBinary(the_geom) AS wkb_geometry FROM <spatial_table> WHERE 

gid = <id>; 

 

The GDAL module (also imported by the GridServer Python code) is then used to 

rasterize the bounding polygon to a grid matching the resolution and alignment of the 

input grids.  This is done as an inclusive process, such that all grid cells either 

contained by the polygon or intersecting its boundary are included in the rasterized 

layer.  Once properly retrieved and rasterized in this manner, the resulting layer can 

be used as a Boolean spatial mask to process and return only the grid cells in the 

polygon of interest. 

 

Selecting a region of interest based on a polygon is an important feature that allows 

the user to calculate grid statistics over space and time based on significant natural 

(e.g., watershed) or administrative (e.g., state or county) boundaries.  For instance, a 

user could quickly calculate the minimum precipitation over the years 1990-2010 in 

the Grand Canyon Watershed in Arizona (this request takes 0.86 seconds to return 

the output grid and data).  The GridStats system currently includes US states, US 

counties, and watersheds (8-digit HUCs) as selectable polygon layers, but additional 

polygon layers can easily be added to the framework. 
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For all area-based methods, the GridServer code runs extensive validity checks 

against the requested bounding region to ensure that: 

 
1. The requested region does not lie entirely outside of the PRISM grid mask 

extent (e.g., the bounding box was drawn entirely in Canada). 

2. Any areas of the requested region drawn partially outside of the PRISM grid 

mask extent (e.g., a bounding box was drawn that includes part of California 

and extends several km into the Pacific Ocean) have the grid cells properly 

set to “no data” (-9999) in the output grids, and are excluded from statistical 

calculations. 

 
Table 4.5 summarizes the grid statistics available via each server-side tool and 

request type.  Point requests calculate a set of statistics through the set of retrieved 

grid cells (i.e., the statistic is calculated through time), and the resulting output is 

returned as a summary set and displayed on the website.  Area requests perform 

statistical operations using two different methods, and return a grid (or set of grids, 

for Principal Components Analysis) along with the related data values.  Requests for 

processing across the entire grid extent (CONUS) are handled by Biltools, which are 

a set of Fortran tools written by the PRISM Climate Group specifically for 

processing statistics or basic map algebra operations across the entire CONUS.  The 

output from an “entire grid” operation is a single BIL grid with each grid cell 

representing the calculated statistic through time. 
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Table 4.5:  Currently implemented statistics listed by request type and the server-side 
tools used for calculating them.  The statistics listed for point-based requests are 
returned as a complete set, while area-based requests process and return a single 
output statistic. 

 Server-side Tool and Request Type 

Statistic GridServer 
(point method) 

GridServer 
(area method) 

Biltools 
(entire grid) 

Sum X   

Range X   

Min X X X 

Max X X X 

Mean X X X 

Median X   
Sample Standard 
Deviation X X X 

Standard Error X   
Principal Components 
Analysis (PCA)  X  

 
 
 
4.4.7.1.2 Area-based Methods 

The GridServer’s area-based methods (example in Appendix H) calculate statistics in 

two ways, with both approaches automatically calculated for every area-based 

request.  The first approach is “temporal first,” in which the requested statistic is 

calculated through time (i.e., calculated vertically through each aligned grid cell, 

with each grid representing a snapshot of values in time), ultimately producing a 

spatial output grid in which each grid cell contains the output statistic value 

calculated through time (Figure 4.3).  This technique matches the multidimensional 
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map algebra approach described by Mennis (2010) where the data cube is 2D over 

space and 1D through time, and is similar to the summary operation described by 

Frank (2005). 

 

 

 

Figure 4.3:  The “temporal first” (grid as output) and “spatial first” (array of values 
as output) approaches to area-based calculations implemented in the GridServer.  In 
the first method, an output grid is produced containing the map algebra value 
calculated for each grid cell.  In the second, the output array contains a single value 
for each grid, representing the statistic calculated across all grid cells in that grid. 
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In the GridStats web interface, the output grid produced by the “temporal first” 

method is automatically displayed as an output layer in the dynamic mapping tool.  

The GridServer’s Python code uses masked NumPy arrays to perform these 

calculations.  The following code sample is an abbreviated version of the function 

that calculates all temporal grid statistics, using mean as an example (Appendix I 

contains additional Python code related to this approach): 

 
1    def get_temporal_grid(self, data): 

2      fill_val = -9999. 
3      mdata = numpy.ma.masked_array(data, numpy.isnan(data)) 

4      grid = numpy.ma.mean(mdata, axis=0) 

5      outgrid = grid.filled(fill_val) 

6      return outgrid 

 

Explanation of this code sample: 

Line 1:  The Python function is defined.  The data argument represents a 

NumPy ndarray containing the input grid range selected by the user. 

 
Line 2:  The fill_val variable is set to the value that will be used to fill any “no 

data” grid cells (e.g., in the ocean) that happen to exist in the output grid.  The 

standard PRISM “no data” value is -9999, which is used for both masking 

operations and map classification purposes. 

 
Line 3:  A masked NumPy array is created from the input grids in the data 

ndarray.  Masked NumPy arrays set any “no data” values designated as nan in 

the input grids to a special value that the NumPy module ignores during 

processing.  This allows any “no data” areas to be excluded from statistical 

calculations. 
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Line 4:  The NumPy function numpy.ma.mean is called to calculate the mean on 

the masked ndarray produced in the previous line.  The important axis=0 

argument causes the function to calculate the mean statistic through columns of 

the ndarray (i.e., performing map algebra by calculating vertically through 

aligned grid cells).  This produces a 2-dimensional array containing the data 

representing the output grid, which is stored in the grid variable. 

 
Line 5:  Any “no data” values in the array are filled using the fill value defined 

in line 1, and stored in the outgrid variable. 

 
Line 6:  The output grid is returned to the calling function.  Once returned, the 

2D array is converted to the binary BIL grid format and written to disk as a 

map-ready output grid. 

 

The second area-based calculation performed by the GridServer is “spatial first,” in 

which the requested statistic is calculated over space, producing a single output 

statistic value for each input grid.  In contrast to the “temporal first” approach of 

calculating through all aligned grid cells over time, this approach calculates across 

all grid cells over space, in effect calculating an overall areal statistic for each input 

grid (refer to previous Figure 4.3).  The resulting output statistic values are collected 

and returned to the GridStats website, where they are plotted on an interactive chart, 

allowing the user to visualize spatial trends in the selected region over time.  As with 

the “temporal first” approach, the GridServer’s Python code uses masked NumPy 

arrays to perform this type of calculation.  The following code sample is an 

abbreviated version of the function that calculates all spatial grid statistics, using 
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mean as an example (Appendix I also contains additional Python code related to this 

approach): 

 
1    def get_spatial_values(self, data): 

2      rnd = 2 

3      spatial_vals = [] 
4      mdata = numpy.ma.masked_array(data, numpy.isnan(data)) 

5      spatial_vals.append(round(numpy.ma.mean(data), rnd)) 

6      return spatial_vals 

 

Explanation of this code sample: 

 
Line 1:  The Python function is defined.  The data argument represents a 

NumPy ndarray containing the input grid range selected by the user. 

 

Line 2:  A value is assigned to a variable used for rounding the final output 

values.  In the full Python function this variable is set conditionally based on the 

climate parameter being processed (precipitation is calculated to two decimal 

places, while temperature variables are calculated to one decimal place). 

 
Line 3:  The spatial_vals list is initialized to hold the final spatial output 

values, which will be indexed identically to the data ndarray holding the input 

grid data. 

 

Line 4:  As previously described in the “temporal first” code explanation, a 

masked NumPy array is created from the input grids in the data ndarray. 

 
Line 5:  The NumPy function numpy.ma.mean is called to calculate the mean on 

the masked ndarray produced in the previous line.  Note that in contrast to the 

mean calculation in the “temporal first” code explanation, this function call does 

not define an axis argument.  By excluding the axis argument, the 

numpy.ma.mean function calculates the mean across all elements in the flattened 
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array (i.e., all grid cells across a single input grid).  This approach produces a 

single output statistic value for each processed grid (the full Python function 

loops over all input grids in the requested set, calculating the output statistic for 

each grid).  As each value is calculated, it is appended to the spatial_vals list. 

 
Line 6:  The spatial_vals list is returned to the calling function.  The data are 

packaged as part of the JSON return and dynamically plotted on the time-series 

chart on the GridStats results web page. 

 
Figures displaying the area-based output data rendered on maps and plotted in charts 

are provided in section 4.8.2. 

 

4.4.7.1.3 Calculating Univariate Statistics in Python 

By making requests to the GridServer, the GridStats system can calculate a number 

of univariate statistics (listed previously in Table 4.5) that are used for reporting and 

charting (point-based requests), and to calculate output grids representing the statistic 

of interest (area-based requests).  Sums are currently calculated only for 

precipitation-related point requests, and are performed manually by simply summing 

the values of the individual aligned grid cells over the requested time interval.  The 

basic min and max statistics are calculated for point requests by passing NumPy 

arrays into the Python-based functions numpy.min and numpy.max, respectively.  For 

area-based requests involving masked values, the numpy.ma.min and numpy.ma.max 

functions are used.  Range (the difference between min and max) is also calculated 
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only for point-based requests, but is available for both precipitation and temperature 

climate parameters. 

 

The mean of the input data is calculated via numpy.mean (for point requests) or 

numpy.ma.mean (for area requests), using Formula 4.1. 

 

�̅� =
∑𝑥
𝑛

 4.1 

 
Standard deviation is also calculated using a NumPy function.  All standard 

deviation requests (whether point- or area-based) calculate sample standard deviation 

using numpy.std (or numpy.ma.std for masked array operations).  PRISM climate 

grids are modeled using data obtained from irregular station networks (i.e., a sample 

across the CONUS), making sample standard deviation the correct statistic vs. 

population standard deviation.  An example function call looks like the following 

statement, where data is a masked NumPy ndarray: 

 
output = numpy.ma.std(data, ddof=1) 

 
The ddof=1 statement instructs numpy.ma.std to use n-1 degrees of freedom, thereby 

performing the sample standard deviation calculation (Formula 4.2). 

 

𝑠 = �∑(𝑥 −  �̅�)2

𝑛 − 1
 4.2 
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For point-based requests that calculate sample standard deviation, the standard error 

of the mean is also calculated.  This operation uses the scipy.sem function, as 

standard error is only available as a built-in function in the SciPy package, and 

calculates the statistic using Formula 4.3.  The function uses n-1 degrees of freedom 

by default, so no explicit ddof argument must be given. 

 
𝑆𝐸�̅� =

𝑠
√𝑛

 4.3 

  

4.4.7.1.4 Calculating PCA in Python 

Principal Components Analysis is the sole multivariate statistical technique currently 

available in the GridStats system.  This method was implemented for two reasons: 

(1) to identify and produce the principal components (as output grids) that explain 

the preponderance of variance in a set of input grids meaningful to the user based on 

climate parameter and spatial and temporal scales, and (2) to serve as a test method 

for implementing multivariate techniques in the GridServer and the GridStats output 

visualization tools. 

 

The heavily-commented Python function developed for calculating PCA is included 

in full in Appendix J, with key steps described here: 

 
1. As described in prior sections, a NumPy ndarray holds the input grids and is 

converted to a masked array for processing. 
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2. The initial ndarray is 3D (each grid’s cells are stored as subarrays of rows 

and columns).  It is flattened to 2D (each grid’s cells are then all stored in a 

single array, indexed to retain proper ordering) to prepare for further 

processing. 

3. The data are mean-centered (i.e., normalized by the mean).  This occurs 

across arrays and through columns. 

4. The data are scaled by standard deviation across arrays, through columns. 

5. The diagonalized covariance matrix of the mean-centered, scaled data is 

calculated across all subarrays.  This is possible since the arrays were 

flattened in step 2. 

6. Using the NumPy linear algebra module, the eigenvalues and eigenvectors of 

the covariance matrix are calculated. 

7. The eigenvalue and eigenvector arrays are index-matched to ensure they 

remain in the correct ordering associated to one another.  The eigenvalue 

array is sorted in decreasing order, and the eigenvector array is then sorted to 

match. 

8. The eigenvalues are converted to percentages of explained variance and are 

stored in a list. 

9. The principal components corresponding to each eigenvector are calculated 

using the formula described in Appendix J.  In short, the eigenvectors from 

the first column of the eigenvector array are calculated against the first set of 

input grids.  This is repeated across the columns of the eigenvector array.  

This formula is identical to the GRASS GIS approach used in the r.covar and 

r.pca modules (Neteler and Mitasova 2002, GRASS 2012). 

10. The 2D output array containing the component arrays is returned to the 

calling function, along with the indexed list of eigenvalues expressed as 

percentages.  The component arrays are processed into binary BIL grids, with 

one grid representing each component.  The eigenvalue percentages are used 

to list the variance explained by each component grid. 
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After processing is complete, the set of component grids is immediately available in 

the GridStats output web page, implemented as a selectable list that automatically 

loads a grid into the dynamic output mapping tool. Visualization of the principal 

components as grids is of questionable benefit, although grid cell values do have 

meaning relative to one another.  Each grid cell within a component grid contains a 

principal component score, which can be useful in interpreting the relative within-

component contribution of each grid cell to the variance of the input grid set 

explained by that component.  Grid cell values can be queried in the output mapping 

tool.  The set of component grids can also be exported as a .zip file and used as 

inputs in further analysis. 

 Data Output Products 4.4.7.2

Point-based (i.e., single grid cell) and area-based requests are handled by the 

GridServer, while requests spanning the entire CONUS grid extent are handled by 

the Biltools toolkit.  Table 4.6 lists the request types and related output products. 
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Table 4.6:  GridStats spatial scale request types and the possible data output products 
generated by each request type. 

 Data Output Product 

Spatial Scale Request Type BIL grid 
(full extent) 

BIL grid 
(partial extent) 

Data values as 
text (JSON) 

Point (single grid cell)   X 

Rectangular bounding box  X X* 
Area clipped by polygon 
boundary  X X* 

Full grid extent (CONUS) X   
* Data are returned as the univariate statistic output value calculated across all grid 
cells in the requested region (one data value per input grid). 
 

Each BIL output grid (for both full and partial extents) consists of a set of five files:  

A binary .bil file plus matching .hdr, .prj, .stx, and .aux.xml files.  PRISM BIL 

grids all use the following standard .hdr format (the example below represents a 

clipped region): 

 
BYTEORDER      I 

LAYOUT         BIL 

NROWS          269 
NCOLS          137 

NBANDS         1 

NBITS          32 

BANDROWBYTES   548 
TOTALROWBYTES  548 

PIXELTYPE      FLOAT 

ULXMAP         -122.433333334365 

ULYMAP         43.566666658865 
XDIM           0.00833333333 

YDIM           0.00833333333 

NODATA         -9999 

 

Point (single grid cell) and area methods return data values as text (JSON format).  

In the point method, two data arrays are embedded in the JSON return: (1) the set of 
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actual values for the selected climate parameter, extracted from the matching grid 

cell across all requested time-series grids, and (2) a set of summary statistic values 

(sum [precipitation only], range, min, max, mean, median, standard deviation, 

standard error) calculated across the set of data values in (1). 

 

The GridServer area methods embed one data array in the JSON return – the set of 

univariate statistic output values calculated across all grid cells in the requested 

region.  The statistic is calculated for each input grid by processing all grid cells in 

the requested region, such that one data value per input grid is returned.  The JSON 

return also includes a filesystem pointer to the output BIL grid produced via the 

“temporal first” calculation where the requested statistic was calculated through each 

grid cell, producing an output grid representing the statistic calculated over the 

requested time series. 

 

4.4.8 Website Design, Client-side Tools, and User Interaction 

The GridStats website uses a range of JavaScript-based client-side software tools that 

perform a number of functions, including: 

 
• enhance user interaction with the website 

• validate menu selections and notify user of any issues prior to submission 

• dynamically load menu options based on a selection in another menu 

• communicate with the server to query data and update the user’s view 

• constrain selection options based on time series limitations and spatial scale 
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• set key variables sent to the server on submission 

• provide dynamic, interactive mapping and charting tools on results pages 

 

 Input Settings 4.4.8.1

The settings page of the GridStats website (Figure 4.4) gives the user control over all 

spatial and temporal scale settings, location of interest, and selection of the desired 

climate parameter and statistic of interest.  Selections are made primarily via a series 

of radio buttons and dropdown menus (Figure 4.5), although point coordinates may 

be entered directly into text entry boxes.  The values (and in some cases, availability) 

of the selectors depend upon selections made in other areas of the web page (i.e., 

Summary Stats are only available for point-based requests).  That logic is controlled 

on the client-side using JavaScript-based code.  All parameter settings are saved on 

the user’s computer using cookies and reloaded the next time they visit the website 

(or even when they simply click the browser’s Back button).  This makes it easy for 

the user to switch to a different data time series, for example, while keeping all other 

parameter settings constant. 

 

4.4.8.1.1 Menu Selections and Validation 

The available climate parameters are largely an independent set of selections, with 

the exception that mean temperature data are only available on monthly and annual 

time scales.  When a user clicks the radio button next to “Mean Temp (tmean),” the  
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Figure 4.4:  The GridStats settings page, ready for request submission.  A (yellow) 
point has been selected at the center of the image, in Glacier National Park.  The 
selected climate parameter is precipitation, and the selected temporal scale is all 
months in the range January 2001 to December 2010.  “Summary Stats” is selected 
as the default statistic of interest, since this is a point-based request.  A larger version 
of the settings section is included in Figure 4.5. 
 



194 
 

 

 

 

Figure 4.5:  Settings section of the main GridStats web page.  Spatial scale menus are dynamic, and zoom the map directly to 
the selected polygon when a selection is made.  Extensive client-side validation code checks selected values prior to 
submission.  In this example, the area-based statistic selections are currently disabled since the “Point” method is selected (in 
that case, Summary Stats is selected by default). 
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“All days in range” row in the Temporal Scale section is automatically disabled.  

Clicking any of the other climate parameter radio buttons causes the daily data 

selectors to be automatically re-enabled.  Although it is possible to achieve this 

functionality by writing the controls directly in low-level JavaScript, it can be 

handled in a much more logical and straightforward manner using the jQuery library 

(jQuery 2012).  Every selector on the settings page contains a unique identifier (ID) 

– jQuery allows the manipulation of any object’s properties and attributes by 

obtaining a handle on the object’s ID and manipulating the document object model 

(DOM) to make the necessary change in the user’s browser.  This approach is used 

throughout the GridStats website.  jQuery statements to disable and enable a selector 

look like these examples, taken from the JavaScript code for the settings page: 

 
$('#days_in_rng').attr('disabled', 'disabled'); 

 
$('#days_in_rng').removeAttr('disabled'); 

 
Additional JavaScript and jQuery code samples are included in Appendix K. 

 

In the Temporal Scale section, all of the dropdown menus are filled with years, 

months, and days by PHP functions when the page loads.  The menu-filling functions 

determine any date limits based on internal settings read from a configuration file 

where those limits are defined.  For example, daily precipitation data are currently 

available from 1980 onward, while daily temperature data are available from 1970 

onward.  When the user selects “Precip” as the climate parameter, the start year and 

end year dropdown menus in the “All days in range” row are automatically modified 
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to disable the years 1970-1979 as selections.  This is handled via custom jQuery 

code, using the .change() handler that fires events (e.g., a function call to the code 

that disables years 1970-1979) whenever a user makes a selection on the menu of 

interest. 

 

Date handling and validation in the settings page is extensive and complicated, since 

many possible cases must be accounted for in the logic.  Some of the cases that are 

addressed using jQuery and custom date comparison functions include: 

 
• If the current year is selected in a monthly-related temporal scale, the current 

month and any future months in the current year must be disabled. 

• If the current month is August and the user has already selected “Nov” as the 

month of interest, and the user then selects the current year, the month must 

snap to the last available month, which would be “Jul” in this case. 

• The “day” menus range 1-31 and must disable any day options that do not 

exist in the currently selected month (e.g., if “Jun” is selected, the day “31” 

must be disabled). 

• If the currently selected year is a leap year, and the currently selected month 

is “Feb,” then day 29 must be made available as a selection, while it is 

disabled for Feb in non-leap years. 

• If the selected start year (or year/month, or year/month/day) is later than the 

end year (or year/month, or year/month/day), the user must be alerted so that 

they can fix the mistake prior to submission. 

 
An example of a date validation alert is displayed in Figure 4.6.  The website code 

handles known date limitations (e.g., no day 31 in June) by disabling relevant 
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options using jQuery.  Otherwise, the user has full control over menu selections, and 

any mistakes (e.g., start year = 2010, end year = 2002) are caught by the validation 

framework code.  This level of structured client-side validation captures any request 

configuration issues on the client-side prior to submission, greatly limiting errors on 

the server-side, which can cause problems that are more difficult to report to the user 

and potentially resource-intensive for the processing server. 

 

 

Figure 4.6:  Example of a date validation alert where, for “All days in range,” the 
user has selected a start date that is later than the selected end date.  The validation 
code will catch any such error and continue to alert the user until a valid selection is 
made. 
 
 
4.4.8.1.2 Map-based Selection 

The interactive mapping tool on the input settings page is driven by custom code 

based around the open source OpenLayers JavaScript API.  The map includes the 

four standard Google Maps base layers (set to Terrain by default), and allows the 

user to navigate to any location in the CONUS.  A location of interest smaller than 
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the full CONUS extent can be selected by (1) clicking on the map to identify a point 

(previously shown in Figure 4.4), (2) entering longitude and latitude coordinates 

directly, or (3) selecting a region of interest using one of four available methods: 

 
• Drawing a box on the map to denote a rectangular region of interest. 

• Selecting a state from the CONUS. 

• Selecting a county within a CONUS state. 

• Selecting a watershed (8-digit USGS HUC) within a CONUS state. 

 
The OpenLayers-based map interprets a mouse click-drag event as a panning 

movement (e.g., panning the current view from east to west).  If the “Draw box on 

map” radio button is selected, the user can select a bounding box while holding down 

the Shift key and performing a click-drag event (Figure 4.7).  The drawn box 

remains on the map and dynamically calculates the estimated area of the box in km2, 

which is printed inside the box.  A different box can be drawn anywhere, erasing the 

previously-drawn box, and clicking to any other spatial scale selection method 

automatically erases the box from the map view (as well as from the behind-the-

scenes code setting the bounding box coordinates). 
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Figure 4.7:  Example of a bounding box selection drawn on the input settings page 
mapping tool.  The box remains on the map after it is drawn (until erased by another 
selection), and contains the calculated area for the bounded region (64,812 km2 in 
this example). 
 

The code that enables the selection of a region based on a polygon is more complex 

than for other selection types.  When a selection is made in the “State” menu, for 

instance, the map zooms directly to the selected state, displays it as an outlined and 

shaded polygon, and sets information in the background to prepare the related 

GridServer request.  This is accomplished using a series of client-side and server-

side requests (the latter performed asynchronously via an AJAX approach): 

 
1. Selection information is sent to a JavaScript function that processes the 

request and uses the jQuery $.getJSON() function to make a server-side 

request to a PHP script. 
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2. The PHP script determines the request type, calls the proper database query 

function, queries the database to retrieve the geometry for the requested 

polygon, and converts the geometry to a JSON-encoded text string. 

3. The $.getJSON() function on the client-side receives the JSON-encoded data, 

sets layer visibility on the map, zooms the map to the extent of the polygon, 

and renders the polygon on the map. 

4. Client-side code also assigns the table name and unique feature ID to a set of 

inputs used to prepare the GridServer request. 

 
The County and Watershed menus require an extra layer of asynchronous queries.  

When a state is selected in the first menu, the adjacent menu is updated dynamically 

via an AJAX database query (i.e., when Georgia is selected, only the counties that 

exist in Georgia are displayed in the second menu).  The same approach is used for 

the Watershed menu, with the added complexity that the watershed name and HUC 

code menus are linked – when a selection is made in one of them, the other menu 

updates to match.  This allows the user to select a watershed either by name or by 

HUC code.  Figure 4.8 displays two examples of selected polygons.  Any watershed 

polygon that intersects with the selected state boundary is included in the 

dynamically-built menu list, using a spatial database query to determine the 

intersecting polygons ($state is passed in to the query as a variable): 

 
SELECT DISTINCT h.gid, h.huc_name, h.huc_code FROM gis.huc250k h, 
gis.states s WHERE s.state_name = '$state' AND 

ST_Intersects(s.the_geom, h.the_geom) ORDER BY h.huc_name, 

h.huc_code; 
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Figure 4.8:  Examples of polygon selection on the input settings page mapping tool.  
Top:  Deschutes County, Oregon is selected via the “County” menu set.  Bottom:  
The Pine Watershed (HUC #04080202) in Michigan is selected via the “Watershed” 
menu set.  The bottom image also displays the layer switcher, in which the 
nationwide 8-digit HUC layer is toggled for display as a spatial reference aid, and the 
rest of the available feature layers and Google Maps base layers are visible. 
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 Results Pages 4.4.8.2

After submitting a request on the settings page, the GridServer (or Biltools) returns 

the output data to a single results page.  Depending on the request type, different sets 

of PHP code are dynamically included in the results page to render four different 

result page types: (1) point, (2) univariate area, (3) multivariate (PCA) area, (4) 

entire grid.  Point results include a statistics and input settings report, plus a 

dynamically-generated interactive chart.  Area results include split, synchronized 

dynamic maps containing rendered, classified input and output grids, as well as an 

interactive chart.  Entire grid results include split maps as in the area results, but do 

not include an interactive chart. 

 

4.4.8.2.1 Dynamic Charting 

The point-based and area-based results pages include a dynamically-generated 

interactive chart.  The charts are built from server-side result data passed to client-

side code, using the open source Highcharts JavaScript library (Highcharts 2012).  

Highcharts is highly configurable and flexible and supports a wide range of chart 

types, many of which can be combined as needed into a single chart.  In the 

GridStats system, a mix of line, spline, and column chart types are used, depending 

upon the climate parameter and data series type. 

 

In addition to the data points, basic statistics are plotted on each chart as aids in 

understanding the data.  The standard deviation of the plotted data is drawn as a solid 
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line, while dashed lines representing ±1 standard deviation (SD) are plotted above 

and below the mean line.  Figure 4.9 displays an example chart generated for a point 

in Glacier National Park, MT.  The chart contains minimum temperature time-series 

data points plotted as a spline for the months January 2001 to December 2010.  The 

chart is fully zoomable along the x-axis, giving the user the ability to view a section 

of a dense chart in more detail.  Data values for each point can be viewed by 

hovering over the chart with the mouse cursor.  The legend is interactive, allowing 

the user to toggle line visibility on a per-data-series basis, and collapsible, giving the 

user the ability to view the entire chart area if any data points happen to be obscured 

by the legend.  When toggling a data series off, the Highcharts code automatically 

rescales the y-axis to maximize the vertical spread of data in the chart area.  This can 

also be helpful for gaining a better sense of the shape of a data line (i.e., by turning 

off all data series except for one, more detail can often be viewed in that remaining 

series). Figure 4.10 displays a zoomed-in view, with the mean and mean ±1 SD lines 

toggled off. 

 

Centered moving averages are also plotted on the chart, allowing the user to view a 

smoothed representation of the data signal over various moving average time 

windows.  Each time series includes two lines representing different centered 

moving average windows:  10 and 30 for daily data, 5 and 12 for monthly data, and 5 

and 10 for annual data. 
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Figure 4.9:  Monthly minimum temperature for the inclusive months from January 2001 to December 2010, for a point in 
Glacier National Park, MT.  The user can zoom into any section of the chart, and any data series can be hidden or shown by 
clicking on the legend item to toggle visibility.  The legend is also collapsible to allow the user to view the full chart area. 
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Figure 4.10:  A zoomed-in view of the full chart in Figure 4.9.  The mean and mean ±1 SD lines have been toggled off in this 
view.  The Reset Zoom button appears any time the chart does not display the full data range.  The mouse cursor is hovered 
over the July 2006 data point, displaying the data value.  Hovering over either of the centered moving average lines displays 
their calculated values at each point. 
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The centered moving averages are calculated by different methods depending upon 

the moving average window parity.  The simplest case (when the moving average 

window is an odd number) currently applies only to the size 5 window used for 

monthly and annual data.  The case is relatively simple because the calculation sums 

the current windowed data value with the two adjacent data values on each side of 

the data value, and then divides by 5 to calculate the moving average at that point.  

Formula 4.4 displays the approach used for this particular case. 

 

𝑓(𝑡) =
(𝑦𝑡−2 + 𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1 + 𝑦𝑡+2)

5
 4.4 

 
Cases where the moving average window is an even number require a more complex 

method to ensure a centered average for each data point.  For example, using a size 4 

window, two data points could be used on the trailing side of the window, and one 

on the other (or vice-versa).  Using this approach, the moving average will never be 

centered over the current windowed data value.  To calculate a true centered moving 

average for an even numbered window, a more efficacious approach involves 

determining the moving average by calculating both cases; that is, for a size 4 

window, use two data points on the trailing side for case one, then two data points on 

the leading side for case two. 
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After performing those calculations, the two resulting values are then averaged to 

produce a centered value at time t, as displayed in Formula 4.5 (after Hyndman 

2010). 

 

𝑓(𝑡) =
1
2
�
𝑦𝑡−2 + 𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1

4
� +  

1
2
�
𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1 + 𝑦𝑡+2

4
� 4.5 

 
For the example of a size 4 window, Formula 4.5 reduces to: 

 

𝑓(𝑡) =
1
8
𝑦𝑡−2 +

1
4
𝑦𝑡−1 +

1
4
𝑦𝑡 +

1
4
𝑦𝑡+1 +

1
8
𝑦𝑡+2 4.6 

 

The coefficients in Formula 4.6 vary depending upon the requested window size – 

for a size 10 window, the inner and endpoint coefficients would become 0.1 and 

0.05, respectively, with 11 data values included in the centered moving average 

calculation.  In both even and odd window cases, the moving average is not 

calculated for the initial and final number of values in the data range equal to half the 

input window size (i.e., for a size 5 window, moving average values are not 

calculated for the first two and last two data points in the series, due to a lack of 

trailing and leading data for the moving window to capture at each end of the series).  

For odd window cases, a standard floor() function is used to determine the number of 

unusable values at each end of the data series (e.g., floor(win/2) where win=5 gives a 

value of 2). 
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Formulas 4.4 and 4.6 are implemented in the PHP code developed for preparing 

chart data (included in Appendix L).  Once time-series data are returned from a 

GridServer request, the code processing the output web page sends the data array and 

requested window size to the centeredMovingAverage() function, which calculates 

the centered moving average across the temporal chart range.  The function handles 

both even- and odd-window cases, and is therefore called twice to prepare the data 

used for plotting the two centered moving average lines included in each chart.  Once 

the data are prepared, the arrays are converted to text strings using the PHP 

implode() function, and passed to JavaScript for Highcharts to render as chart 

splines. 

 

4.4.8.2.2 Point Results 

 After the user submits a point-based request and the GridServer returns data from 

the stack of matching grid cells, GridStats takes the user to the point results page 

(Figure 4.11).  The top area of the page displays the input settings used for 

submitting the request, as well as information about the data series and selected 

climate parameter.  Returned grid cell values populate a table, which is horizontally-

scrollable to accommodate large data returns.  The GridServer returns output statistic 

values for min, max, mean, median, sample standard deviation, and standard error, 

all of which are included in a summary statistics report below the grid cell values 

table.  The website code sums the number of data values and calculates the data 

range from the min and max values, also included in the summary statistics report.  



209 
 

 

The bottom area of the point results page includes the dynamic chart, described in 

detail in the previous section (4.8.2.1).  The returned grid cell values are also used to 

draw the spline for the main data series on the chart. 

 

 

Figure 4.11:  Example results page for a point-based request.  Input settings, data 
series, grid cell values across the requested time series, and a table of summary 
statistics for those values are all included, in addition to the interactive chart. 
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The GridServer processes and returns point data requests very quickly – it can 

calculate point-based summary statistics through 1000 time-series grids and return 

the data values in less than a second (Table 4.7).  For the tests summarized in Table 

4.7 the GridServer was restarted between each request, forcing it to drop and 

reallocate grid file handles to eliminate any possible performance bias due to 

caching.  Random point locations and non-overlapping date ranges were also used 

(except for the largest request of 10,000 grids, for which a random point was used 

but overlapping dates were unavoidable).  GridServer requests for these tests were 

issued in this form (with new randomly-selected point coordinates inserted for each 

request), using the time and wget command-line utilities to measure query response 

time: 

time wget -qO test.txt "http://<server.domain>:<port>/ 

stats_point_days?lon=-104.48871&lat=38.76029&start=19800101 
&end=19800102&param=ppt" 

 

 
4.4.8.2.3 Area Results 

After an area-based request is processed, GridStats takes the user to the area results 

page (Figure 4.12), which includes different content depending upon the request type 

(PCA and “entire grid” returns are handled differently than other area-based results).  

All area result pages contain a report summarizing the input settings and some output 

information, including the centroid of the selected area (calculated in the spatial 

database) and the number of cells processed per grid. 
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Table 4.7:  Sample GridServer response times for varying temporal scales and 
number of grids.  Each processed request was point-based (i.e., requesting summary 
statistics), with precipitation as the selected climate parameter on a daily time scale. 

Requested date range 
(daily ppt data) 

Number of 
grids in 
request 

Initial 
response 
time (s) 

Average subsequent 
response time (10 at 

same location) (s) 

1980-01-01 – 1980-01-02 2 0.08 0.06 

1980-02-01 – 1980-02-10 10 0.13 0.06 

1980-03-01 – 1980-06-08 100 0.19 0.08 

1980-07-01 – 1983-03-27 1,000 0.97 0.21 

1983-04-01 – 1988-09-20 2,000 1.50 0.38 

1988-10-01 – 2002-06-09 5,000 3.84 0.77 

1980-01-01 – 2007-05-18 10,000 8.12 1.46 

 
 
All area result pages also contain a pair of interactive maps, with input grids on the 

left side and output grids on the right (Figures 4.12, 4.13).  When a user is taken to 

the results page, the grid representing the processed output polygon area is loaded in 

the Output Grid map window and both maps are automatically zoomed to the extent 

of that polygon.  Each interactive map is a distinct OpenLayers-based map window 

containing Google Maps base layers, the feature layer set also available in the input 

settings map, and all other standard controls.  However, the maps are synchronized 

so that all pan, zoom, and query operations that occur in one map window also occur 

in the other. 
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Figure 4.12:  Example results page for an area-based request (Linn County, Oregon).  
Mean precipitation for every February in the year range 1960-1990 was calculated as 
an output grid (i.e., over time – as viewed in the map), and the mean across each 
monthly grid was calculated, with the means charted below.
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Figure 4.13:  Map section of the results page for an area-based request.  The paired maps are synchronized for zooming, 
panning, and queries.  Base layers and overlays can be toggled independently, and the Input Grids map allows loading of 
grids used in the analysis.  In this example a point in Linn County, Oregon was clicked, returning the mean precipitation 
across all Februaries from 1960-1990 for that grid cell, with the actual Feb. 1982 value returned on the input map.
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This simplifies the process of comparing the output grid with any of the input grids; 

above the Input Grids map window is a dropdown menu containing a list of all input 

grids, and clicking any of those grid names loads the selected grid in the Input Grids 

map window.  By navigating around the maps and clicking any point, the underlying 

input and output grid values of the matching grid cell are displayed in map popups 

(Figure 4.13) that also contain the longitude, latitude, and elevation of that grid cell.  

An underlying digital elevation model (DEM) grid of the same spatial extent and 800 

m resolution is queried to obtain the elevation.  Additionally, opacity slider controls 

were added to each map as a visual aid for adjusting how much of the underlying 

base layer can be viewed through the rendered data grid. 

 

For these maps, point based queries are handled using an AJAX approach to avoid 

reloading the page for each query.  The grid files are queried directly by making a 

system call to the GDAL gdallocationinfo command-line utility, a raster query tool 

that retrieves a single grid cell value based on a longitude and latitude coordinate 

pair.  This utility is able to quickly index into a BIL grid and return a single cell 

value.  The same utility is used to query the underlying DEM grid. 
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The output grid calculated from an area-based request represents the “temporal first” 

calculation, in which each output grid cell represents the statistic calculated through 

all stacked input grid cells.  The GridServer also performs the “spatial first” 

calculation, whereby the output statistic is calculated across all cells for each input 

grid.  That output is available in an interactive chart (Figure 4.14), configured 

similarly to the other GridStats charts.  PCA results are displayed similarly to other 

area results, except that the chart is a histogram containing the percentage of 

variance explained by each principal component, and a dropdown menu is added 

above the Output Grid map, containing a selectable list of component grids arranged 

in descending order of variance explained (Figure 4.15).
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Figure 4.14:  Chart section of the results page for an area-based request.  The data series on this chart represents the “spatial 
first” calculation, in which for each grid, the mean is calculated across all grid cells to produce a single value.  That set of 
values is plotted as the data series on this chart.  Spatial trends in February mean precipitation across the selected area (Linn 
County, Oregon) for 1960-1990 can be viewed in this chart.  As with all other GridStats charts, the mean line, ±1 standard 
deviation, and centered moving averages are included.  
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Figure 4.15:  Map section of the results page for a PCA area-based request, displaying the result of a PCA run on monthly 
precipitation for the months January 1999 to February 2000, for the Lower Yuba Watershed, California.  The principal 
components are generated as output grids, with each component explaining a percentage of the variance included in the input 
grid set.  All component grids are made available in a dropdown menu for easy inclusion in the Output Grid map, with the 
percentage variance explained included in the list. 
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The GridServer processes and returns area request data remarkably fast, considering 

how many grid cells it is often tasked with processing in a single request.  It can 

calculate a statistic across a one-degree block (one degree of latitude and longitude, 

which includes 14,641 grid cells), processing this region across 100 time-series 

grids, and return the resulting output grid and “spatial first” data values in 2.2 

seconds (Table 4.8).  For the tests summarized in Table 4.8 the GridServer was again 

restarted between each request, forcing it to drop and reallocate grid file handles to 

eliminate any possible performance bias due to caching.  Disparate bounding box 

and polygon locations and non-overlapping date ranges were also used.  GridServer 

requests for these tests were issued in this form (with new randomly-selected 

bounding boxes or polygons selected for each request): 

 
Bounding box request: 

time wget –qO test.txt “http://<server.domain>:<port>/ 

stats_area_months?minlon=-122.43271&minlat=41.33694&maxlon= 
-121.29877&maxlat=43.56572&start=19820101&end=19880101& 

param=ppt&pstat=mean” 

 
Polygon request: 

time wget –qO test.txt “http://<server.domain>:<port>/ 
stats_area_months?start=19820101&end=19880101& 

param=ppt&pstat=mean&stname=gis.counties&stid=782” 
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Table 4.8:  Sample GridServer response times for varying temporal and spatial scales.  Each request was area-based (using 
mean as the statistic), with precipitation as the selected climate parameter on a monthly time scale.  The response tasks 
include calculating an output grid and writing it to the filesystem, and calculating and returning the “spatial first” data values. 

Requested date range 
(monthly ppt data) 

Number of 
grids in 
request 

Spatial extent 
Number of 

cells processed 
per grid 

Initial 
response 
time (s) 

Average subsequent 
response time (10 at 

same location) (s) 

Jan 1920 – Feb 1920 2 1-degree box 
(-120,43 to -119,44) 14,641 0.16 0.10 

Jan 1922 – Oct 1922 10 1-degree box 
(-81,37 to -80,38) 14,641 0.46 0.19 

Jan 1930 – Apr 1938 100 1-degree box 
(-94,41 to -93,42) 14,641 2.22 1.24 

Jan 1940 – Apr 1948 100 3-degree box 
(-100,40 to -97,43) 130,321 6.78 5.72 

Jan 1950 – Dec 1951 24 Aucilla Watershed, 
Georgia (03110103) 8,505 0.67 0.33 

Jan 1960 – Dec 1961 24 Otter Watershed, 
Vermont (02010002) 10,032 0.71 0.41 

Jan 1970 – Dec 1971 24 Wallowa County, 
Oregon 20,384 1.13 0.43 

Jan1980 – Dec 1981 24 Elko County, 
Nevada 81,266 1.37 0.96 

Jan 1990 – Dec 1992 36 Pennsylvania 214,900 2.97 2.69 

Jan 2000 – Dec 2002 36 California 1,405,430 19.50 16.32 
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4.4.8.2.4 Data Export 

The statistical output and data products resulting from GridStats requests can be used 

for reports, publications, or further analysis.  The GridStats system is a useful toolkit 

for generating grids representing an output statistic for either a defined region or the 

entire CONUS, as well as for generating statistical summaries for a particular point.  

When a grid (or set of grids, in the case of PCA) is produced as output, either by an 

area or entire grid request, the grids are stored in a temporary filesystem location 

made accessible to the web mapping tools.  To download output grids, the user can 

simply click the “Save a local copy” button, which triggers a function that collects 

the related files and delivers them to the user as a downloadable compressed .zip file. 

 

Data values used for generating the interactive charts are also available for 

download.  Every time a chart is created, the data are fed into a function that 

generates a comma-separated value (.csv) text file.  When the user clicks the 

“Download chart data” button, the file is delivered to their browser.  After saving the 

file on their computer, the user can simply open it in a spreadsheet program such as 

Microsoft Excel, which will automatically import data in .csv format.  Data values 

and moving average values are included in the .csv file.  Moving averages are not 

particularly easy to calculate in Microsoft Excel; exporting them from GridStats 

provides an easy way to import them to a spreadsheet for further exploration. 
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4.5 Discussion 

The system developed in this study integrates a wide range of components for the 

purpose of performing fast statistical processing and visualization of PRISM climate 

grids in a web-based environment, and is designed in a manner that gives the user 

simple yet effective controls for defining a request, plus helpful, interactive tools for 

interpreting and exploring the output.  As system usage and scope expands, 

additional consideration must be given to system features, optimization, and 

scalability.  This section discusses those issues and mentions some ideas for possible 

system expansion. 

 

4.5.1 Grid Statistical Calculations 

The intent for the initial phase of GridStats development was to design a working 

system that included a few basic statistical processing functions, as well as one more 

complicated multivariate technique (PCA) as a proof-of-concept.  Those 

development goals were met and have been successfully tested across a range of 

spatial and temporal scales, using a variety of processing methods.  The 

implementation of those statistical methods in the grid processing framework lays 

the groundwork for adding additional univariate and multivariate statistical 

techniques. 

 

Advanced statistical techniques under consideration for inclusion in the GridStats 

system include linear regression and k-means clustering.  Both techniques have 
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established Python methods in NumPy and SciPy, and could therefore be integrated 

into the current system framework.  Another possible feature addition is 

inhomogeneity testing of climate data.  An example of a temporal climate 

inhomogeneity is urban areas acting as heat sources, where changes in land use (i.e., 

rural to urban) over time have caused local warming that is potentially not 

representative of the surrounding rural region.  Changes in weather station locations 

or instrumentation are examples of inhomogeneities commonly encountered in the 

climate record.  The goal of testing would be to determine whether any non-climatic 

inhomogeneities exist in a data series defined by particular temporal or spatial scales, 

and to quantify the magnitude of such an inhomogeneity. 

 

4.5.2 Optimization 

Extensive testing of data formats for containing the PRISM climate grids was 

performed prior to this project, resulting in the acceptance of BIL as the standard 

PRISM grid format and conversion of all existing climate grids from ASCII Grid 

format to BIL (a procedure made very efficient by the gdal_translate command-line 

utility).  The BIL format offers the best performance for fast grid access via both 

locally-installed GIS software and server-based grid processing services.  The 

PRISM Climate Group and NACSE have developed Python-based grid processing 

utilities for the GridServer and other tools that utilize NumPy ndarrays for fast 

programmatic processing of PRISM climate grids.  This method is already highly 

optimized and will likely remain in place as a core technique going forward.  
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However, it should be noted that the PostGIS Raster project (PostGIS Raster 2012) is 

under active development and may offer unique possibilities for storing PRISM 

climate grids in the database and querying subsets of data from them.  Although it is 

unlikely that this would be a faster approach than reading BIL grids directly into 

NumPy arrays, it merits attention going forward. 

 

The web server machine is optimized for fast operation and multithreaded processing 

of requests.  Performance gains might be achieved by recompiling the MapServer 

CGI executable, stripping out any features unnecessary for GridStats operations.  

The database server is optimized for fast reads, with testing performed on key 

parameter adjustments in the postgresql.conf file depending upon available system 

memory and other specifications, and the best-performing values assigned to those 

parameters.  Spatial queries and operations in the database can be resource-intensive, 

but all spatial tables used in the GridStats system contain spatial GiST indexes on the 

geometry columns, as well as standard B-tree indexes on any regularly-queried non-

spatial fields (gid, huc_code, etc.).  Again, the next step for database optimization 

would be hardware upgrades, which are planned in the coming months. 

 

The grid processing server is dedicated to processing requests for climate grids and is 

already optimized for fast performance for that purpose.  Further optimization of the 

grid processing server would entail hardware upgrades (faster CPU, more CPU 

cores, and additional memory).  However, optimization of the existing 
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Python/Pyramid/paster framework running the GridServer may be possible.  In 

particular, performance gains are likely possible by implementing the nginx HTTP 

server (Nginx 2012), a fast server with support for FastCGI and uwsgi that uses an 

event-driven architecture and a very small memory footprint.  Nginx also supports 

simple load balancing and fault tolerance, potentially enabling multiple GridServer 

instances to be running simultaneously on the same server, with the load balancer 

shuttling requests to GridServer instances as needed.  Initial testing of nginx in the 

GridServer system realized twofold gains in requests processed per second vs. the 

paster server.  As usage of the GridStats system expands, the framework will likely 

be upgraded to use nginx as the underlying HTTP server on the grid processing 

machine(s). 

 

4.5.3 Scalability 

The PRISM climate grid set currently contains over 49,000 files.  The dedicated grid 

processing server has a file handle limit of 65,536 set in the /etc/security/limits.conf 

file.  The server has a maximum open file limit of 6,515,139 so there is plenty of 

headroom available for increasing the GridServer allocation; the limit will indeed be 

increased as more grids are added to the filesystem.  However, each instance of the 

GridServer ties up the number of file handles in the limit (65,536).  If 20 instances of 

the GridServer are running in an nginx configuration, and the file limit has been 

changed to 131,072 (for instance), then 2,621,440 file handles will be claimed by 

GridServer instances alone.  While this still provides adequate headroom for multiple 
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instances of the GridServer running simultaneously, it is a potential consideration as 

the collection of PRISM climate grids continues to expand, along with increased 

demand for statistical processing. 

 

The bulk of the processing load takes place on the grid processing server.  With their 

current hardware specifications and software configurations, the web server and 

database server can handle a significantly higher level of GridStats requests.  If 

additional grid processing capability is needed due to increased demand, or the 

necessity arises for running very computationally intensive statistical calculations 

over large spatial and/or temporal scales, additional grid processing machines may 

be added to the system architecture.  In this scenario, a load balancer would be 

placed in front of the grid processing servers to manage requests among them based 

on current processing load and queued requests.  One of two disk configurations 

would be utilized: (1) mirror a full local copy of the PRISM climate grids on each 

grid processing server, or (2) divide the grids among the grid processing servers, 

using the load balancer to route requests to the proper server based on the temporal 

or spatial parameters used to divide them among servers. 

 

As demand for services increases, another solution is Amazon’s EC2 (Amazon EC2 

2012).  Amazon’s EC2 supports unlimited amounts of distributed processing at a 

reasonable cost, although implementation and management of the system would 

require significant retooling of the current framework.  Grid-based processing 
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represents another possibility for scaling; that is, processing tasks using a scientific 

grid to perform distributed computing (e.g., Giuliani et al. 2011).  However, PRISM 

currently has access to a computational cluster that could be expanded to handle 

additional load, which would likely be considered before a distributed solution, 

including the development of a parallel processing approach to handle multiple grid 

calculations. 

 

4.6 Conclusion 

The GridStats system represents a unique web-based approach for calculating 

PRISM climate grid statistics over varying spatial and temporal scales.  It calculates 

statistics across the highest resolution PRISM climate grids available (800 m), at the 

highest temporal scale available (daily).  Successful design, implementation, and 

testing of the GridStats system have demonstrated the effectiveness of: 

 
• Using a web-based interface as a front-end to powerful grid processing 

software components. 

• Accessing the GridServer as a fast and reliable system for performing 

statistical calculations across multiple grids, and extending the GridServer 

codebase to perform additional methods such as area-based calculations. 

• Creating custom tools using open source software such as Python, NumPy, 

and GDAL to perform fast processing of large multidimensional gridded 

datasets. 

• Using custom map-based tools and a menu validation system for simplifying 

the user experience of defining temporal and spatial scales for analysis. 
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• Dynamically building map- and chart-based interactive visualization aids for 

further exploration of output data. 

 

The GridStats system and the GridServer will scale effectively as additional time-

series grids are added to existing PRISM climate parameters grid sets and as new 

climate parameter grid types are added in the future.  Dedicated hardware, a fast 

network, hardware and software optimization, and continued development will 

ensure the reliability of the system and keep it up-to-date as data products and 

software packages are added and improved. 

 

The GridServer is designed in a modular fashion, making it relatively easy to add 

statistical methods.  Additional methods and visualization techniques will be added 

as tool usage increases and user feedback is incorporated. 
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Chapter 5:  Conclusion 

This dissertation explored project-based methods of handling spatiotemporal data 

and examined them within a web-based context, considering five related aspects:  

Storage, representation, processing, analysis, and visualization.  By their nature, 

spatiotemporal data are multidimensional (i.e., the “space-time cube”), requiring 

specialized approaches in their manipulation and display.  Challenges posed by the 

handling of spatiotemporal data in this context are not insurmountable, but it is 

difficult to generalize solutions to any of the five aspects given the relative 

heterogeneity of the data and their inherent complexity.  However, this dissertation 

found that it is possible to develop methods for handling spatiotemporal data using 

targeted solutions, and generalize the resulting methods within the category of data 

under consideration (e.g., the PRISM climate grids).  For instance, the grid 

processing system described in Chapter 4 was written in a generalized manner that 

could extend to any set of input grids with a regular extent.  With additional 

development, the grid processing system could likely be modified to work with sets 

of input grids that vary in spatial extent.  The web-based data exploration and 

visualization framework described in Chapter 4 is already developed in a generalized 

manner that would likely need no further modification to work with additional 

datasets. 

 

The web browser is a viable application platform for accepting user input and 

enabling the exploration and visualization of output, particularly when augmented by 
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client-side libraries and toolkits that enable the development of rich internet 

applications (RIA).  As a common user interface that is able to broker client/server 

communication, the web browser facilitates the automated processing of 

spatiotemporal data based on user input, calling any set of server-side functions 

necessary to process the data according to the user’s request.  This paradigm is 

extensible – new server-side methods can be added and called with minimal changes 

to the client-side codebase. 

 

5.1 Web-based Approaches and New Technology 

At the outset it was unclear whether the proposed projects could be fully developed 

and implemented within a web-based platform.  Standard web pages did not provide 

enough client-side flexibility and support for asynchronous client/server interaction 

to support the complexity required by the user interfaces, and many of the now-

popular JavaScript libraries enabling advanced functionality were under 

development and not yet well-known.  The advancement of web technology moves 

at a fast pace; project development plans were altered several times as client-side 

software technology advanced during the course of the dissertation.  Although low-

level JavaScript code could be written to perform many of the functions enabled by 

client-side software tools and methods used in this project, their availability made the 

development of RIA much more practical and feasible.  Chapters 3 and 4 

demonstrate RIA that use rich client-side JavaScript libraries such as OpenLayers 
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(2012), jQuery (2012), and Highcharts (2012) for data retrieval, processing, and 

visualization. 

 

A number of next-generation web technologies are currently under development.  

The nascent but quickly-growing category of rich JavaScript application platforms 

such as Backbone (2012) and Meteor (2012) will enable next-generation 

development of RIA.  These platforms support the development of entire 

applications in JavaScript, with the same APIs available on both the client and 

server, which enables tight communication and synchronization between the client 

and the server.  Also central to the advancement of RIA is HTML5 (2012), the fifth 

revision of the HyperText Markup Language standard, which includes new syntactic 

features such as <video> elements, integrates scalable vector graphics (SVG) 

support, and obviates the need for a server-side web software framework such as 

Adobe Flash or Microsoft Silverlight. 

 

Although initial development of RIA can be more complex than for standard internet 

applications (Toffetti et al. 2011), the benefits of asynchronous client/server 

interaction, minimized bandwidth usage, sophisticated user interfaces, and flexibility 

and extensibility for future upgrades makes the RIA approach an attractive option.  A 

great deal of custom client-side code was developed for the projects described in this 

dissertation.  Although new client-side and RIA technologies may supplant some of 
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the software packages used in these projects, the core codebase should remain 

adaptable and endure as changes are made to the underlying frameworks.   

 

5.2 Automated Data Processing 

Automated data processing is an important element in the group of procedures that 

enable real-time web-based analysis and visualization of spatiotemporal data, but 

generalization of server-side data processing code poses a challenge.  In the projects 

described in Chapters 2-4, specialized server-side code was developed to perform 

automated data processing tasks.  It is not unusual to develop specialized code for 

handling particular processing tasks; however, the challenge lies in designing the 

code in an extensible fashion, so that additional methods can be added without 

extensive code rewrites.  The GridServer, described in Chapter 4, is developed in this 

fashion – additional methods for processing PRISM climate grids over varying 

spatial and temporal scales can be developed and “plugged in” to the system. 

 

In some cases making direct system calls to server-side functions makes sense; 

Chapter 2 demonstrates an example of this approach, which works well for snapping 

a selected data window to an existing bathymetry grid, for example, as the user 

moves through the interface one tab at a time.  However, a typically more robust 

approach leverages the client/server architecture by using a server-side web server 

gateway interface (WSGI) framework such as the Python-based Pyramid (2012).  

This type of framework facilitates the direct execution of specialized server-side 



238 
 

 

Python processing code and can be designed to return the output as a JavaScript 

object notation (JSON) object via a hypertext transfer protocol (HTTP) call for 

further analysis and visualization.  This approach is used in Chapter 3, where, using 

an asynchronous JavaScript and XML (AJAX) approach, a map click creates a call 

to a server-side function that retrieves water depths in a single grid cell across all 

time steps and returns a JSON object that is processed on the client-side to 

automatically update the interactive chart.  Chapter 4 describes an approach where 

HTTP-based requests are sent to the server to process point- or area-based requests 

for statistical analysis of climate grid data over time.  The resulting data are returned 

to the client as a JSON object, which is used to update interactive map-based and 

chart-based visualizations. 

 

5.3 Spatiotemporal Data Representation and Visualization 

Chapter 2 describes the time-series output data format produced by the Tsunami 

Computational Portal (TCP) modeling process – the output data are written to a 

binary file containing water depth values at each time step.  In essence, the 

spatiotemporal data stored in this two-dimensional (2D) file are arranged in the 

“temporal snapshot” representation.  Similarly, the PRISM climate grids described in 

Chapter 4 each represent a temporal snapshot on daily, monthly, or annual scales.  In 

Chapter 3, the simulation framework generates time-series data representing the 

movement of each simulated individual across all time steps.  Those data are written 
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to a spatial database, with each record representing an individual’s status and 

location at that time step. 

 

The binary time-series files described in Chapters 2 and 4 represent temporal 

snapshots by default.  Although the project described in Chapter 3 could possibly 

store temporal information using an object-oriented identity-based change approach 

such as Hornsby and Egenhofer (2000), or a more general atomic representation such 

as the one described by Goodchild et al. (2007), the temporal snapshot approach is a 

straightforward and efficacious representation that satisfies the database query and 

web interface requirements.  The snapshot data are properly indexed in the spatial 

database (both B-tree and spatial generalized search tree indices are automatically 

created on the necessary columns), resulting in the very fast execution of temporal 

queries to display data in real-time animations and other visualizations in the web 

interface. 

 

One of the primary study goals was to automatically generate web-based 

visualizations from output data products.  The projects described in Chapters 2-4 

each generate different types of visualizations, from non-interactive tsunami 

propagation animations (Chapter 2), to interactive animations overlaid on a map-

based tool with a linked chart (Chapter 3), to synchronized, map-based visualization 

of statistical output combined with an interactive chart (Chapter 4).  The animations 

produced in Chapter 2 occur as an automated server-side process.  All visualization 
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tools in Chapters 3 and 4 were built using JavaScript-based code developed as part of 

the overarching rich internet applications (RIA) approach, and enhanced by dynamic 

server-side processing of spatiotemporal data. 

 

5.4 Summary 

Rich internet applications, such as the web-based interfaces described in Chapters 2-

4, represent a viable alternative to traditional locally-installed software applications 

for specific tasks.  While RIA will likely never replace full-featured software 

applications such as ArcGIS (2012), they can (i.e., Chapter 4) provide specific 

processing functionality that takes advantage of real-time client/server architecture to 

quickly produce and display output in an interactive tool.  In this sense, the web 

browser is an equalizing application that provides a common user interface platform 

and is available to anyone with a computer and an internet connection. 

 

Spatiotemporal data, which are inherently multidimensional, are well-suited for 

targeted server-side processing and analysis tools.  Their complexity and typically 

large storage size on disk can be prohibitive to manage in a local setting.  Server-side 

processing of the data leverages fast data access and high-performance hardware to 

perform the operation remotely and deliver just the output product to the client.  

With careful planning, server-side processing of spatiotemporal data can be 

automated, with the automation developed in a manner generalizable to other data 

types or disciplines.  
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Appendix A:  Conversion of Gridded Bathymetry ASCII (xyz) Datasets to 
Spatial Database Tables 

Gridded bathymetry and coastal topography datasets used in the Tsunami 

Computational Portal were typically obtained as ASCII text files in “xyz” (or 

similar) format.  These text files contain space-delimited values of longitude, 

latitude, and seafloor depth in m.  The ASCII text must be parsed into a format that 

can be ingested into the spatial database (with added information of a numeric ID 

value and Cartesian x and y grid values).  The Perl script below reads xyz text files 

and converts them to a series of input statements that are written to a file, which can 

be ingested directly by the spatial database.  The script also generates a GiST index 

to help maximize efficiency of spatial queries, and performs other table indexing and 

cleaning operations. 

 

A modified version of this script that writes records directly to the database was also 

developed, but runs more slowly than the script below.  The PostgreSQL COPY 

command was also explored as an alternative to INPUT statements, but COPY 

simply streams data and cannot process function calls (e.g., GeometryFromText() to 

create  point objects).  Many scripting options exist, but the script below sufficed for 

all grid loading operations. 

 
#!/usr/bin/perl 

# 

# xyz2sql.pl 

# 
# This script parses space-delimited text files in xyz or yxz 

# format, such as bathymetry data.  The text file will be parsed 
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# into an SQL file that can be ingested into a PostGIS-enabled 

# PostgreSQL database by running a command such as: 

# 
#    psql –h <host> -d <your_database> -f <sql_output_file> 

# 

# as long as you have write permission on that database. 

# 
# This script also adds grid-based x and y values (0 0, 0 1, 0 2, 

# etc). It requires a "unit" value to define how many rows in the 

# text file constitute a unit (row or column) of the grid.  This is 

# dependent upon your data, so you will need to manually take a 
# look at your text file to determine this value.  In my case I was 

# dealing with text files where a block of 500 text rows had a +/- 

# constant latitude, with longitude increasing.  At the end of 500 

# rows, the latitude changed to a more-or-less fixed value, and the 
# longitude started over at the lowest value.  So, my "unit" value 

# was 500. 

# 

# The script takes a number of command line arguments, which can be 
# reviewed by running the script with no arguments.  The script 

# creates the necessary table and geometry column, as well as a 

# GiST index and indexes on the grid x & y columns. It also does a 

# VACUUM ANALYZE on the table. 
 

use strict; 

use warnings; 

 
# disable command buffering, so that 'Processing....done' works 

$| = 1; 

 

if(scalar(@ARGV) != 8) { 
die " 

  Usage: xyz2sql.pl <input file> <input format> <unit> <db> <table> <geom> 

<srid> <output file>\n 

  <input file>  Name of input text file (with path if outside current 
directory) 

  <input format>  Must choose one of [xyz|yxz|zyx|xyzxy|xyzyx] 

        Note:   xyzxy and xyzyx refer to data like 311 0 580 128.34445 

34.28819 
                where x and y refer to grid coordinates. 

                Grid coordinates MUST be the first xy pair, lat/lon the 

last xy pair 

  <unit> Number of rows that make up a discrete unit (usually defined by 
latitude) 

  <db>  Name of PostgreSQL database, which must be spatially enabled with 

PostGIS 

  <table>  Name of new table (cannot contain a decimal point) 
  <geom>  Name of geometry column in the new table 

  <srid>  Desired SRID for geometry (-1 == undefined)\n 

  <output file>  Name of output sql file (with full path if outside current 

directory)\n 
  Example: 
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  ./xyz2sql.pl bathy_500.xyz xyz 776 tsunami bathy_500 geom -1 

bathy_500.sql 

"; 
} 

 

if($ARGV[1] !~ /xyz|yxz|zyx|xyzxy|xyzyx/) { die "  WARNING: <format> must 

be one of [xyz|yxz|zyx|xyzxy|xyzyx]!\n  Script did not run!\n"; } 
if($ARGV[4] =~ /\./) { die "  WARNING: <table> cannot contain a decimal 

point!\n  Script did not run!\n"; } 

 

my $infile = $ARGV[0]; #input file 
my $format = $ARGV[1]; #whether data is xyz, yxz, etc 

my $unit = $ARGV[2]; #how many rows make up a 'unit' 

my $db = $ARGV[3]; #db name 

my $table = $ARGV[4]; #table name 
my $geom = $ARGV[5]; #geometry column 

my $srid = $ARGV[6]; #srid number (-1 == undefined) 

my $outfile = $ARGV[7]; #output file 

 
my @depth; 

my @lat; 

my @lon; 

my @x; 
my @y; 

my $x; 

my $y; 

my $z; 
 

open(IN, $infile) || die "Could not open '$infile' - $!"; 

 

my $inCount = 1; 
print "\n  => Parsing $infile"; 

# parse and suck the text file into arrays 

while(<IN>) { 

        #my $line = $_ unless $_ =~ /^#/; 
        my $line = $_; 

        chomp($line); 

        $_ =~ /^\s*([+-]?\d+\.?\d*[eE]?[+-]?\d*)\s+([+-]?\d+\.?\d*[eE]?[+-

]?\d*)\s+([+-]?\d+\.?\d*[eE]?[+-]?\d*)/; 
        my $a = sprintf("%.10g", $1); 

        my $b = sprintf("%.9g", $2); 

        my $c = sprintf("%.6g", $3); 

        # NOTE - these are just the formats I've seen so far... 
        # more may need to be added 

        if($format eq 'xyz') { 

                push @lon, $a; 

                push @lat, $b; 
                push @depth, $c; 

        } elsif($format eq 'yxz') { 

                push @lon, $b; 

                push @lat, $a; 
                push @depth, $c; 

        } elsif($format eq 'zyx') { 
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                push @lon, $c; 

                push @lat, $b; 

                push @depth, $a; 
        } elsif($format eq 'xyzyx') { 

                $line =~ /^(\d+)\s(\d+)\s(-?\d+\.?\d+?)\s(-?\d+\.\d+)\s(-

?\d+\.\d+)/; 

                push @x, $1; 
                push @y, $2; 

                push @lon, $5; 

                push @lat, $4; 

                push @depth, $3; 
        } elsif($format eq 'xyzxy') { 

                $line =~ /^(\d+)\s(\d+)\s(-?\d+\.?\d+?)\s(-?\d+\.\d+)\s(-

?\d+\.\d+)/; 

                push @x, $1; 
                push @y, $2; 

                push @lon, $4; 

                push @lat, $5; 

                push @depth, $3; 
        } 

        if($inCount % 100000 == 0) {print ".";} 

        if($inCount % 1000000 == 0) {print $inCount;} 

        $inCount++; 
} 

print "...done\n"; 

 

close(IN); 
 

# count latitude values to get a total row count 

my $count = scalar(@lat); 

 
open(OUT, "> $outfile") || die "Could not open '$outfile' - $!"; 

 

# create table - currently creates x and y cols no matter what - 

# we add x & y values below if they don't exist 
my $sql1; 

#if($format !~ /xyzxy|xyzyx/) { 

#       $sql1 = "CREATE TABLE $table (id int, depth int);"; 

#} else { 
        $sql1 = "CREATE TABLE $table (id int, x smallint, y smallint, depth 

numeric);"; 

#} 

print OUT "$sql1\n"; 
 

# create geometry column 

#print "  => Adding geometry column ..."; 

print OUT "SELECT AddGeometryColumn('$table', '$geom', $srid, 'POINT', 
2);\n"; 

 

# insert data 

print "  => Printing $count rows to $outfile"; 
# x,y needs to start at 1,1 to work with ARSC's Fortran code 

my $xpos = 0; #initialize at 0, will go to 1 at next increment 
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my $ypos = 1; #initialize at 1 

for(my $i = 0; $i < $count; $i++) { 

        if($i != 0 && $i % 100000 == 0) {print ".";} 
        if($i != 0 && $i % 1000000 == 0) {print $i;} 

        my $id = $i + 1; #so that id column begins at 1 

        my $sql2; 

 
        if($i != 0 && $i % $unit == 0) { 

                $xpos = 0; #reset at each $unit rows - will go to 1 at next 

increment 

                $ypos++; #increment 1 for each $unit rows 
        } 

        $xpos++; #increment 1 for every row 

 

        if($format !~ /xyzxy|xyzyx/) { 
                $sql2 = "INSERT INTO $table (id, x, y, depth, $geom) VALUES 

($i, $xpos, $ypos, $depth[$i], GeometryFromText('POINT($lon[$i] $lat[$i])', 

$srid));"; 

        } else { 
                $sql2 = "INSERT INTO $table (id, x, y, depth, $geom) VALUES 

($i, $depth[$i], $x[$i], $y[$i], GeometryFromText('POINT($lon[$i] 

$lat[$i])', $srid));"; 

        } 
        print OUT "$sql2\n"; 

} 

print OUT "COMMIT;\n"; 

print "...done\n"; 
 

# create GiST index 

#print "  => Creating GiST index $table\_index ..."; 

print OUT "CREATE INDEX $table\_gist_index ON $table USING gist ($geom 
gist_geometry_ops);\n"; 

print OUT "CREATE INDEX $table\_x_index ON $table (x);\n"; 

print OUT "CREATE INDEX $table\_y_index ON $table (y);\n"; 

 
# vacuum analyze to update table stats 

#print "  => Performing VACUUM ANALYZE on table ..."; 

print OUT "VACUUM ANALYZE $table;\n"; 

 
close(OUT); 

 

print "\n  Job finished\n\n"; 
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Appendix B:  PostgreSQL Database Functions for Calculating Parameters of 
Gridded Bathymetry Datasets 

Two database functions were written in the PL/pgSQL procedural language to 

perform calculations that must be executed on each gridded bathymetry or 

topography dataset added to the spatial database.  Because the calculations each 

require a large number of successive queries on the gridded datasets, the most 

efficient solution was to write them as database functions and run them using the 

database engine. 

 

Maximum Allowable Time Step 

In the TCP parameterization system, the maximum allowable time step for each 

gridded dataset must be known prior to job configuration, and prior to the dataset 

being used in model runs.  The PL/pgSQL database function below calculates the 

maximum allowable time step based on a standard formula that can be summarized 

thusly: 

 
(spacing in m) / (wave velocity) = time to move wave 

 

Spacing in m is dependent upon latitude and is calculated based on the maximum 

latitude represented by the bathymetry dataset.  Wave velocity is dependent upon 

ocean depth and is calculated based on the maximum ocean depth value contained 

within the bathymetry dataset.  Both max_lat and max_depth are queried 

dynamically within the database function and included in the calculations.  Once 
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complete, the calculated max_time_step values are written to a database table that 

contains metadata describing each gridded dataset. 

 

-- 

-- This function calculates maximum allowable time step for 
-- each gridded dataset. 

-- It is called via max_time_step() 

-- 

-- * delta T = (1855 * cos(radians(max_lat))*spacing/60) / sqrt(2 * g * 
abs(max_depth)) 

-- * g = gravitational constant (9.8) 

-- * use abs(max_depth) because our depths might be stored as negative 

values whereas most modelers store depths as positive values 
-- * need to use radians() with cos() 

CREATE OR REPLACE FUNCTION max_time_step() 

RETURNS VOID AS ' 

DECLARE 
  max_lat NUMERIC; 

  max_depth NUMERIC; 

  spc NUMERIC; 

  g CONSTANT FLOAT := 9.8; 
  m CONSTANT INTEGER := 1855; 

  result NUMERIC; 

  curs1 refcursor; 

  row RECORD; 
BEGIN 

  FOR row in SELECT db_table FROM input_grids WHERE max_allowable_time_step 

IS NULL LOOP 

  
    RAISE NOTICE ''processing %'', row.db_table; 

  

    OPEN curs1 FOR EXECUTE ''SELECT max(y(geom)) FROM '' || 

quote_ident(row.db_table); 
    FETCH curs1 into max_lat; 

    CLOSE curs1; 

 

    OPEN curs1 FOR EXECUTE ''SELECT min(depth) FROM '' || 
quote_ident(row.db_table) || '' where depth > -30000 ''; 

    FETCH curs1 into max_depth; 

    CLOSE curs1; 

 
    OPEN curs1 FOR EXECUTE ''SELECT spacing FROM input_grids WHERE db_table 

= '''''' || quote_ident(row.db_table) || ''''''''; 

    FETCH curs1 into spc; 

    CLOSE curs1; 
  

    result := (m * cos(radians(max_lat))*(spc/60)) / sqrt(2 * g * 

abs(max_depth)); 
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    EXECUTE ''UPDATE input_grids SET max_allowable_time_step = '' || 

quote_literal(result) || '' WHERE db_table = '''''' || 

quote_ident(row.db_table) || ''''''''; 
 

  END LOOP; 

  RETURN; 

END; 
' LANGUAGE 'plpgsql'; 

 

 

Number of Time Steps Required to Cross Grid Extent 

In addition to the maximum allowable time step, the number of time steps required 

for a wave to cross the maximum grid extent dimension must also be calculated 

before a gridded dataset can be used in the TCP parameterization system.  The 

parameter max_dist (i.e., the maximum grid extent dimension in m) is determined as 

the maximum of either the latitude or longitude extent across the grid, which are 

queried dynamically within the function.  The max_dist value is divided by wave 

velocity to determine the total time required to cross the maximum grid extent.  The 

resulting num_time_steps value is stored in a database table that contains metadata 

describing each gridded dataset and is used to limit model run parameterization to 

allowable values, so that a TCP user won’t accidentally enter unacceptable values. 

 

-- 

-- This function calculates the number of time steps required to 
-- cross the max grid extent, for each gridded dataset. 

-- It is called via num_time_steps() 

-- 

-- * following gives us distance in meters: 
--    y_dist = (maxy - miny) * 60 * 1861 

--    x_dist = (maxx - minx) * 60 * 1855 * cos(radians(miny)) 

-- * total_time = max_dist/sqrt(g * abs(avg_depth)) 

-- * use abs(avg_depth) because our depths might be stored as negative 
values whereas most modelers store depths as positive values 

-- * need to use radians() with cos() 

CREATE OR REPLACE FUNCTION num_time_steps() 
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RETURNS VOID AS ' 

DECLARE 

    minx NUMERIC; 
    miny NUMERIC; 

    maxx NUMERIC; 

    maxy NUMERIC; 

    max_dist NUMERIC; 
    avg_depth NUMERIC; 

    result NUMERIC; 

    y_dist NUMERIC; 

    x_dist NUMERIC; 
    ym CONSTANT INTEGER := 1861; 

    xm CONSTANT INTEGER := 1855; 

    g CONSTANT FLOAT := 9.8; 

    row RECORD; 
    curs1 REFCURSOR; 

BEGIN 

    FOR row in SELECT db_table FROM input_grids WHERE 

time_to_cross_max_domain IS NULL LOOP 
 

        RAISE NOTICE ''PROCESSING %'', row.db_table; 

 

        OPEN curs1 FOR EXECUTE ''SELECT min(x(geom)) FROM '' || 
quote_ident(row.db_table); 

        FETCH curs1 into minx; 

        CLOSE curs1; 

        --RAISE NOTICE ''minx = %'', minx; 
 

        OPEN curs1 FOR EXECUTE ''SELECT min(y(geom)) FROM '' || 

quote_ident(row.db_table); 

        FETCH curs1 into miny; 
        CLOSE curs1; 

        --RAISE NOTICE ''miny = %'', miny; 

 

        OPEN curs1 FOR EXECUTE ''SELECT max(x(geom)) FROM '' || 
quote_ident(row.db_table); 

        FETCH curs1 into maxx; 

        CLOSE curs1; 

        --RAISE NOTICE ''maxx = %'', maxx; 
 

        OPEN curs1 FOR EXECUTE ''SELECT max(y(geom)) FROM '' || 

quote_ident(row.db_table); 

        FETCH curs1 into maxy; 
        CLOSE curs1; 

        --RAISE NOTICE ''maxy = %'', maxy; 

 

        OPEN curs1 FOR EXECUTE ''SELECT avg(depth) FROM '' || 
quote_ident(row.db_table) || '' where depth > -30000 ''; 

        FETCH curs1 into avg_depth; 

        CLOSE curs1; 

        --RAISE NOTICE ''avg_depth = %'', avg_depth; 
 

        y_dist = (maxy - miny) * 60 * ym; 



278 
 

 

        x_dist = (maxx - minx) * 60 * xm * cos(radians(miny)); 

        --RAISE NOTICE ''y_dist = %'', y_dist; 

        --RAISE NOTICE ''x_dist = %'', x_dist; 
 

        IF y_dist > x_dist 

        THEN 

            result := y_dist/sqrt(g * abs(avg_depth)); 
        ELSE 

            result := x_dist/sqrt(g * abs(avg_depth)); 

        END IF; 

        result := round(result,0); 
        RAISE NOTICE ''  result = %'', result; 

 

        EXECUTE ''UPDATE input_grids SET time_to_cross_max_domain = '' || 

quote_literal(result) || '' WHERE db_table = '''''' || 
quote_ident(row.db_table) || ''''''''; 

 

    END LOOP; 

    RETURN; 
END; 

' LANGUAGE 'plpgsql'; 
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Appendix C:  Selected PHP Functions and JavaScript Code Related to Spatial 
Data Handling in the Portal Interface 

Subgrid Selection 

When a relatively coarse-resolution grid is selected in the portal interface, any grids 

of finer resolution are made available for selection as subgrids; however, they are 

only made available if they meet the 5:1 or 3:1 grid spacing ratio requirement.  The 

two functions below inspect metadata stored for each grid in the database, determine 

which grids of finer resolution can be made available for selection as aligned 

subgrids, and present the subgrid options to the user. 

 

function getPossibleChildGrids( $parent_grid, $level, $indent = 1 ) 

{ 

  global $GRID_NAME_LIST; 
  $grids = ''; 

 

  $query = 'SELECT * FROM input_grids ' . 

     'WHERE enabled = true AND (region_id = ' . $parent_grid['region_id'] . 
" OR region_id = 0) " . 

     'AND ( spacing = ' . round(($parent_grid['spacing'] / 3),10) . ' OR 

spacing = ' . round(($parent_grid['spacing'] / 5),10) . ' ) ' . 

     'AND ( max_x > ' . $parent_grid['min_x'] . ' AND min_x < ' . 
$parent_grid['max_x'] . ' AND ' . 

           'max_y > ' . $parent_grid['min_y'] . ' AND min_y < ' . 

$parent_grid['max_y'] . ' ) ' . 

     'ORDER BY db_table'; 
 

  $child_results = queryDB( $query ); 

 

  while( $grid = pg_fetch_array( $child_results, null, PGSQL_ASSOC ) ) 
  { 

    $grids .= '<tr>'; 

 

    for( $i = 0; $i < $indent * 2; $i++ ) 
    { 

      $grids .= '<td width="3%" rowspan="2"> </td>'; 

    } 

 
    $num = $grid['input_grids_id']; 

    $grids .= "<td width=\"5%\" align=\"right\"><input type=\"radio\" 

name=\"master_grid_id\" id=\"master_grid_id_$num\" value=\"$num\"/></td>\n" 

. 
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        "<td colspan=\"" . (9 - $indent) . "\">" . 

                          "<label for=\"master_grid_id_$num\"><b>" . 

$grid['db_table'] . '</b></label>&nbsp;&nbsp;&nbsp;&nbsp;<a 
href="http://tsunamiportal.nacse.org/metadata/' . $grid['metadata_file'] . 

        '" target="_blank" style="font-size : 80%">Metadata</a><br/>'; 

    $grids .= "</td></tr><tr><td></td><td colspan=\"" . (9 - $indent) . 

"\"><font style=\"font-size : 80%\">X-Range: " . $grid['min_x'] . ' to ' . 
$grid['max_x'] . "<br/>\n" . 

        "Y-Range: " . $grid['min_y'] . ' to ' . $grid['max_y'] . "<br/>\n" 

. 

        "Spacing: " . $grid['spacing'] . ' ' . $grid['units'] . 
"</br></font>\n"; 

    $grids .= "</td></tr>\n"; 

 

    $GRID_NAME_LIST[] = $grid['db_table']; 
 

    if( --$level > 0 ) 

      $grids .= getPossibleChildGrids( $grid, $level, $indent + 1 ); 

  } 
  return $grids; 

} 

 

 
//  getAddSubgrid( $curr_grid ) 

// 

//  Returns a string containing an 'Add Sub Grid' button and a list 

//  of possible sub grid spacings to choose from. 
// 

//  $curr_grid - The Grid Object to display possible sub grid spacings for 

 

function getAddSubgrid( $curr_grid ) 
{ 

  $output = ''; 

 

  // Obtain a reference to the array of possible spacings for the current 
grid 

  $spacings = $curr_grid->possible_spacings; 

  // Get the tree depth of this grid node 

  $node_depth = $curr_grid->getNodeDepth(); 
 

  // If there are any possible spacings 

  if( count($spacings) > 0 ) 

  { 
    // If this grid meets the sub grid nesting constraints: 

    //  - The master grid can contain up to 4 sub grids 

    //  - Sub grids of the master grid can contain only one sub grid 

    //  - Sub grids of sub grids of the master grid cannot contain any 
further sub grids 

    if( ( $node_depth == 1 && count($curr_grid->child_grids) < 4) || 

        ( $node_depth == 2 && count($curr_grid->child_grids) < 1 ) ) 

    { 
      // Setup a table to contain the button and spacing options 
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      $output = "<table width=\"100%\"><tr><td align=\"left\" 

width=\"30%\">\n"; 

      // Setup the 'Add Sub Grid' button 
      $output .= "<input type=\"submit\" name=\"add_new_grid[" . 

$curr_grid->grid_id . "]\" value=\"Add Sub Grid\" 

class=\"submit_small\"/>\n"; 

      $output .= "</td><td align=\"left\">\n"; 
 

      $spacing_checked = false; 

 

      // Loop over each possible sub grid spacing 
      foreach( $spacings as $spacing ) 

      { 

        // Create a spacing id to be decoded by the GridController 

        $spacing_id = $spacing['spacing'] . '=' . $spacing['units'] . '=' . 
$spacing['db_table']; 

        if( !$spacing_checked ) 

        { 

          $checked = 'checked="checked"'; 
          $spacing_checked = true; 

        } 

        else 

        { 
          $checked = ''; 

        } 

 

        // Create a radio button and label for this spacing 
        $output .= "<input type=\"radio\" name=\"grid_spacing_" . 

$curr_grid->grid_id . "\" id=\"grid_spacing_" . $curr_grid->grid_id . 

$spacing['db_table'] . "\" value=\"$spacing_id\" $checked/>\n"; 

        $output .= "<label for=\"grid_spacing_" . $curr_grid->grid_id . 
$spacing['db_table'] . "\">" . $spacing['db_table'] . "</label>\n"; 

      } 

      $output .= "</td></tr></table>\n"; 

    } 
    else 

    { 

      // This grid cannot contain any more sub grids.  Disallowed by the 

nesting constraints. 
      $output .= "No more sub grids allowed for this grid<br>\n"; 

    } 

  } 

 

Dynamically Calculating Estimated Simulation Time 

As the portal user parameterizes a model run, they define the number of seconds 

simulated by each time step as well as the total number of time steps to calculate.  

With this information, the portal uses a mix of PHP and JavaScript to calculate the 
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estimated amount of time that will be simulated by the model run.  This number 

changes dynamically as the user adjusts their desired parameters. 

 
function displayTotalSize() 

{ 
  var total_points = <?php echo $m_grid->getTotalDataPoints(); ?>; 

  var len_time_step = (document.getElementById('Len_Time_Step')).value; 

  var num_time_steps = (document.getElementById('Num_Time_Steps')).value; 

  var output_freq = (document.getElementById('Output_Frequency')).value; 
 

  var hours_elapsed = (((len_time_step * num_time_steps) / 60) / 

60).toFixed(3); 

 
  if( parseFloat(len_time_step) > 0.0 && parseInt(num_time_steps) > 0 && 

parseInt(output_freq) > 0 ) 

  { 

    var size = ( num_time_steps / output_freq ) * total_points * 4; 
    var out = '<b class="size_estimator">Estimated total output &asymp; ' + 

getNiceSize(size) + '</b><br/>' + 

        '<span class="size_estimator" style="font-size : 80%;">Equivalent 

of simulating ' + hours_elapsed + 
        ' hrs<br/></span>'; 

    if( out != last_out ) 

    { 

      (document.getElementById('size_estimator')).innerHTML = out; 
      last_out = out; 

    } 

  } 

  else 
  { 

    if( last_out != '' ) 

    { 

      (document.getElementById('size_estimator')).innerHTML = '<br/><span 
style="font-size : 80%;"><br/></span>'; 

      last_out = ''; 

    } 

  } 
} 

 

 

 

Calculating and Drawing Grid Extents on Selection Map 

Each user-defined grid extent is displayed on the selection map after the user clicks 

“Update Display” or proceeds to the next step in the interface.  Latitude and 

longitude values are mapped to pixel coordinates, and the functions below draw the 
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necessary lines to form the extent of each grid and apply a transparent shaded 

overlay to the extent box. 

 
function drawGrid( $img ) 

{ 
  global $SEL_GRID; 

  global $bg_color, $text_color, $range_color; 

  $grid = $this->grid_info; 

 
  $color = $text_color; 

  $bg_color = $bg_color; 

 

  if( isset($grid['overlapping']) && $grid['overlapping'] == true ) 
  { 

    $color = colorallocate( $img, 204, 0, 0 ); 

  } 

 
  if( !is_null($this->grid_bound) && !isset($grid['sibling_grid']) ) { 

    $this->grid_bound->drawGrid($img); 

  } 

 
  if( !is_null($grid['min_x']) ) { 

 

    if((isset($grid['overlapping']) and $grid['overlapping'] != true ) or 

(!isset($grid['overlapping']))){ 
      imagefilledrectangle( $img, $grid['left'], $grid['top'], 

$grid['left'] + $grid['x_length_scaled'], $grid['top'] + 

$grid['y_length_scaled'], $bg_color ); 

    } 
    imagerectangle( $img, $grid['left'], $grid['top'], $grid['left'] + 

      $grid['x_length_scaled'], 

      $grid['top'] + $grid['y_length_scaled'], 

      $color ); 
    $grid['caption'] = $grid['grid_id'] . ': ' . $grid['name']; 

    $caption_width = $this->font_width * strlen( $grid['caption'] ); 

    if( $caption_width > $grid['x_length_scaled'] ) 

    { 
      $grid['caption'] = substr( $grid['caption'], 0, 

      intval( $grid['x_length_scaled'] / $this->font_width ) - 2 ) . '..'; 

    } 

 
    imagestring($img, $this->font_size, $grid['left'] + 3, $grid['top'] + 

2, $grid['caption'], $color); 

 

    $table_name_parts = explode( '_', $grid['db_table'] ); 
    $caption2 = '(' . $table_name_parts[count($table_name_parts) - 1] . 

')'; 

    $caption_width = $this->font_width * strlen( $caption2 ); 

    if( $caption_width > $grid['x_length_scaled'] ) 
    { 
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      $caption2 = substr( $caption2, 0, intval( $grid['x_length_scaled'] / 

$this->font_width ) - 3 ) . '..)'; 

    } 
 

    if( $grid['y_length_scaled'] > (($this->font_height * 2) + 3) ) 

    { 

 
      imagestring($img, $this->font_size, $grid['left'] + 3, ($grid['top'] 

+ 2) + $this->font_height + 1 , 

      $caption2, $color); 

    } 
 

  } 

  $this->drawChildGrids( $img ); 

} 
 

function drawChildGrids( $img ) 

{ 

  $child_grids = $this->child_grids; 
  foreach( $child_grids as $idx => $child_grid ) 

  { 

    $child_grid = $child_grids[$idx]; 

    $child_grid->drawGrid( $img ); 
  } 

} 
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Appendix D:  Exporting and Packaging Selected Grid Extent 

After a model run is configured and submitted for processing, an automated system 

prepares the input configuration parameters and the associated gridded data.  The 

gridded data must be exported in the binary format required by the model codes that 

will use the data on the computational system at ARSC. 

 

Extracting Gridded Data as Binary Files 

PostgreSQL supports the development of database functions via the libpq library, a 

C-based application programming interface.  In the TCP system, where xyz point 

data must be converted to a specific binary format, a C-based program provided the 

most efficient means of exporting the data and performing the proper conversion. 

 
 

# This code generates the output_bin_dfile() database 

# function, which is used to export gridded TCP data 
# in the binary format required by ARSC. 

# 

#include <stdio.h> 

#include <stdlib.h> 
#include <stdbool.h> 

#include <sys/stat.h> 

#include <unistd.h> 

#include "executor/spi.h" 
 

typedef unsigned char byte; 

 

extern int output_bin_dfile( text *tbl_name, text *out_file, int x_min, int 
y_min, int x_max, int y_max, int flip_signs ) 

{ 

  FILE *fpout; 

  char *tablename; 
  char *outfilename; 

  char outfilepath[256]; 

  char tmpPath[256] = ""; 

  bool flipSigns = ( flip_signs == 0 ? false : true ); 
  char query[512]; 
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  unsigned int i, rows; 

  int result; 

 
  bool nullDepth = false; 

  Datum datumDepth; 

  float4 floatDepth; 

  float bigendDepth; 
  byte *lEnd = ((byte *) &floatDepth); 

  byte *bEnd = ((byte *) &bigendDepth); 

  byte cnt = 0; 

 
  // Prepare tablename 

  tablename = DatumGetCString(DirectFunctionCall1( textout, 

PointerGetDatum( tbl_name ) )); 

 
  // Prepare outfilename 

  outfilename = DatumGetCString(DirectFunctionCall1( textout, 

PointerGetDatum( out_file ) )); 

 
  // Build the query statement 

  sprintf( query, "SELECT depth::float4 FROM %s WHERE x >= %i AND x <= %i 

AND y >= %i AND y <= %i ORDER BY y ASC, x ASC;", tablename, x_min, x_max, 

y_min, y_max ); 
 

  // Open the output file for binary write access 

  fpout = fopen(outfilename,"wb"); 

 
  if (fpout==NULL) 

  { 

    elog( ERROR, "Unable to open output file: '%s'", outfilename ); 

  } 
 

  // Output file is open and ready, query is ready 

 

  SPI_connect(); 
 

  // Execute the query 

  result = SPI_exec( query, 0 ); 

  rows = SPI_processed; 
 

  // If the SELECT statement worked, and returned more than zero rows 

  if (result == SPI_OK_SELECT && rows > 0) 

  { 
    // Get the tuple (row) description for the rows 

    TupleDesc tupdesc = SPI_tuptable->tupdesc; 

    // Get pointer to the tuple table containing the result tuples 

    SPITupleTable *tuptable = SPI_tuptable; 
 

    // Loop over each row in the result set (tuple set) 

    for( i = 0; i < rows; i++ ) 

    { 
      // Get tuple (row) number i 

      HeapTuple tuple = tuptable->vals[i]; 
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      // Store a pointer to the depth value Datum on this row 

      datumDepth = SPI_getbinval( tuple, tupdesc, 1, &nullDepth ); 
      floatDepth = DatumGetFloat4( datumDepth ); 

      if( nullDepth ) 

        elog ( ERROR, "NULL depth value on row %i", i ); 

 
      if( flipSigns ) 

        floatDepth *= -1.0; 

 

      // Write the little-endian floatDepth into bigendDepth 
      bEnd += 3; 

      for( cnt = 0; cnt < 4; cnt++ ) 

      { 

        *bEnd = *lEnd; 
        if( cnt < 3 ) { 

          lEnd++; 

          bEnd--; 

        } 
      } 

      lEnd -= 3; 

 

      // Write the floating point depth value out to the file 
      fwrite(&bigendDepth,sizeof(float),1,fpout); 

    } 

  } 

 
  // Done using the result set 

  SPI_finish(); 

 

  // Close the output file 
  fclose(fpout); 

 

  // CHMOD the file for access by group tportal 

  int mode = ( S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH ); 
  chmod( outfilename, mode ); 

 

  // Free up memory 

        pfree(tablename); 
        pfree(outfilename); 

 

  return 0; 

} 

 

Database Export Function 

The PL/pgSQL code below imports the grid export C code as a PostgreSQL database 

function.  This function is called whenever a model run is configured and submitted, 
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and is used for exporting gridded spatial data into the binary format required by the 

model codes at ARSC. 

 
CREATE OR REPLACE FUNCTION output_bin_dfile( text, text, int4, int4, int4, 

int4, boolean ) 
RETURNS int4 

AS '/private/share/tcp/bin/libpgoutdfile.so' 

LANGUAGE 'c';  
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Appendix E:  Casualty Calculation Code for the Simulation Model 

The casualty calculation code exists as part of a larger codebase that drives the 

simulation framework.  This code is written in C++ and, once compiled, produces 

the command-line program that is called to determine casualty conditions for every 

living member of the simulated population at each time step.  The casualty 

calculation takes measured anthropometric values into account, along with the 

simulated water height, velocity, and direction.  The status of each evaluated 

individual is written to the spatial database.  The code also generates a TIFF file for 

each time step from the tsunami inundation modeling output data.  Each TIFF file 

represents the water depth at that time step of the tsunami simulation. 

 
#include "CasualtyCalc.h" 

 

void BuildVisuals(DataOutBlock<GByte> *inBuff, DataOutBlock<GByte> 
*outBuff) 

{ 

  int i,j,k; 

  int v; 
  int idx; 

  GByte *buf = inBuff->GetSliceAt(0); //Both genders 

  for (i=0;i<Row;i++){ 

    for(j=0;j<Col;j++){ 
      v=buf[i*Col+j]; 

      if (v == 0) { 

        for (k=0;k<3;k++) 

          outBuff->SetCellAt(j,i,k,(GByte)Zero[k]); 
      } 

      else { 

        idx = (int)floor((float)v/10.); // color map index 

        if (idx > 15) idx = 15; 
        for (k=0;k<3;k++) 

          outBuff->SetCellAt(j,i,k,(GByte)HSDColorMap[idx][k]); 

      } 

    } 
  } 

} 

 

bool WriteOutFile(DataOutBlock<GByte> *DB, char *filename) 
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{ 

  char *finalName = new char[strlen(filename) + strlen(oPath) + 2]; // 1 

for \0 and 1 for '/' just in case  
  strcpy(finalName,oPath); 

  if (oPath[strlen(oPath-1)]!='/') 

    strcat(finalName,"/"); 

  strcat(finalName,filename); 
 

  TiffByteWriter *tw = TiffWriterFactory::instanceOf(finalName,ex,DB); 

  tw->setNoDataValue(0.); 

  tw->WriteTiff(); 
  delete tw; // must do this explicitly or it won't get written 

  delete finalName; 

  return (true); 

} 
 

bool WriteOutFile(DataOutBlock<GInt16> *DB, char *filename) 

{ 

  char *finalName = new char[strlen(filename) + strlen(oPath) + 2]; // 1 
for \0 and 1 for '/' just in case  

  strcpy(finalName,oPath); 

  if (oPath[strlen(oPath-1)]!='/') 

    strcat(finalName,"/"); 
  strcat(finalName,filename); 

 

  TiffShortWriter *tw = TiffWriterFactory::instanceOf(finalName,ex,DB); 

  tw->setNoDataValue(0.); 
  tw->WriteTiff(); 

  delete tw; // must do this explicitly or it won't get written 

  delete finalName; 

  return (true); 
} 

 

bool ReadPeopleFile() 

{ 
  FILE *fp; 

  char buf[HSDMAXBUF]; 

  float x,y; 

  float sx,sy; 
  int   gid; 

  float t; 

  int srid; 

  Location *l; 
  Location *srl; 

  int id; 

  int idx = 0; 

  Location S; 
 

  assert((fp=fopen(People_infile,"r"))!=NULL); 

 

  fgets(buf,HSDMAXBUF,fp); 
  sscanf(buf,"%d %d\n",&NumPeople,&srid); 

  people = new Person[NumPeople]; 
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  fgets(buf,HSDMAXBUF,fp); 

  while (!feof(fp)){ 
    sscanf(buf,"%d\t%f\t%f\t%f\t%f\t%d\t%f\n",&id,&y,&x,&sy,&sx,&gid,&t); 

    l = new Location(x,y,srid); 

    srl = new Location(sx,sy,srid); 

    if ((ex->World2Screen(*l,S))==true) { 
      people[idx].Set_Person(id,l,pt); 

      RN->RoutePerson(&people[idx],srl,gid,t); 

      idx++; 

    } 
    fgets(buf,HSDMAXBUF,fp); 

  }  

 

  printf("Read in %d people, kept %d\n",NumPeople,idx); 
  NumPeople=idx; 

  return (true); 

} 

 
 

bool ReadStructureFile() 

{ 

  FILE *fp; 
  char buf[HSDMAXBUF]; 

  float x,y; 

  int srid; 

  Location l; 
  int gid; 

  int hc; 

  int idx = 0; 

  Location S; 
 

  assert((fp=fopen(Structure_infile,"r"))!=NULL); 

 

  fgets(buf,HSDMAXBUF,fp); 
  sscanf(buf,"%d %d\n",&NumStructures,&srid); 

  structures = new Structure[NumStructures]; 

 

  fgets(buf,HSDMAXBUF,fp); 
  while (!feof(fp)){ 

    sscanf(buf,"%d\t%d\t%f\t%f\n",&gid,&hc,&y,&x); 

    l.Set_Location(x,y,srid); 

    if ((ex->World2Screen(l,S))==true) 
      structures[idx++].setStructure(gid,hc,l); 

    fgets(buf,HSDMAXBUF,fp); 

  }  

  printf("Read in %d structures, kept %d\n",NumStructures,idx); 
  NumStructures=idx; 

  return (true); 

} 

 
void 

usage(void) 
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{ 

  printf("av[1] - input H Series file\n"\ 

 "av[2] - input U Series file name\n"\ 
 "av[3] - input V Series file name\n"\ 

 "av[4] - input Bathy-Topot file name\n"\ 

 "av[5] - extent file name\n"\ 

 "av[6] - People file name\n"\ 
 "av[7] - Structures file name\n"\ 

 "av[8] - Number of time slices to iterate across\n"\ 

 "av[9] - Path to directory where output products will be dumped\n"\ 

 "av[10] - When to start people running (i.e. which time index)\n"\ 
 "av[11] - Output table name\n"\ 

 "av[12] - Road Network name\n"\ 

"\n\n"); 

exit(0); 
} 

 

bool InitializeOutputDir(void) 

{ 
  DIR *dirp; 

 

  if ((dirp=opendir(oPath))!=NULL) 

    closedir(dirp); 
  else { 

    return((mkdir(oPath,0755)==0 ? true:false)); 

  } 

  return(true); 
} 

 

 //av[1] - input H Series file\n"\ 

 //av[2] - input U Series file name\n"\ 
 //av[3] - input V Series file name\n"\ 

 //av[4] - input Bathy-Topot file name"\ 

 //av[5] - extent file name\n"\ 

 //av[6] - People file name\n"\ 
 //av[7] - Structures file name\n"\ 

 //av[8] - Number of time slices to iterate across\n"\ 

 //av[9] - Path to directory where output products will be dumped\n"\ 

 //av[10] - When to start people running (i.e. which time index)\n"\ 
 

bool Initialize(int ac, char **av) 

{ 

  if (ac < 8) usage(); 
 

  H_infile = strdup(av[1]);  

  U_infile = strdup(av[2]);  

  V_infile = strdup(av[3]);  
  BT_infile = strdup(av[4]);  

  extent_infile = strdup(av[5]); 

  People_infile = strdup(av[6]); 

  Structure_infile = strdup(av[7]); 
  Time = atoi(av[8]); 

  oPath = strdup(av[9]); 
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  whenToRun = atoi(av[10]); 

  Output_Table_Name = strdup(av[11]); 

  Road_infile = strdup(av[12]); 
  oPrefix = strdup(""); 

 

  assert(InitializeOutputDir()); 

 
  ex = new Extent(extent_infile); 

  Row = ex->get_Row(); 

  Col = ex->get_Col(); 

  pm = new PeopleMover(ex); 
  RN = new RoadNetwork(Road_infile); 

 

  dbU = new DataBlock<float>(Row,Col,Time,U_infile); 

  dbV = new DataBlock<float>(Row,Col,Time,V_infile); 
  dbH = new DataBlock<float>(Row,Col,Time,H_infile); 

  dbBT = new DataBlock<float>(Row,Col,1,BT_infile); 

 

  pt = new PopTable(); 
 

  ReadPeopleFile(); 

 

  dbpr = new DBPopRecorder(Output_Table_Name); 
 

  return (true); 

} 

 
char *MakeFilename(char *base, int num) 

{ 

  char *name = new char[strlen(base)+5+strlen(oPrefix)+1+4]; //length of 

base + 5 digits + length of prefix + 4 for .tif + 1 for null 
  sprintf(name,"%s%s%05d.tif",oPrefix,base,num); 

  return (name); 

} 

 
void 

CalcCasualty(Person *p,int sx, int sy, float *gh, float *gu, float *gv, 

float *gbt, int pidx) 

{ 
  PopRow *pr = p->get_ptr(); 

 

  float u; 

  float v; 
  float h; 

  float speed; 

  float tol=1e-6; 

 
  if (isnan(gh[sy*Col+sx])) return; // no water...no casualty 

  h = gh[sy*Col+sx]/100.-(gbt[sy*Col+sx]*-1.); 

  if (h < tol) return; // water is so low it's in the noise 

  if (h < p->get_height()) return; // the person is on something (bridge) 
above the water 
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  if (isnan(gu[sy*Col+sx])) u = 0.; // no U speed; 

  else  u = gu[sy*Col+sx]/100.; // convert cm/sec to m/sec 

  if (isnan(gv[sy*Col+sx])) v = 0.; // no V speed; 
  else v = gv[sy*Col+sx]/100.; // convert cm/sec to m/sec 

 

  speed = sqrt(u*u+v*v); 

 
  if (speed < tol) return;  //water speed ~= 0...no casualty 

 

  float a = pr->get_a(); 

  float b = pr->get_b(); 
  float c = pr->get_c(); 

  float d = pr->get_d(); 

  float e = pr->get_e(); 

  float f = pr->get_f(); 
  float hb = pr->get_hb(); 

  float hc = pr->get_hc(); 

  float hg0 = pr->get_hg0(); 

  float x = pr->get_x(); 
  float w = pr->get_weight()*9.81; 

  float A,Ay0,V,um,uf,minu; 

  float wsv; 

   
  if (h < hb){ 

    A = a*h+(b-a)*((h*h)/(2.*hb)); 

    Ay0 = ((a/2.)*(h*h)+((b-a)/(3*hb))*powf(h,3.)); 

    V = h * 3.1415926 * ((a + (b - a) * (h/hb))/2.) * ( (d + (e-d) * 
(h/hb))/2.0); 

  } else { 

    A = ((a + b)/2.)*hb+b*(h-hb)+((c-b)/(2.*(hc-hb)))*(h-hb)*(h-hb); 

    Ay0 = ((a/2.)*hb*hb+((b-a)/3.)*hb*hb+(1./(6.*(hb-hc)))*(3*c*h*h*hb-
(2*b+c)*powf(hb,3.)+3*b*hb*hb*hc+h*h*(2.*(b-c)*h-3.*b*hc))); 

    V = hb * 3.1415926 * ((a + (b - a) * (h/hb))/2.) * ( (d + (e-d) * 

(h/hb))/2.0) + (h-hb)*3.1415926 * ((b+(c-b) * ((h-hb)/(hc-hb)))/2.) * 

((e+(f-e)*((h-hb)/(hc-hb)))/2.0); 
  }  

 

  if (w < (sigma*V)) { 

    Location currentPersonLocation = p->get_location(); 
    p->set_dead(true); 

    return; 

  } 

 
  wsv = w-sigma*V; 

  um = sqrt((2.*wsv*x)/(Cd*Density*Ay0)); 

  uf = sqrt((2.*ff*wsv)/(Cd*Density*A)); 

  minu = HSDMIN((um),(uf)); 
 

  if ((speed/minu) < 1.) { 

    return; 

  } else { 
    p->set_dead(true); 

  } 
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  return; 

} 
 

void RunSimulation(void) 

{ 

  int t; 
  int p; 

  int TotalDead=0; 

  int DeadThisRound; 

  Location currentPersonLocation; 
  Location  Screen; 

  char  *deadTimeSliceFileName; 

  char  *livingTimeSliceFileName; 

  char  *waterTimeSliceFileName; 
  char  *cummDeadFileName; 

  char  *visualLivingFileName; 

  char  *visualDeadFileName; 

  int   x,y; 
  float *gh,*gu,*gv,*gbt; 

  int i; 

 

  gbt = dbBT->GetSliceAt(0); 
 

  printf("Starting Simulation with %d people\n",NumPeople); 

 

  for(t = 0;t < Time; t++){ 
    if (TotalDead >= NumPeople) break; 

 

    DeadThisRound=0; 

    gh = dbH->GetSliceAt(t); 
    gu = dbU->GetSliceAt(t); 

    gv = dbV->GetSliceAt(t); 

    printf("Calculating casualties for time index %d...",t); 

 
    for(p = 0; p < NumPeople; p++){ 

      if (people[p].is_dead()) { 

        continue; 

      } 
 

      if (people[p].is_safe()) continue; 

 

      currentPersonLocation = people[p].get_location(); 
      if((ex->World2Screen(currentPersonLocation,Screen))==false){ 

        people[p].set_safe(true); 

        continue; 

      } 
      x=(int)Screen.get_x(); 

      y=(int)Screen.get_y(); 

 

      CalcCasualty(&people[p],x,y,gh,gu,gv,gbt,p); 
 

      dbpr->addRow(p,&people[p],t); 
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      if (people[p].is_dead()) { 

        DeadThisRound++; 
        TotalDead++; 

      } else { 

        if (t >= whenToRun) 

          pm->MovePerson(&people[p]); 
      } 

    } 

    printf("%d %s died\n",DeadThisRound,(DeadThisRound == 1 ? "person 

has":"people have")); 
  } 

 

  dbpr->Flush(); 

 
  int deadStats=0; 

  int liveStats=0; 

 

  for(p = 0; p < NumPeople; p++){ 
    if (people[p].is_dead()) deadStats++; 

    else liveStats++; 

  } 

 
  printf("Total People: %d\n\t Dead: %d (%5.2f%%)\n\tAlive: %d 

(%5.2f%%)\n\n\n", 

          NumPeople,deadStats,((float)deadStats/(float)NumPeople)*100., 

          liveStats,((float)liveStats/(float)NumPeople)*100.); 
} 

 

int 

main(int ac, char **av) 
{ 

  // Load global variables from CMD line or issue usage 

  assert(Initialize(ac,av)); 

  RunSimulation(); 
}  
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Appendix F:  Database Function for Automatically Calculating Simulation Run 
Summary Statistics 

Following a simulation run, a set of summary statistics need to be calculated for use 

in the results web interface.  This pl/pgSQL database function calculates the 

summary statistics and inserts them into a new table that is queried by the web 

interface.  The function is run automatically at the end of a simulation run. 

 

/* 

  This PL/pgSQL function creates a stats table containing the number of 

  simulated people alive at each time step index. The table is given the 

  same name as the data table, with '_stats' appended. 
 

  Inputs: 

    maintbl: name of the table containing the data for the time series run 

    ts: total number of time steps simulated (1-based) 
 

  Example usage: 

    SELECT create_stats_table('job_151', 500); 

*/ 
 

CREATE OR REPLACE FUNCTION create_stats_table(maintbl VARCHAR, ts INTEGER) 

  RETURNS VOID 

AS $$ 
 

DECLARE 

  curs1 refcursor; 

  max INTEGER; 
  ct INTEGER; 

  endct INTEGER; 

  newtbl VARCHAR := ($1 || '_stats'); 

 
BEGIN 

 

  IF EXISTS ( 

      SELECT * 
      FROM   pg_catalog.pg_tables 

      WHERE  schemaname = 'public' 

      AND    tablename  = quote_ident(newtbl) 

     ) 
  THEN 

     RAISE NOTICE 'ERROR: Table public.%', newtbl || ' already exists. 

Exiting now.'; 

     EXIT; 
  ELSE 
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     EXECUTE 'CREATE TABLE ' || quote_ident(newtbl) || ' (tidx int, alive 

int)'; 

     RAISE NOTICE 'Created table %', newtbl; 
  END IF; 

 

  -- select max time step index contained in main data table (can be < ts) 

  OPEN curs1 FOR EXECUTE 'SELECT max(tidx) FROM ' || quote_ident(maintbl); 
    FETCH curs1 INTO max; 

    CLOSE curs1; 

 

  -- select number of people living at end of simulation (time index in 
  -- main data table may end prior to full ts value, so this 'endct' var 

  -- is used to fill in the count for those final values) 

  OPEN curs1 FOR EXECUTE 'SELECT count(id) FROM ' || quote_ident(maintbl) 

|| ' WHERE alive IS NULL'; 
    FETCH curs1 INTO endct; 

    CLOSE curs1; 

 

  FOR i IN 0..ts-1 LOOP 
    IF max+1 <= i THEN 

      EXECUTE 'INSERT INTO ' || quote_ident(newtbl) || ' VALUES (' || i || 

', ' || endct || ')'; 

    ELSE 
      OPEN curs1 FOR EXECUTE 'SELECT count(id) FROM ' || 

quote_ident(maintbl) || ' WHERE tidx = ' || i || ' AND alive IS TRUE OR 

alive IS NULL'; 

        FETCH curs1 INTO ct; 
        CLOSE curs1; 

      EXECUTE 'INSERT INTO ' || quote_ident(newtbl) || ' VALUES (' || i || 

', ' || ct || ')'; 

    END IF; 
  END LOOP; 

 

  RAISE NOTICE 'Finished'; 

 
END; 

$$ 

LANGUAGE 'plpgsql'; 
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Appendix G:  Web Code for the Simulation Results Page, Map-based 
Visualization, and Tabular Data 

After configuring and running a simulation model run, the user can view a web page 

that displays the animated, map-based visualization of the simulation results.  The 

code that creates the results page contains a combination of PHP, HTML, and 

Javascript, and draws upon several open source packages (PHP, MapServer, 

OpenLayers, HighCharts, and Proj.4).  This Appendix includes selected code from 

certain key files that construct the results page: 

 
• db.php:  Functions that connect to the spatial database to retrieve data 

• rpc.php:  Code that handles Javascript AJAX calls to return data to the client 

• table.php:  Data table popup web page 

• result.js:  OpenLayers mapping code and all of the related custom Javascript 
that drives the animation, timekeeping, charting, and other client-side 
functionality. 

 
 

Selected Code from db.php 

<? 

  function getPersonInfo($dbh, $table, $lon, $lat, $tidx) { 

    $query = "select pid, mid 

              from $table 
              where (tidx = $tidx OR alive = 'f') 

              and ST_DWithin(ST_GeogFromText('SRID=4326;POINT($lon $lat)'), 

geography(geometry), 50) 

              order by ST_Distance_Sphere( ST_GeometryFromText('POINT($lon 
$lat)',4326), geometry) 

              limit 1"; 

    $result = pg_query($dbh, $query); 

    if( pg_num_rows($result) == 0 ) { 
      $out = "No person found within 100m of map click<br />\n"; 

    } else { 

      $out = array(); 

      while( $row = pg_fetch_row($result) ) { 
        $out[0] = $row[0]; 
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        $row[1] == 1 ? $out[1] = 'Male' : $out[1] = 'Female'; 

      } 

    } 
    return $out; 

  } 

 

  // Query to populate google-viz-chart data table 
  function getTimeSeries($dbh, $table, $pid) { 

    $query = "SELECT id, tidx, alive, ST_X(geometry) AS lon, ST_Y(geometry) 

              AS lat FROM $table WHERE pid = $pid ORDER BY tidx"; 

    $result = pg_query($dbh, $query); 
    $rows = pg_num_rows($result); 

    $col = 0; 

    echo "data.addRows($rows);\n"; 

    while ($row = pg_fetch_array($result)) { 
      $row['alive'] == 't' ? $alive = 'true' : $alive = 'false'; 

      echo "      

data.setCell($col,0,".htmlspecialchars($row['id']).");\n"; 

      echo "      
data.setCell($col,1,".htmlspecialchars($row['tidx']).");\n"; 

      echo "      data.setCell($col,2,".htmlspecialchars($alive).");\n"; 

      echo "      

data.setCell($col,3,".htmlspecialchars(round($row['lon'],6)).");\n"; 
      echo "      

data.setCell($col,4,".htmlspecialchars(round($row['lat'],6)).");\n"; 

      $col++; 

    } 
  } 

 

  /* This version uses ogr2ogr, which supports retrieval of attributes into 

     the GeoJSON format, and not just the geometry */ 
  function getPathPoints($table, $pid) { 

    $filename = randString(12); 

    $file = '/tmp/' . $filename . '.json'; 

    $util = "$conf['ogr2ogrPath']"; 
    $cmd = $util . ' -f "GeoJSON" ' . $file . ' PG:"dbname=<<redacted>> 

user=<<redacted>> password=<<redacted>>" -sql "select 

ST_Transform(geometry, 900913), tidx from ' . $table . ' where pid=' . $pid 

. '"'; 
    exec($cmd, $output, $ret); 

    if ($ret == 0) { 

      return $filename; 

    } else { 
      return 'There was an error.'; 

    } 

  } 

 
?> 
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Selected Code from rpc.php 

<? 

$proc = $_GET['proc']; 
 

if($proc == 'get_wave_heights') { 

  $x = $_GET['x']; 

  $y = $_GET['y']; 
  $minx = $_GET['minx']; 

  $miny = $_GET['miny']; 

  $maxx = $_GET['maxx']; 

  $maxy = $_GET['maxy']; 
  $htfile = $_GET['htfile']; 

  $extent = array($minx,$miny,$maxx,$maxy); 

  $numsteps = $_GET['numsteps']; 

  $rows = $_GET['rows']; 
  $cols = $_GET['cols']; 

  $geo_xy = projectPoint($x, $y, $current_proj, true); 

  $img_xy = geoToPix($geo_xy[0], $geo_xy[1], $rows, $cols, $extent); 

  $cmd = 'inc/read_sample ' . $cols . ' ' . $rows . ' ' . $numsteps . ' ' . 
$htfile . ' ' . $img_xy[0] . ' ' . $img_xy[1]; 

  $data = exec($cmd); 

  $data = str_replace('nan', '0', $data); 

  echo json_encode($data, JSON_NUMERIC_CHECK); 
} elseif($proc == 'get_path_data') { 

  $x = $_GET['x']; 

  $y = $_GET['y']; 

  $table = $_GET['table']; 
  $tidx = $_GET['tidx']; 

  $person_info = getPersonInfo($dbh, $table, $x, $y, $tidx); // returns 

pid, gender 

  if( is_array($person_info) ) { 
    $data = getPathPoints($table, $person_info[0]); 

    echo json_encode($data); 

  } else { 

    $d = array(0); 
    echo json_encode($d); 

  } 

} elseif($proc == 'get_count') { 

  $table = $_GET['table']; 
  $tidx = $_GET['tidx']; 

  $data = getCount($dbh, $table, $tidx); // returns int count 

  echo json_encode($data); 

} else { 
  error("Called non-existent procedure: ", $proc); 

} 

 

?> 
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Selected Code from table.php 

<script type='text/javascript' src='https://www.google.com/jsapi'></script> 

<script type='text/javascript'> 
  var data, table; 

  var tidx = <?echo $tidx;?>; 

 

  google.load('visualization', '1', {packages:['table']}); 
  google.setOnLoadCallback(drawTable); 

 

  function drawTable() { 

    data = new google.visualization.DataTable(); 
    data.addColumn('number', 'Event ID'); 

    data.addColumn('number', 'Time Step'); 

    data.addColumn('boolean', 'Alive'); 

    data.addColumn('number', 'Longitude'); 
    data.addColumn('number', 'Latitude'); 

    <? if( is_array($person_info) ) { 

         getTimeSeries($dbh, $table, $person_info[0]); 

       } else { 
         echo "No person exists close enough to your map click.  Please try 

again."; 

       } 

    ?> 
    table = new 

google.visualization.Table(document.getElementById('popup_table')); 

    table.draw(data, {width:500, showRowNumber:true}); 

 
    google.visualization.events.addListener(table, 'select', 

selectHandler); 

 

    function selectHandler() { 
      var selection = table.getSelection(); 

      var item = selection[0]; 

      var ts = data.getFormattedValue(item.row, 1); 

      var tsint = parseInt(ts); 
      window.opener.jumpToTimeStep(tsint); 

      window.opener.hiliteSegment(tsint); 

    } 

 
    // set initial state of table and space-time path on map 

    var max = data.getNumberOfRows(); 

    if( tidx < max ) { 

      table.setSelection([{row:tidx, column:null}]); 
      //window.opener.hiliteSegment(tidx); 

    } 

  } 

</script> 
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Selected Code from result.js 

<script type="text/javascript"> 

 
/** Build water depth chart **/ 

 

  $(document).ready(function() { 

    chart = new Highcharts.Chart({ 
      chart: { 

        renderTo: 'chartdiv', 

        type: 'area', 

        borderColor: '#bbb', 
        borderWidth: 2, 

        borderRadius: 5, 

        zoomType: 'x', 

        resetZoomButton: { 
          position: { 

            x: -10, 

            y: 10 

          }, 
          relativeTo: 'chart' 

        }, 

        events: { 

          click: function(event) { 
            jumpToTimeStep(Math.round(parseFloat(event.xAxis[0].value))); 

          } 

        } 

      }, 
      title: { 

        text: 'Water Depth at Selected Point Across All Time Steps' 

      }, 

      xAxis: { 
        title: { 

          text: 'Time Step' 

        } 

      }, 
      yAxis: { 

        title: { 

          text: 'Water Depth (m)' 

        } 
      }, 

      loading: { 

        labelStyle: { 

          top: '45%' 
        } 

      }, 

      tooltip: { 

        shared: true, 
        crosshairs: true 

      }, 

      plotOptions: { 

        series: { 
          lineWidth: 1 
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        }, 

        area: { 

          marker: { 
            enabled: false, 

          } 

        } 

      }, 
      credits: { 

        enabled:false 

      }, 

      series: [{ 
        name: 'water depth (m)', 

        showInLegend: false, 

        data: [] 

      }] 
    }); 

  }); 

 

 
  /** Set up map and related init **/ 

 

  function init() { 

 
    updateCounter(tidx); 

    newURL(tidx); 

 

    debugE = document.getElementById('debug'); 
 

    var lon = -123.929; 

    var lat = 45.996; 

    var zoom = 9; 
 

    var ctr_merc = OpenLayers.Layer.SphericalMercator.forwardMercator(lon, 

lat); 

    ctr_merc_x = ctr_merc.lon; 
    ctr_merc_y = ctr_merc.lat; 

 

    // openlayers 

    map = new OpenLayers.Map('map', { 
      units: "m", 

      maxResolution: 156543.0339, 

      maxExtent: new OpenLayers.Bounds(-20037508.34, -20037508.34, 

20037508.34, 20037508.34), 
      projection: epsg900913 

      //displayprojection: epsg4326 

    } ); 

 
    var ls = new OpenLayers.Control.LayerSwitcher(); 

    map.addControl(ls); 

 

    // base layers 
    gterrain = new OpenLayers.Layer.Google( 

      "Google Terrain", 
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      { type: google.maps.MapTypeId.TERRAIN, 

        maxZoomLevel: 15, 

        minZoomLevel: 4, 
        sphericalMercator: true 

      }); 

    groadmap = new OpenLayers.Layer.Google( 

      "Google Roadmap", 
      { type: google.maps.MapTypeId.ROADMAP, 

        minZoomLevel: 4, 

        maxZoomLevel: 19, 

        sphericalMercator: true 
      }); 

    ghybrid = new OpenLayers.Layer.Google( 

      "Google Hybrid", 

      { type: google.maps.MapTypeId.HYBRID, 
        minZoomLevel: 4, 

        maxZoomLevel: 19, 

        sphericalMercator: true 

      }); 
    gsatellite = new OpenLayers.Layer.Google( 

      "Google Satellite", 

      { type: google.maps.MapTypeId.SATELLITE, 

        minZoomLevel: 4, 
        maxZoomLevel: 19, 

        sphericalMercator: true 

      }); 

    esri_ocean = new OpenLayers.Layer.ArcGIS93Rest( 
      "ESRI Ocean Basemap", 

 

"http://services.arcgisonline.com/ArcGIS/rest/services/Ocean_Basemap/MapSer

ver/export", 
      { layers: "show:0", 

        srs: "3857", 

        format: "jpg" 

      }); 
 

    // vector layers 

    popl = new OpenLayers.Layer.MapServer( 

      "Population", 
      "http://newvole.nacse.org/cgi-bin/mapserv", { 

        map: '/a1/www/mapfiles/hsd.map', 

        layers: 'alive dead alldead', 

        format: 'image/png', 
        tidx: tidx 

      },{ 

        singleTile: true, 

        isBaseLayer: false, 
      }); 

    runup = new OpenLayers.Layer.MapServer( 

      "Wave Runup", 

      "http://newvole.nacse.org/cgi-bin/mapserv", { 
        map: '/a1/www/mapfiles/hsd.map', 

        layers: 'runup', 
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        format: 'image/png', 

        data: data 

      },{ 
        singleTile: true, 

        isBaseLayer: false, 

      }); 

 
    var wavept_style = OpenLayers.Util.extend({}, 

OpenLayers.Feature.Vector.style['default']); 

      wavept_style.fillOpacity = 1; 

      wavept_style.strokeColor = "black"; 
      wavept_style.fillColor = "yellow"; 

      wavept_style.pointRadius = 4; 

      wavept_style.strokeWidth = 2; 

 
    wavept = new OpenLayers.Layer.Vector("Wave Chart Point", { 

      style: wavept_style, 

      isBaseLayer: false, 

      displayInLayerSwitcher: true, 
      numZoomLevels: gsatellite.numZoomLevels, 

      resolutions: gsatellite.resolutions 

    }); 

 
    runup.setOpacity(.6); 

 

    runup.events.register( "loadend", runup, runupOnload ); 

    popl.events.register( "loadend", popl, poplOnload ); 
 

    map.addLayers([gterrain, groadmap, ghybrid, gsatellite, esri_ocean, 

runup, popl]); 

    map.addLayer( wavept ); 
    map.setBaseLayer(ghybrid); 

    map.setCenter(new OpenLayers.LonLat(ctr_merc_x, ctr_merc_y), zoom); 

 

    // Handle map click - wave chart vs. person data table 
    map.events.register('click', map, function(e) { 

      var xy = map.getLonLatFromViewPortPx(e.xy); 

      if( $("input[name='mapclick']:checked").val() == 'table' ) { // 

display data table 
        var geo = getLatLon(xy); 

        var call = 'table.php?table=' + table + '&lon=' + geo.x + '&lat=' + 

geo.y + '&tidx=' + tidx; 

        var config = 
'height=700,width=600,scrollbars=yes,toolbar=no,menubar=no,location=no,dire

ctories=no,status=no'; 

        popwin = window.open(call, 'tablewin', config); 

        pathHandler(table, geo.x, geo.y, tidx); 
      } else { // update water depth chart 

        chart.showLoading(); 

        getWaveHeights(xy, numsteps, rows, cols, htfile, minx, miny, maxx, 

maxy); 
        addPoint(xy); 

      } 



307 
 

 

    }); 

 

    // initial message above chart 
    $('#chartmsg').html(chart_msg_pre + '<span style="color:red;">(click 

map to select point)</span>' + chart_msg_suf); 

    addPlotLine(tidx+1); 

 
    // starting condition for counter - alive_ct comes from 

result/index.php 

    $('#alivenum').html(alive_ct[0]); 

    $('#totalnum').html(alive_ct[0]); 
  } 

 

  function isArray(a) { 

    return Object.prototype.toString.apply(a) === '[object Array]'; 
  } 

 

  function forward() { 

    if(tidx < img_max) { 
      tidx++; 

      newURL(tidx); 

      updateCounter(tidx); 

      $('#alivenum').html(alive_ct[tidx]); 
      redrawLayers(); 

      if( typeof(stpath_layer) != 'undefined' ) { 

        hiliteSegment(tidx); 

      } 
    } 

  } 

 

  function back() { 
    if(tidx > img_min) { 

      tidx--; 

      newURL(tidx); 

      updateCounter(tidx); 
      $('#alivenum').html(alive_ct[tidx]); 

      redrawLayers(); 

      if( typeof(stpath_layer) != 'undefined' ) { 

        hiliteSegment(tidx); 
      } 

    } 

  } 

 
  function redrawLayers() { 

    runup.params.data = data; 

    popl.params.tidx = tidx; 

 
    if( runup.visibility ) { 

      u = runup.grid[0][0].url; 

      out = u.replace(/runup_\d{5}/, 'runup_'+img); 

      runup.grid[0][0].imgDiv.src = out; 
    } 
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    if( popl.visibility ) { 

      popl_loading = 1; 

      popl.redraw(); 
    } 

 

    removePlotLine(); 

    addPlotLine(tidx); 
  } 

 

  function runupOnload() { 

    runup_loading = 0; 
    animateMap(); 

  } 

 

  function poplOnload() { 
    popl_loading = 0; 

    animateMap(); 

  } 

 
  function animateMap() { 

    // hack to prevent OpenLayers from displaying lingering pop'l layer 

    // on zoom event during animation 

    if(animating) { 
      if(popl_loading == 0 && runup_loading == 0) { 

        $('#OpenLayersDiv181').hide();  

        forward(); 

      } 
    } 

  } 

 

  function updateCounter(imageNum) { 
    count = document.getElementById('count'); 

    // Note: the text below makes the count one-based, for user ease 

    //count.innerHTML = '<b>'+(tidx+1)+'</b> of <b>'+readable_max+'</b>'; 

    count.innerHTML = '<b>'+(tidx)+'</b> of <b>'+numsteps+'</b>'; 
  } 

 

  // this is ONLY used to toggle layer status based on user click 

  function layerControl(clickedLayer) { 
    if( layerStatus[clickedLayer] == true ) { 

      layerStatus[clickedLayer] = false; 

    } else { 

      layerStatus[clickedLayer] = true; 
    } 

 

    layerString() 

    newURL(tidx); 
  } 

 

  // build new LAYERS string to go in mapserv CGI call 

  function layerString() { 
    // reset LAYERS string 

    layersOn = 'LAYERS='; 
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    for( i in layerStatus ) 

    { 
      if( layerStatus[i] == true ) 

      { 

        layersOn = layersOn + i + " "; 

      } 
    } 

  } 

 

  function newURL(imageNum) { 
    img = sprintf('%05d', imageNum); 

    data = model+"/"+run+"/runup_"+img+".tif"; 

  } 

 
  function imageJump(selectObj) { 

    var idx = selectObj.selectedIndex; 

    var dest = selectObj.options[idx].value; 

    tidx = Math.round(parseFloat(dest)); 
    newURL(dest); 

    updateCounter(dest); 

    $('#alivenum').html(alive_ct[dest]); 

    if( typeof(stpath_layer) != 'undefined' ) { 
      hiliteSegment(idx); 

    } 

    redrawLayers(); 

  } 
 

  function jumpToTimeStep(num) { 

    tidx = num; 

    newURL(num); 
    updateCounter(num); 

    $('#alivenum').html(alive_ct[num]); 

    redrawLayers(); 

  } 
 

  function addPlotLine(ts) { 

    chart.xAxis[0].addPlotLine({ 

      value: ts, 
      color: 'rgb(255, 0, 0)', 

      width: 1, 

      id: 'waveline' 

    }); 
  } 

 

  function removePlotLine() { 

    chart.xAxis[0].removePlotLine('waveline'); 
  } 

 

  function buttonHandler(imageID,button) { 

    test = document.getElementById(imageID); 
    test.src = "images/" + button; 

    return true; 
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  } 

 

  function getLatLon(xy) { 
    var src = new Proj4js.Proj('EPSG:900913'); 

    var dst = new Proj4js.Proj('EPSG:4326'); 

    var pt = new Proj4js.Point(xy.lon, xy.lat); 

    Proj4js.transform(src, dst, pt); 
    return pt; 

  } 

 

  function addPoint(xy) { 
    wavept.removeAllFeatures(); 

    var point = new OpenLayers.Geometry.Point(xy.lon,xy.lat); 

    wavept_feature = new OpenLayers.Feature.Vector(point); 

    wavept.addFeatures([wavept_feature]); 
  } 

 

  function roundNum(num, dec) { 

    var newnum = Math.round(num*Math.pow(10,dec))/Math.pow(10,dec); 
    return newnum; 

  } 

 

  function pathHandler(table, x, y, tidx) { 
    getPathData(table, x, y, tidx); 

  } 

 

  function removeSTPath() { 
    if( typeof(stpath_layer) != 'undefined' ) { 

      map.removeLayer(stpath_layer); 

      map.removeLayer(stendpt_layer); 

    } 
  } 

 

  function drawSTPath(geojson) { 

    var features = []; 
    var data = new OpenLayers.Format.GeoJSON(); 

    var file = '/temp/' + geojson + '.json'; 

 

    // get geojson output file from handler ajax call to ogr2ogr 
    OpenLayers.Request.GET({ 

      url: file, 

      async: false, 

      success: function(r){ 
        features = data.read(r.responseText); 

      }, 

      failure: function(x){ 

        alert('Could not retrieve path data.'); 
      } 

    }); 

 

    stpath_layer = new OpenLayers.Layer.PointTrack('Space-Time Path', { 
      isBaseLayer: false 

      // styles applied below, per segment 
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    }); 

 

    map.addLayer(stpath_layer); 
    stpath_layer.addNodes(features); 

 

    // alternate path segment colors to denote movement per time step 

    var c, ct = features.length; 
    for(i = 0; i < (ct-1); i++) { 

      i % 2 != 0 ? c = '#ff1493' : c = '#000078'; 

      stpath_layer.features[i].style = OpenLayers.Util.applyDefaults({ 

        strokeColor: c, 
        strokeWidth: 5, 

        strokeOpacity: 1. 

      }); 

    } 
 

    stpath_layer.redraw(); 

 

    // hilite path segment for current time step 
    if( tidx < stpath_layer.features.length ) { 

      hiliteSegment(tidx); 

    } 

 
    // create styled start/end points for path 

 

    stendpt_layer = new OpenLayers.Layer.Vector('Path Start/End Points'); 

    stendpt_layer.addFeatures([ 
      new OpenLayers.Feature.Vector(features[0].geometry), 

      new OpenLayers.Feature.Vector(features[ct-1].geometry) 

    ]); 

    stendpt_layer.features[0].style = OpenLayers.Util.applyDefaults({ 
      strokeColor: '#00ff00', 

      strokeWidth: 3, 

      pointRadius: 9 

    }, stendpt_layer.styleMap.styles.default.defaultStyle); 
    stendpt_layer.features[1].style = OpenLayers.Util.applyDefaults({ 

      strokeColor: '#ff0000', 

      strokeWidth: 3, 

      pointRadius: 9 
    }, stendpt_layer.styleMap.styles.default.defaultStyle); 

    stendpt_layer.redraw(); 

    map.addLayer(stendpt_layer); 

 
  } 

 

  // Hilite currently selected time step 

  function hiliteSegment(tidx) { 
    var segstyle = OpenLayers.Util.extend({}, 

OpenLayers.Feature.Vector.style['default']); 

      segstyle.strokeColor= '#ffe303'; 

      segstyle.strokeWidth= 5; 
      segstyle.fontColor= '#0ff'; 

      segstyle.fontSize= '14px'; 
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      segstyle.fontWeight= 'bolder'; 

      segstyle.labelXOffset= 15; 

      segstyle.labelYOffset= 10; 
      segstyle.label= $.trim(tidx); 

 

    if( typeof(prev_tidx) != 'undefined' ) { // restore color of 

previously-selected segment 
      stpath_layer.features[prev_tidx].style.strokeColor = prev_color; 

      stpath_layer.features[prev_tidx].style.label = false; 

    } 

 
    if( typeof(stpath_layer.features[tidx]) != 'undefined' ) { 

      prev_color = stpath_layer.features[tidx].style.strokeColor; 

      prev_tidx = tidx; 

      //stpath_layer.features[tidx].style.strokeColor = '#ffe303'; 
      stpath_layer.features[tidx].style = segstyle; 

      stpath_layer.redraw(); 

    } 

  } 
 

/** AJAX calls **/ 

 

  function getWaveHeights(xy, numsteps, rows, cols, htfile, minx, miny, 
maxx, maxy){ 

    $.getJSON("../rpc.php?proc=get_wave_heights&x=" + xy.lon + "&y=" + 

xy.lat + "&numsteps=" + 

              numsteps + "&rows=" + rows + "&cols=" + cols + "&htfile=" + 
htfile + "&minx=" + 

              minx + "&miny=" + miny + "&maxx=" + maxx + "&maxy=" + maxy, 

      function(data) { 

        var cd = $.parseJSON(data); // convert to js array object 
        var cd_cm = new Array; 

        $.each(cd, function(idx, val) { 

          cd_cm[idx] = roundNum((val/100), 2); // convert cm to m, round to 

2 decimal places, add to new array 
        }); 

        chart.series[0].setData(cd_cm); // assign data series in chart 

        var geo = getLatLon(xy); 

        $('#chartmsg').html(chart_msg_pre + Math.round(geo.x * 10000)/10000 
+ 

                            ', ' + Math.round(geo.y * 10000)/10000 + 

chart_msg_other + 

                            chart_msg_suf); // update lat/lon coords above 
chart 

        chart.hideLoading(); // hide loading state 

      } 

    ); 
  } 

 

  function getPathData(table, x, y, tidx){ 

    $.getJSON("../rpc.php?proc=get_path_data&x=" + x + "&y=" + y + 
"&table=" + table + "&tidx=" + tidx, 

      function(data) { 
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        var pd = data; 

        isArray(pd) ? alert('Map click was not close enough to a person.') 

: drawSTPath(pd); 
      } 

    ); 

  } 
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Appendix H:  Sample Area-based GridServer Method 

The GridServer includes a number of method functions, each written to perform a 

specific type of processing task.  Area-based GridServer requests are more complex 

than point-based (i.e., single grid cell) requests, requiring validation of the bounding 

box or spatial mask, clipping, statistical calculation(s), and multiple file output (most 

of those operations exist in other functions not displayed here).  Both the “temporal 

first” and “spatial first” calculations are performed in every area-based GridServer 

method function.  The Python function below processes requests for statistical 

calculations a range of months for a defined region. 

 

def _stats_area_months(self, request, 

                       start=None, 

                       end=None, 
                       pstat=None, 

                       param=None): 

 

  """  
  Statistic calculated across area over time (months). 

  Returns a result grid (or grids) and data values as output. 

  """ 

 
  log = request.logger 

  start = start or request.start 

  end = end or request.end 

  param = param or request.param 
  pstat = pstat or request.pstat 

 

  ret = {param: {}} 

 
  log.info("  _stats_area_months   start:%s end:%s" % ( 

start.strftime("%Y/%m"), end.strftime("%Y/%m"))) 

 

  # clip bounds 
  self.init_bounds(request) 

 

  # get keys for requested monthly grids 

  monthly_keys = self.get_monthly_keys( start, end ) 
  log.debug("    monthly_key handles: %s" % ",".join( monthly_keys )) 
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  if not self.validate_keys(request, "monthlies", param, monthly_keys): 

    log.error("Could not get monthly data") 

  else: 
    monthly_array = self.get_clipped_mdarray(request, "monthlies", param, 

monthly_keys) 

    if monthly_array is None: 

      log.error("Could not make clipped monthly array") 
    else: 

      if request.spatial_mask is not None: 

        monthly_array[:,request.spatial_mask] = numpy.nan 

 
        if pstat == 'pca': 

          pca_grids, pca_eigval = self.get_pca_grids(monthly_array) 

          pca_outfiles = [] 

          for i in range(len(pca_grids)): 
 

            if request.spatial_mask is not None: 

              pca_grids[i][request.spatial_mask] = numpy.nan 

 
            name = request.gricket + "_pca" + str(i+1) 

            new_filename = name + ".bil" 

            new_path = os.path.join( request.output_dir, new_filename ) 

            new_ds = self.array_2_dataset( pca_grids[i], request.bounds, 
new_path ) 

            pca_outfiles.append( os.path.join(request.gricket, 

new_filename) ) 

          ret["pca_grids"] = pca_outfiles 
          ret["pca_eigval"] = pca_eigval 

        else: 

          spatial_vals = self.get_spatial_values(param, pstat, 

monthly_array) 
          ret = {param: self._stats_param_output(spatial_vals, param)} 

          temporal_grid = self.get_temporal_grid(pstat, monthly_array) 

 

          if request.spatial_mask is not None: 
            temporal_grid[request.spatial_mask] = numpy.nan 

 

          name = request.gricket + "_" + pstat 

          new_filename = name + ".bil" 
          new_path = os.path.join( request.output_dir, new_filename ) 

          new_ds = self.array_2_dataset(temporal_grid, request.bounds, 

new_path ) 

          ret["grid"] = os.path.join( request.gricket, new_filename ) 
        cells_used = numpy.count_nonzero(~numpy.isnan(monthly_array[0])) 

        ret["extent"] = [request.bounds.leftlon, request.bounds.toplat, 

                         request.bounds.rightlon, request.bounds.bottomlat] 

        ret["size"] = [request.bounds.cols, request.bounds.rows] 
        ret["cells_used"] = cells_used 

        return ret 
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Appendix I:  GridServer Area-based Statistical Calculations 

The GridServer calculates area-based statistics using the “temporal first” and “spatial 

first” methods.  In the “temporal first” method (essentially a form of 

multidimensional map algebra), the output product is a grid.  In the “spatial first” 

method, the statistic is calculated across all cells in each grid, resulting in a single 

output value per grid.  The array of values produced by that process is the output 

product.  The two Python functions below each get called as part of an area-based 

GridServer request. 

 
def get_spatial_values(self, param, pstat, data): 

  ### Computes mean across each grid area and returns the resulting set 

  ### of values. 
  ### AKA "spatial first" 

 

  if param == 'ppt': 

    rnda = 3 
    rndb = 2 

    rndc = 1 

  else: 

    rnda = 2 
    rndb = 1 

    rndc = 1 

 

  spatial_vals = [] 
 

  # convert nan's if they exist (ie, bbox is partly over ocean) 

  # this approach uses a numpy masked array to mask the nan's 

 
  mdata = numpy.ma.masked_array(data, numpy.isnan(data)) 

 

  for i in mdata: 

    if( pstat == 'mean' ): 
      spatial_vals.append(round(numpy.ma.mean(i), rnda)) 

    elif( pstat == 'min' ): 

      spatial_vals.append(round(numpy.ma.min(i), rndb)) 

    elif( pstat == 'max' ): 
      spatial_vals.append(round(numpy.ma.max(i), rndb)) 

    elif( pstat == 'median' ): 

      spatial_vals.append(round(numpy.ma.median(i), rndb)) 

    elif( pstat == 'stddev' ): 
      spatial_vals.append(round(numpy.ma.std(i, ddof=1), rndc)) 
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  return spatial_vals 

 
 

def get_temporal_grid(self, pstat, data): 

  ### Computes mean thru all columns and returns a new grid (ie, map 

  ### algebra). 
  ### AKA "temporal first" 

  ### axis=0 computes thru columns 

 

  # convert nan's if they exist (ie, bbox is partly over ocean) 
  # this approach uses a numpy masked array to mask the nan's 

 

  fill_val = -9999. 

  mdata = numpy.ma.masked_array(data, numpy.isnan(data)) 
 

  if( pstat == 'mean' ): 

    grid = numpy.ma.mean(mdata, axis=0) 

  elif( pstat == 'min' ): 
    grid = numpy.ma.min(mdata, axis=0) 

  elif( pstat == 'max' ): 

    grid = numpy.ma.max(mdata, axis=0) 

  elif( pstat == 'median' ): 
    grid = numpy.ma.median(mdata, axis=0) 

  elif( pstat == 'stddev' ): 

    grid = numpy.ma.std(mdata, axis=0, ddof=1) 

 
  outgrid = grid.filled(fill_val) 

  return outgrid 

 
 
 

  



318 
 

 

Appendix J:  PCA Calculation in Python 

The GridStats system allows PCA to be performed across a set of PRISM climate 

grids for a defined area, resulting in an output set of grids representing the principal 

components in descending order of percentage of variance explained.  The NumPy 

Python module contains core functionality that can be used to manipulate grids as 

multidimensional arrays, as well as a set of linear algebra functions (numpy.linalg) 

that enable the calculations necessary for PCA.  The Python function below is called 

by any GridServer area-based method when a PCA-based request is submitted. 

 

def get_pca_grids(self, data): 

  ### Computes principal components for the requested set of input grids. 

  ### Returns the set of principal component arrays to be turned into 
  ### grids, and an array of the matching eigenvectors expressed as 

  ### percentage of variance explained. 

 

  fill_val = -9999. 
  mdata = numpy.ma.masked_array(data, numpy.isnan(data)) 

 

  # Get shape of 3D grids array and create a zero'd 2D array the same size, 

  # then fill new 2D array with flattened 3D subarrays. 
  # This is all to get a flattened array (one entire grid per subarray), 

  # so the covariance matrix can be properly calculated across grids. 

   

  d1,d2,d3 = mdata.shape 
  mdata2 = numpy.ma.zeros([d1,d2*d3]) 

  for i in range(len(mdata)): 

    mdata2[i] = mdata[i].flatten() 

 
  # Mean-center the flattened array...axis=0 calculates the column mean, 

  # which is subtracted from each array element in that column. 

   

  mdata2 -= numpy.ma.mean(mdata2, axis=0) 
 

  # Scale the mean-centered array...axis=0 calculates the column SD, 

  # which is then used to divide each array element in that column. 

   
  mdata2 /= numpy.ma.std(mdata2, axis=0, ddof=1) 

 

  # Calculate the covariance matrix of the mean-centered, scaled array. 
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  covar = numpy.ma.cov(mdata2) 

 

  # Use numpy.linalg.eig to calculate the eigenvalues and eigenvectors 
  # of the covariance matrix. By its nature the covariance matrix is 

  # always a square array, so we can properly use linalg.eig to do this. 

   

  eval, evec = la.eig(covar) 
 

  # Get array index for the eigenvalues, such that the largest eigenvalues 

  # are first in the sort order. The index is used to sort both the 

  # eigenvalues and the eigenvectors. 
  # That is, the eigenvectors are properly sorted to maintain their 

  # association with the matching eigenvalues. 

   

  eval_abs = numpy.absolute(eval) 
  idx = eval_abs.argsort()[::-1] 

  sorted_eval = eval_abs[idx] 

  sorted_evec = evec[idx] 

 
  # Use the properly sorted (high to low) eigenvalues and associated 

  # eigenvectors to calculate new arrays representing the principal 

  # components. The new arrays are stored in the pc_grids numpy array 

  # and returned. Matching eigenvalues are converted to percentage 
  # variance explained, and placed in eigval[]. 

  # 

  # First  PC is calculated as: 

  #   PC1=(evec_col0_val0*mdata0)+(evec_col0_val1*mdata1)+... 
  # Second PC is calculated as: 

  #   PC2=(evec_col1_val0*mdata0)+(evec_col1_val1*mdata1)+... 

  # and so on... 

   
  eval_sum = numpy.sum(sorted_eval) 

  pc_grids = numpy.zeros([d1,d2,d3]) 

  eigval = [] 

  val = 0 
 

  for i in pc_grids: 

    i = numpy.ma.zeros([d2,d3]) 

    for j in range(len(mdata)): 
      i += sorted_evec[j][val] * mdata[j] 

    pc_grids[val] = i.filled(fill_val) 

    eigval.append(round((sorted_eval[val]/eval_sum)*100, 2)) 

    val += 1 
 

  return pc_grids, eigval 
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Appendix K:  GridStats Client-side Code Samples 

The initial settings page in the GridStats web interface incorporates hundreds of lines 

of JavaScript code to perform tasks such as date checks, menu updates, and 

validation of input settings prior to request submission.  Most of these tasks are 

handled using the jQuery JavaScript library and are executed solely on the client-

side, while others involve AJAX methods to asynchronously retrieve server-side data 

to update client-side options.  The code samples below are representative of the 

larger set of client-side code in the system. 

 

Sample Change Function 

Each radio button group on the input settings page has dynamic client-side 

functionality attached to the change event.  The jQuery $.change() function was 

used for this purpose rather than explicitly defining an onchange() call in the HTML 

element.  This approach allows any necessary logic to be processed anytime the user 

makes a change to that radio button selection.  In this example, the Spatial Scale 

radio button group captures a change whenever the user clicks among Point, Area, or 

Entire Grid selections, or the sub-selections under Area (Draw box, State, County, 

Watershed).  Certain commands and functions must be processed depending upon 

which radio button is selected (e.g., if Area is selected, the “Summary Statistics” 

choice is disabled, and if “Draw Box” is then selected by default, a function is called 

to enable box drawing). 
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// for when point scale changes to area scale and vice-versa 

$("input[name='spatial']").change(function(e){ 

  removePolyLayers(); 
  removeBoxLayer(); 

  disableBoxDraw(); 

  disablePoint(); 

  setStat(); 
  $('#click_map_text').removeClass('red_text'); 

  if( $(this).val() == 'point' ) { 

    disableArea(); 

    uncheckSubAreas(); 
    on_select_map_click(); 

    $('#click_map_text').addClass('red_text'); 

  } else if( $(this).val() == 'area' ) { 

    removePointLayer(); 
    enableBoxDraw(); 

    $('#pca').removeAttr('disabled'); 

    $('#pca_label').removeClass('disabled'); 

    $('#draw_box_text').addClass('red_text'); 
    if( !$("input[name='areas']:checked").val() ) { 

      $('#box').prop('checked', true); 

    } 

  } else if( $(this).val() == 'full' ) { 
  $('#draw_box_text').removeClass('red_text'); 

    removePointLayer(); 

    uncheckSubAreas(); 

    if( $('#pca').prop('checked', true) ) { 
      $('#pca').attr('disabled', 'disabled'); 

      $('#pca_label').addClass('disabled'); 

      $('#mean').prop('checked', true); 

    } 
  } 

}); 

 

Sample Menu Updater 

In the date selection menus for daily data, the selectable days must be adjusted 

depending upon the currently selected month (i.e., if June is selected, day 31 must be 

disabled as a possible selection).  This happens dynamically due to the updateDays() 

function below, which indexes into the mo_days array and automatically enables or 

disables days depending upon the month.  The function properly handles February 29 
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in both leap years and regular years.  The jQuery statements used in this function are 

dynamically assembled based on input values. 

 

var mo_days = Array(31,28,31,30,31,30,31,31,30,31,30,31); 

 
// disables/enables days of month in <select>s based on new selection 

// called when changes are made to month dropdowns 

// also called from updateMonths() 

function updateDays(pre, se) { 
 

  var sy, sm, sd; 

  var sy = parseInt($('#'+pre+'_'+se+'yr').val(), 10); 

  var sm = parseInt($('#'+pre+'_'+se+'mo').val(), 10); 
  var sd = parseInt($('#'+pre+'_'+se+'dy').val(), 10); 

  var ld = mo_days[sm-1]; 

 

  // assign 29 as last day of Feb in a leap year 
  if( sm == 2 ) { 

    if( sy % 400 == 0 ) { // leap year 

      ld = 29; 

    } else if( sy % 100 == 0 ) { // not leap year 
      ld = 28; 

    } else if( sy % 4 == 0 ) { // leap year 

      ld = 29; 

    } else { // not leap year 
      ld = 28; 

    } 

  } 

 
  // re-enable any options that were disabled earlier 

  $('#'+pre+'_'+se+'dy *').attr('disabled', false); 

 

  // disable any days (i.e., 31) that don't exist in current month 
  if( ld < 31 ) { 

    for( var j=ld+1; j<=31; j++ ) { 

      $('#'+pre+'_'+se+'dy option[value="'+j+'"]').attr('disabled', true); 

    } 
    // handle leap year - make sure 29 Feb is not disabled 

    if( ld == 29 ) { 

       $('#'+pre+'_'+se+'dy option[value="29"]').attr('disabled', false); 

    } 
  } 
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Sample Validator 

This sample function validates the selected number of input grids for certain 

statistics – certain statistics such as PCA require at least three input grids.  This 

function ensures that the minimum number is selected prior to submission, avoiding 

any server-side errors that would result from such a request.  In this function, many 

of the jQuery statements are dynamically constructed based on current menu 

selections. 

 

var elm = 'border'; 

var sty = '1px solid red'; 

 
function validateNumGrids(pstat) { 
  var resp = 'You must select at least 3 grids when calculating 

'+pstat+'.'; 

  if( $('#'+pstat).prop('checked') == true ) { 

    if( $('#mo_in_yr').prop('checked') == true ) { 
      if( $('#miy_endyr').val() - $('#miy_startyr').val() < 3 ) { 

        $('#miy_startyr').css(elm,sty); 

        $('#miy_endyr').css(elm,sty); 

        alert(resp); 
        return false; 

      } 

    } 

    if( $('#mo_in_rng').prop('checked') == true ) { 
      start = $('#mir_startyr').val() + '/' + $('#mir_startmo').val() + '/' 

+ 01; 

      end = $('#mir_endyr').val() + '/' + $('#mir_endmo').val() + '/' + 01; 

      chk = calcDays(start, end); 
      if( chk < 58 ) { // under 3 months, accounting for inclusion of Feb 

        $('#mir_startyr').css(elm,sty); 

        $('#mir_startmo').css(elm,sty); 

        $('#mir_endyr').css(elm,sty); 
        $('#mir_endmo').css(elm,sty); 

        alert(resp); 

        return false; 

      } 
    } 

    if( $('#days_in_rng').prop('checked') == true ) { 

      start = $('#dir_startyr').val() + '/' + $('#dir_startmo').val() + '/' 

+ $('#dir_startdy').val(); 
      end = $('#dir_endyr').val() + '/' + $('#dir_endmo').val() + '/' + 

$('#dir_enddy').val(); 
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      chk = calcDays(start, end); 

      if( chk < 3 ) { 

        $('#dir_startyr').css(elm,sty); 
        $('#dir_startmo').css(elm,sty); 

        $('#dir_startdy').css(elm,sty); 

        $('#dir_endyr').css(elm,sty); 

        $('#dir_endmo').css(elm,sty); 
        $('#dir_enddy').css(elm,sty); 

        alert(resp); 

        return false; 

      } 
    } 

  } 

  return true; 

} 

 
 

Sample AJAX Call 

Dynamically-filled menus on the input settings page, such as the County menu and 

HUC Name menu, must be filled immediately after the user makes a selection in the 

previous “State” menu.  This is done by automatically sending a request to a PHP 

script on the server (rpc.php in the function below), which formulates and submits a 

query to the database, receives the return, processes it in to a JSON string, and 

returns it to the calling function on the client.  The calling function, built using the 

jQuery $.getJSON() approach, it is able to process the JSON return and dynamically 

populate the HUC menus based on the State selection.  In the case of the Watershed 

menu, a spatial database query is performed to retrieve all HUCs that intersect with 

the selected state.  That set is returned to this function, which populates the HUC 

Name and HUC Code menus. 

 

function populateHucs(state_name, cookie_load_menu, cookie_zoom_poly){ 

  $.getJSON("rpc.php?proc=hucs&state2=" + state_name, 

    function(data) { 

      var ops1 = ['<option value="null">- HUC Name -</option>']; 
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      var ops2 = ['<option value="null">- HUC Code -</option>']; 

      $.each(data, function(i,row) { 

        // IDs are used as values so the menus can be synced 
        ops1.push('<option value="' + row[0] + '">' + row[1] + '</option>') 

        ops2.push('<option value="' + row[0] + '">' + row[2] + '</option>') 

      }); 

      $("#huc_name").html( ops1.join('') ); 
      $("#huc_code").html( ops2.join('') ); 

      $('#hucs_loader').html('&nbsp;'); 

      // need to do from_cookie here rather than in cookie function area, 

      // so that these can fire after AJAX call 
      if( cookie_load_menu ) { 

        $('#huc_name option[value="' + $.cookie('huc_name') + 

'"]').attr('selected', 'selected'); 

        $('#huc_code option[value="' + $.cookie('huc_name') + 
'"]').attr('selected', 'selected'); 

        if( cookie_zoom_poly ) { 

          zoomToPoly('huc'); 

        } 
      } 

    } 

  ); 

} 
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Appendix L:  Calculating Centered Moving Averages 

The interactive charts on the GridStats result pages are built dynamically by 

processing the data returned from a GridServer request and formatting the values to 

work with the client-side Highcharts JavaScript library.  In addition to the data 

values, centered moving averages are calculated and plotted on the same chart.  Each 

time series includes a pair of moving average windows (e.g., monthly uses 12-month 

and 5-month windows) on the chart.  The centered moving averages are calculated 

using a PHP function that accepts the data values array and a window size.  Odd-

numbered windows are fairly easy to calculate, since two data values on either side 

of the window center are used (e.g., values 1-2 and 4-5 in a size-5 window).  Even-

numbered windows are more difficult to process and require essentially a double 

moving average operation to calculate the centered values. 

 

/* Creates an array of centered moving average data values */ 

/* for a given data array and window size.                 */ 

/* Correctly handles both even- and odd-sized windows.     */ 
 

function centeredMovingAvg($data, $win) { 

 

  // determine whether win is odd or even 
  $odd = $win % 2 == 0 ? false : true; 

 

  $param = $_POST['param']; 

  $dec = $param != 'ppt' ? '%01.1f' : '%01.2f'; 
  $ct = count($data); 

 

  // set proper halfwin for odd vs. even 

  if( $odd ) { 
    $halfwin = floor($win/2); //ie, win=5 gives halfwin=2 

  } else { 

    $halfwin = $win/2; //ie, win=10 gives halfwin=5 

  } 
 

  $end = $ct - $halfwin; 
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  // assign output nulls for unused data points at beginning of range 

  for( $i=0; $i<$halfwin; $i++ ) { 
    $out[$i] = 'null'; 

  } 

 

  if( $odd ) { 
    // calculate centered moving average across odd window 

    for( $i=$halfwin; $i<$end; $i++ ) { 

      $sum = 0; 

      for( $j=($i-$halfwin); $j<=($i+$halfwin); $j++ ) { 
        $sum += $data[$j]; 

      } 

      $out[$i] = sprintf($dec, $sum/$win); 

    } 
  } else { 

    // calculate centered moving average across even window 

    // this is a 2-by-X centering method, where X is the even window value 

    $cf1 = 1/$win; // coeff for calculating non-endpoint vals 
    $cf2 = $cf1/2; // coeff for calculating endpoint vals 

    for( $i=$halfwin; $i<$end; $i++ ) { 

      $sum = 0; 

      for( $j=($i-$halfwin); $j<=($i+$halfwin); $j++ ) { 
        // window of 10 will have val index range of 0-10 (11 vals) 

        $coeff = $j == ($i-$halfwin) || $j == ($i+$halfwin) ? $cf2 : $cf1; 

        $sum += $coeff * $data[$j]; 

      } 
      $out[$i] = sprintf($dec, $sum); 

    } 

  } 

 
  // assign output nulls for unused data points at end of range 

  for( $i=$end; $i<$ct; $i++ ) { 

    $out[$i] = 'null'; 

  } 
 

  // can end up with an array full of nulls with short time spans 

  // this messes up chart ... so return false and don't chart it at all 

  if( count(array_unique($out)) == 1 && $out[0] == 'null' ) { 
    return false; 

  } else { 

    return $out; 

  } 
} 
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