

Automated Web-based Analysis and Visualization of Spatiotemporal Data

by
Dylan B. Keon

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented November 16, 2012
Commencement June 2013

Committee in Charge:
Dawn Wright, Major Adviser, Geography Program, College of Earth, Ocean and

Atmospheric Sciences (CEOAS)
Anne Nolin, Geography Program, CEOAS

Chris Daly, School of Chemical, Biological and Environmental Engineering and
Northwest Alliance for Computational Science & Enginering

Mike Bailey, School of Electrical Engineering and Computer Science
Rick Colwell, Graduate Council Representative, CEOAS

AN ABSTRACT OF THE DISSERTATION OF

Dylan B. Keon for the degree of Doctor of Philosophy in Geography presented on
November 16, 2012.
Title: Automated Web-based Analysis and Visualization of Spatiotemporal Data.

Abstract approved:
 Dawn J. Wright

Most data are associated with a place, and many are also associated with a moment

in time, a time interval, or another linked temporal component. Spatiotemporal data

(i.e., data with elements of both space and time) can be used to assess movement or

change over time in a particular location, an approach that is useful across many

disciplines. However, spatiotemporal data structures can be quite complex, and the

datasets very large. Although GIS software programs are capable of processing and

analyzing spatial information, most contain no (or minimal) features for handling

temporal information and have limited capability to deal with large, complex

multidimensional spatiotemporal data. A related problem is how to best represent

spatiotemporal data to support efficient processing, analysis, and visualization.

In the era of “big data,” efficient methods for analyzing and visualizing large

quantities of spatiotemporal data have become increasingly necessary. Automated

processing approaches, when made scalable and generalizable, can result in much

greater efficiency in spatiotemporal data analysis. The growing popularity of web

services and server-side processing methods can be leveraged to create systems for

processing spatiotemporal data on the server, with delivery of output products to the

client. In many cases, the client can be a standard web browser, providing a

common platform from which users can interact with complex server-side processing

systems to produce specific output data and visualizations. The rise of complex

JavaScript libraries for creating interactive client-side tools has enabled the

development of rich internet applications (RIAs) that provide interactive data

exploration capabilities and an enhanced user experience within the web browser.

This dissertation examines the automated web-based analysis and visualization of

spatiotemporal data in the context of three distinct projects. Although particular

methods were developed to solve the stated problems for each project, in most cases

those methods can be generalized to other disciplines or computational domains

where similar problem sets exist. Chapter 2 describes methods of dynamically

selecting and preparing data for tsunami modeling, and processing the resulting time-

series output data. Chapter 3 describes simulation modeling of potential human

evacuation response to a modeled tsunami inundation event, with methods for the

web-based definition of a simulation scenario and animated, interactive visualization

of the simulation output. Chapter 4 describes methods for web-based calculation and

visualization of climate grid statistics over varying spatial and temporal scales,

including methods for fast automated server-side grid processing.

©Copyright by Dylan B. Keon
November 16, 2012
All Rights Reserved

Doctor of Philosophy dissertation of Dylan B. Keon presented on November 16,
2012.

APPROVED:

__	
Major Professor, representing Geography

__
Dean of the College of Earth, Ocean, and Atmospheric Sciences

__
Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

__

Dylan B. Keon, Author

ACKNOWLEDGEMENTS

The author expresses sincere appreciation for the guidance provided by his advisor

Dr. Dawn J. Wright and his committee members, the encouragement given by his

colleagues at NACSE and the PRISM Climate Group, and the heartfelt support

provided by friends and family. Most of all, the author expresses deep gratitude to

Karen, Julia, and Anna, who endured his absence over many long nights and

weekends and provided unwavering love and support during the process.

CONTRIBUTION OF AUTHORS

Cherri Pancake and Harry Yeh procured funding for the projects described in

Chapters 2 and 3, and provided guidance in their implementation. Cherri Pancake,

Harry Yeh, and Dawn Wright assisted with editing of Chapters 2 and 3. Chris Daly

assisted with interface design guidance and editing of Chapter 4. Ben Steinberg

contributed to the development of the TCP and grid export code described in Chapter

2, and the development and implementation of the server-side simulation code

described in Chapter 3. Adam Ryan contributed to the development and

implementation of the server-side grid processing code described in Chapter 4.

TABLE OF CONTENTS

Page

Chapter 1: Introduction ... 1

1.1 Spatiotemporal Data Representation and Software Tools 2

1.2 Advancements in Web-based Technology ... 5

1.3 Automated Data Processing ... 7

1.4 Data Exploration and Visualization ... 9

1.5 Spatiotemporal Data Used in This Study ... 12

1.5.1 Tsunami Inundation Modeling Input Data ... 12

1.5.2 Tsunami Evacuation Simulation Data .. 13

1.5.3 PRISM Modeled Climate Data .. 14

1.6 Research Goals ... 14

1.6.1 Spatial Data Handling in the Tsunami Computational Portal
(Chapter 2) ... 15

1.6.2 Web-based Tsunami Scenario Simulation Framework (Chapter 3) .. 16

1.6.3 Web-based Climate Grid Statistics (Chapter 4) 17

1.7 References .. 18

Chapter 2: Spatial data configuration, storage, and analysis for web-based
tsunami computational modeling and visualization ... 24

2.1 Abstract .. 25

2.2 Introduction .. 26

2.3 Tsunami Modeling ... 31

2.4 Portal Infrastructure ... 34

2.4.1 Database Configuration .. 38

2.5 Spatial Data Handling .. 40

2.5.1 Input Grid Specifications ... 41

2.5.2 Grid Alignment .. 45

2.5.3 Grid Preparation for a Model Run ... 51

2.6 Results .. 52

2.6.1 Portal Usage ... 52

TABLE OF CONTENTS (Continued)

Page

2.6.2 Input Grid Availability ... 53
2.6.3 Output Grids and Data Products .. 53

2.6.4 Spatial Database Performance.. 56

2.7 Discussion .. 59

2.7.1 System Integration ... 59

2.7.2 Portal Design and Spatial Data Handling... 60

2.7.3 Automation and Output Data Products .. 62

2.8 Conclusion ... 63

2.9 Acknowledgments .. 65

2.10 References .. 66

Chapter 3: Web-based simulation modeling and visualization of tsunami
inundation and potential human response .. 72

3.1 Abstract .. 73

3.2 Introduction .. 74

3.2.1 Tsunami Evacuation ... 75

3.2.2 Simulation Modeling .. 76

3.2.3 Spatiotemporal Data Representation .. 77

3.2.4 Animation of Spatiotemporal Data .. 80

3.2.5 Evacuation Modeling ... 80

3.2.6 Study Goals .. 83

3.3 Related Work ... 84

3.3.1 Simulation Frameworks ... 84

3.3.2 Tsunami Modeling and Visualization .. 85

3.3.3 Modeling Human Movement ... 87

3.3.4 Tsunami Evacuation Simulation .. 88

3.3.5 Casualty and Loss Estimation .. 90

3.4 Simulation Framework ... 93

3.4.1 Framework Architecture .. 93

TABLE OF CONTENTS (Continued)

Page

3.4.2 Spatial Database ... 95
3.4.3 Input Data Sources and Data Preparation .. 97

3.4.4 Casualty Determination .. 101

3.4.5 Simulation Model ... 105

3.4.6 Output Data Products ... 109

3.4.7 Simulation Results Interface .. 111

3.4.7.1 Mapping and Animation Tool... 112

3.4.7.2 Interactive Chart ... 116

3.4.7.3 Space-Time Path Construction and Rendering 119

3.4.7.4 Interactive Data Table ... 121

3.5 Discussion .. 123

3.5.1 Casualty Determination and Evacuation Movement.......................... 123

3.5.2 Data Sources and Issues ... 126

3.5.3 Hardware and Software Technology .. 128

3.5.4 User Interactivity .. 129

3.6 Conclusion ... 130

3.7 Acknowledgments .. 132

3.8 References .. 133

Chapter 4: GridStats: A web-based system for calculating climate grid statistics
over varying spatial and temporal scales ... 146

4.1 Abstract .. 147

4.2 Introduction .. 149

4.2.1 PRISM Climate Grids .. 149

4.2.2 Real-time Grid Calculations ... 151

4.2.3 Project Goals .. 153

4.3 Related Work ... 154

4.3.1 Web-based Grid Processing ... 155

4.3.2 Web-based Climate Grid Analysis ... 156

TABLE OF CONTENTS (Continued)

Page

4.3.3 Map Algebra and Grid Statistics .. 159

4.3.4 Server-side Grid Processing Systems... 162
4.4 The GridStats System ... 163

4.4.1 Design Intent .. 163

4.4.2 System Architecture ... 164

4.4.3 Hardware and Software .. 165

4.4.4 Input Data Sources ... 168

4.4.4.1 PRISM Climate Grids ... 168

4.4.4.2 Additional Spatial Data ... 169

4.4.5 Spatial Database ... 170

4.4.6 The GridServer ... 172

4.4.6.1 Purpose.. 172

4.4.6.2 System Design .. 173

4.4.6.3 GridStats Usage .. 175

4.4.7 Server-side Processing ... 175

4.4.7.1 Calculating Grid Statistics .. 176

4.4.7.1.1 Extending the GridServer ... 177

4.4.7.1.2 Area-based Methods ... 180

4.4.7.1.3 Calculating Univariate Statistics in Python 185

4.4.7.1.4 Calculating PCA in Python .. 187

4.4.7.2 Data Output Products .. 189

4.4.8 Website Design, Client-side Tools, and User Interaction 191

4.4.8.1 Input Settings .. 192

4.4.8.1.1 Menu Selections and Validation ... 192

4.4.8.1.2 Map-based Selection .. 197

4.4.8.2 Results Pages .. 202

4.4.8.2.1 Dynamic Charting .. 202

4.4.8.2.2 Point Results ... 208

4.4.8.2.3 Area Results ... 210

TABLE OF CONTENTS (Continued)

Page

4.4.8.2.4 Data Export ... 220

4.5 Discussion .. 221

4.5.1 Grid Statistical Calculations ... 221
4.5.2 Optimization ... 222

4.5.3 Scalability ... 224

4.6 Conclusion ... 226

4.7 Acknowledgments .. 227

4.8 References .. 228

Chapter 5: Conclusion ... 234

5.1 Web-based Approaches and New Technology .. 235

5.2 Automated Data Processing ... 237

5.3 Spatiotemporal Data Representation and Visualization 238

5.4 Summary .. 240

5.5 References .. 241

Chapter 6: Bibliography .. 242

Appendices ... 268

LIST OF FIGURES

Figure Page

2.1 Tsunami Computational Portal system-level view architecture 35

2.2 Generalized database structure diagram (key tables displayed) 37

2.3 Illustration of spacing requirements for gridded data used in the TCP 46

2.4 Representation of an acceptable grid nesting arrangement 48

2.5 Step 2 of the TCP interface, displaying the use of the custom mapping
 tool to define the master grid extent for a COMCOT model run 49

2.6 Step 3 of the TCP interface, displaying the map-based subgrid
 selection mechanism ... 50

2.7 Sequence of three selected images representing tsunami propagation

in a North Atlantic Ocean model run .. 55

3.1 Conceptual diagram representing the space-time prism 78

3.2 Conceptual diagram representing an individual’s space-time path 79

3.3 Tsunami risk in the Seaside, Oregon region ... 82

3.4 Diagram of the simulation framework system architecture............................ 94

3.5 Generalized database schema diagram representing the major database
 tables used by the simulation framework ... 97

3.6 Settings web page for defining the input parameter settings 98

3.7 Flowchart representing logic flow in the simulation model 107

3.8 Flowchart representing the casualty evaluation sub-process 108

3.9 Simulation results web interface .. 112

3.10 Simulation results web interface displaying time step 100 114

LIST OF FIGURES (Continued)

Figure Page

3.11 Simulation results web interface displaying time step 130 116

3.12 Examples of the interactive water depth chart ... 118

3.13 Clipped map views representing an individual’s fully rendered space-
 time path (left) and a zoomed-in view of the path origin (right) 120

3.14 Data table with matching map view .. 122

4.1 Example of map algebra for spatiotemporal data .. 160

4.2 GridStats system architecture .. 165

4.3 The “temporal first” (grid as output) and “spatial first” (array of values
 as output) approaches to area-based calculations implemented in the
 GridServer ... 181

4.4 The GridStats settings page, ready for request submission 193

4.5 Settings section of the main GridStats web page .. 194

4.6 Example of a date validation alert where, for “All days in range,” the
 user has selected a start date that is later than the selected end date 197

4.7 Example of a bounding box selection drawn on the input settings page
 mapping tool .. 199

4.8 Examples of polygon selection on the input settings page mapping tool 201

4.9 Monthly minimum temperature for the inclusive months from January
 2001 to December 2010, for a point in Glacier National Park, MT 204

4.10 A zoomed-in view of the full chart in Figure 4-9 .. 205

4.11 Example results page for a point-based request .. 209

4.12 Example results page for an area-based request (Linn County, Oregon) 212

LIST OF FIGURES (Continued)

Figure Page

4.13 Map section of the results page for an area-based request 213

4.14 Chart section of the results page for an area-based request 216

4.15 Map section of the results page for a PCA area-based request,
 displaying the result of a PCA run on monthly precipitation for the
 months January 1999 to February 2000, for the Lower Yuba Watershed,
 California ... 217

LIST OF TABLES

Table Page

2.1 Selected set of established tsunami modeling codes 32

2.2 Software packages required for PostgreSQL database installation and
 support of spatial features and operations ... 39

2.3 Key parameter settings in the PostgreSQL postgresql.conf
 configuration file .. 40

2.4 Selected grids available in the TCP spatial database 44

2.5 Output data products produced by numerical codes at ARSC for each
 model run .. 54

3.1 Open source software packages used by the simulation framework, and
 the purpose for which they were used .. 95

3.2 Mean values of anthropometric measured data for U.S. adult male and
 females (Kroemer et al. 1997), used by Yeh (2010) to calculate casualty
 curves for individuals subjected to tsunami flow .. 103

3.3 Estimated percentages of occupancy by structure type across different
 periods of a typical weekday ... 109

3.4 Output data products generated by the simulation framework 110

4.1 Dedicated servers used by the GridStats system ... 166

4.2 Open source software packages used by the GridStats system, and the
 purpose for which they are used .. 167

4.3 Climate parameters and availability of 800 m resolution time-series
 grids produced by the PRISM Climate Group... 169

4.4 Vector-based spatial data stored in the spatial database and used in both
 the web interface and the grid processing system 170

4.5 Currently implemented statistics listed by request type and the server-
 side tools used for calculating them .. 180

LIST OF TABLES (Continued)

Table Page

4.6 GridStats spatial scale request types and the possible data output
 products generated by each request type ... 190

4.7 Sample GridServer response times for varying temporal scales and
 number of grids .. 211

4.8 Sample GridServer response times for varying temporal and spatial
 scales .. 219

LIST OF APPENDICES

Appendix Page

A Conversion of Gridded Bathymetry ASCII (xyz) Datasets to Spatial
 Database Tables ... 269

B PostgreSQL Database Functions for Calculating Parameters of Gridded
 Bathymetry Datasets .. 274

C Selected PHP Functions and JavaScript Code Related to Spatial Data
 Handling in the Portal Interface ... 279

D Exporting and Packaging Selected Grid Extent .. 285

E Casualty Calculation Code for the Simulation Model 289

F Database Function for Automatically Calculating Simulation Run
 Summary Statistics .. 297

G Web Code for the Simulation Results Page, Map-based Visualization,
 and Tabular Data ... 299

H Sample Area-based GridServer Method .. 314

I GridServer Area-based Statistical Calculations .. 316

J PCA Calculation in Python.. 318

K GridStats Client-side Code Samples .. 320

L Calculating Centered Moving Averages .. 326

LIST OF ACRONYMS

1D One Dimensional
2D Two Dimensional
3D Three Dimensional
ADCIRC A [Parallel] Advanced Circulation Model for Oceanic, Coastal

and Estuarine Waters
AJAX Asynchronous Javascript and XML
API Application Programming Interface
ARSC Arctic Region Supercomputing Center
ASCII American Standard Code for Information Interchange
BIL Band Interleaved by Line
CGI Common Gateway Interface
COMCOT Cornell Multi-grid Coupled Tsunami Model
ComMIT Community Model Interface for Tsunami
CONUS Conterminous United States
CPU Central Processing Unit
CSV Comma Separated Value
DB Database
DEM Digital Elevation Model
DoD Department of Defense
DOM Document Object Model
EC2 Elastic Compute Cloud
EHdr ESRI .hdr Labeled
ENSO El Niño-Southern Oscillation
ENVI Environment for Visualization of Imagery
EPSG European Petroleum Survey Group
ESRI Environmental Systems Research Institute
ETOPO Earth Topography Digital Dataset
GB Gigabyte
GDAL Geospatial Data Abstraction Layer
GEBCO General Bathymetric Chart of the Oceans
GeoJSON Geographic JavaScript Object Notation
GEOS Geometry Engine – Open Source
GHz Gigahertz
GIS Geographic Information Systems
GISci Geographic Information Science

LIST OF ACRONYMS (Continued)

GiST Generalized Search Tree
GML Geographic Markup Language
GMT Generic Mapping Tools
GPS Global Positioning System
GPU Graphics Processing Unit
GRASS Geographic Resources Analysis Support System
HPCMP High Performance Computing Modernization Program
HTML Hypertext Markup Language
HTML5 Hypertext Markup Language – fifth revision
HTTP Hypertext Transfer Protocol
HUC Hydrologic Unit Code
JSON JavaScript Object Notation
KB Kilobyte
KML Keyhole Markup Language
LiDAR Light Detection and Ranging
LSW Linear Shallow Water
MB Megabyte
MOST Method of Splitting Tsunami
NACSE Northwest Alliance for Computational Science & Engineering
NAS Network Attached Storage
NED National Elevation Dataset
NetCDF Network Common Data Form
NFS Network File System
NGDC National Geospatial Data Committee
NLSW Nonlinear Shallow Water
NOAA National Oceanographic and Atmospheric Administration
NumPy Numerical Tools for Python
NWS National Weather Service
OGC Open Geospatial Consortium
OGR OGR Simple Features Library
OLAP Online Analytical Processing
OSU Oregon State University
PCA Principal Components Analysis
PHP PHP: Hypertext Preprocessor
PLSS Public Lands Survey System

LIST OF ACRONYMS (Continued)

PPT Precipitation
PRISM Parameter-elevation Regressions on Independent Slopes

Model
PTVA Papathoma Tsunami Vulnerability Assessment
RAID Redundant Array of Inexpensive Disks
RDBMS Relational Database Management System
REST Representational State Transfer
RHEL Red Hat Enterprise Linux
RIA Rich Internet Applications
ROMS Regional Ocean Modeling System
RPM Revolutions per Minute
SAS Serial Attached SCSI
SciPy Scientific Tools for Python
SCSI Small Computer System Interface
SQL Structured Query Language
SVG Scalable Vector Graphics
TB Terabyte
TCP Tsunami Computational Portal
TIFF Tagged Image File Format
TMAX Maximum Temperature
TMEAN Mean Temperature
TMIN Minimum Temperature
TUNAMI-N2 Tohoku University’s Numerical Analysis Model for

Investigation of Near field tsunamis
UAF University of Alaska, Fairbanks
UCGIS University Consortium for Geographic Information Science
UNIX Uniplexed Information and Computing System
USGS United States Geological Survey
WCS Web Coverage Service
WebGL Web-based Graphics Library
WFS Web Feature Service
WGS84 World Geodetic Survey 1984
WMS Web Mapping Service
WSGI Web Server Gateway Interface
XML Extensible Markup Language

This dissertation is dedicated to my daughters Julia and Anna,
and to the memory of my grandfather, Dr. Lester E. Eyer

Chapter 1: Introduction

Nearly all data possess a spatial component. The proliferation and accessibility of

easy-to-use mapping tools such as Google Maps (2012) and Google Earth (2012),

combined with (often automatic) spatial application features (e.g., geotagging,

location-based services, smartphone GPS mapping capabilities), has thrust

technology that leverages the spatial component into a prominent position of reliance

and everyday usage. Perhaps less prominent, but equally present and important, is

the element of time. Many data possess a temporal component (or have the potential

for a linked temporal component) in addition to a spatial component, such as the time

at which a photograph was taken, the recorded time of a temperature observation, or

the time step represented by a video frame in a dynamic simulation. However, the

temporal component is generally less well-supported than the spatial component in

GIS and mapping software.

Geographic information systems (GISs) include well-established methods for

displaying, manipulating, and analyzing data that contain a spatial component. Basic

usage and manipulation of spatial datasets in GIS is relatively easy to understand.

However, because most GIS software packages do not have the capability to analyze

and visualize data that represent dynamic phenomena (or have limited capabilities

for doing so), they are not able to effectively manage spatial data that also contain a

temporal component (i.e., spatiotemporal data). A GIS that can evaluate spatial data

but not temporal data can only display information about one slice in time for the

2

area of interest and, therefore, provides limited information about dynamic events or

processes within the area of interest.

Spatiotemporal datasets are often rich in content by nature. They can describe the

movement of an individual or a group of individuals over a period of weeks (e.g.,

Wen et al. 2012), the change in forest composition over hundreds of years (e.g.,

McLachlan et al. 2005), or, indeed, virtually any feature across any time interval.

Analysis and visualization software must be able to effectively represent and display

potentially complex spatiotemporal datasets in a manner that allows users to easily

interpret them, explore them, and identify subsets of information for further analysis.

Geovisualization tools (e.g., Buckley et al. 2005, Kraak 2008) are well-suited for this

approach, but the three-dimensional (3D) nature of spatiotemporal datasets can make

them difficult to understand by non-technical users working with them in 3D

geovisualization applications (Zhong et al. 2012). Adding to their complexity,

spatiotemporal datasets are often very large in size, requiring significant storage

space, processing capabilities, and effective database storage schemes.

1.1 Spatiotemporal Data Representation and Software Tools

The representation of spatiotemporal data is an important consideration – not only

for how the data are communicated, but also how they are stored digitally or, in other

words, “the binary structure in a computer or electronic storage medium that

corresponds with an object, measurement, or phenomenon in the world” (Yuan et al.

3

2005). In the late 1980s, a considerable amount of research examined the

representation of spatiotemporal data. Langran and Chrisman (1988) were the first

to describe a detailed framework for incorporating temporal data in a GIS. In the

following years a number of additional models were proposed and implemented,

beginning with file-based approaches that became known as the “snapshot model”

(e.g., Armstrong 1988). In the snapshot model, temporal information is attached to

spatial information, such that the entire geographic representation is duplicated at

each time slice, with changes in the phenomena at that geographic area also

represented. Beller et al. (1991) proposed the Temporal Map Sets (TMS) model, an

extension of the snapshot model where each geographic cell is time-stamped and is

considered to be either in or out of the event. Later, Langran (1992) published an

influential work that recognized the upward trajectory of GIS, its limitations in terms

of analyzing dynamically-changing events, and fully explored methods for the

inclusion of temporal data in GIS.

The representation of geographic data significantly affects all three levels of GIS and

spatial analysis: Data modeling, formalization, and visualization (Yuan et al. 2005),

and has been examined, described, and summarized in many forms (e.g., Peuquet

1984, Yuan 2001, Goodchild et al. 2007). Although numerous studies have

examined the representation of temporal data for use in GIS and spatiotemporal

analysis (Langran and Chrisman 1988, Langran 1992, Peuquet 1994, Yuan 1999,

Peuquet 2001, Peuquet 2002, Miller and Bridwell 2008), questions remain regarding

4

the most efficient representations of spatiotemporal data to support dynamic, real-

time operations, especially in the era of “big data” (Wang and Lu 2009, Brown et al.

2011, Goth 2012, Lohr 2012). Due to the potentially significant effects that different

forms of data representation can have on data analysis and visualization, the

representation of spatiotemporal data was identified as a priority research area by the

University Consortium for Geographic Information Science (UCGIS) (Yuan et al.

2005), and remains an active research topic today (e.g., Tøssebro and Nygård 2011,

Li and Kraak 2012).

Object-oriented approaches to database modeling offer some advantages over the

snapshot model. Namely, they avoid duplication of data and provide added

functionality such as the inheritance of properties from one object to another.

Worboys (1992) took the time-stamping approach used in the snapshot and TMS

models and applied it to spatial objects, describing “spatiotemporal atoms” as

subunits of spatiotemporal objects. Peuquet and Duan (1995) used an object-

oriented approach in their event-based spatiotemporal data model (ESTDM), which

also uses a time-stamping approach but only stores the changes related to an object

from one time slice to the next, minimizing redundancy in the data. Goodchild et al.

(1999) and Goodchild et al. (2007) adopted the concept described by Worboys

(1992) of reducing all geographic information to an atomic unit, which can help

generalize geographic representation.

5

The implementation of temporal capabilities in relational database management

systems (RDBMSs) has been described in many forms (e.g., Snodgrass 2000).

Certain software products such as TimeDB (2012) attempt direct implementations of

temporal data storage and management. Although many RDBMS products such as

Oracle and PostgreSQL have powerful spatial extensions available (Oracle Spatial

and PostGIS, respectively), none have similar temporal extensions available.

Temporal data representation and analysis has only recently become available in GIS

software from major vendors such as Esri’s ArcGIS (2012).

1.2 Advancements in Web-based Technology

Exploration and analysis of multidimensional spatiotemporal data typically requires

specialized locally-installed (a.k.a. “desktop”) GIS software. However,

advancements in server-side mapping and analysis tools, their integration with web

servers, and a range of complex client-side software libraries make the standard web

browser a compelling candidate as a common user interface for working with

spatiotemporal data. Innovative combinations of web-based software tools and

custom code facilitate the development of rich internet applications (RIA), which can

include many of the user interface features commonly found in locally-installed

software applications.

Although the client-side programming language JavaScript has been available since

its development in the Netscape web browser in 1995, the past several years have

6

witnessed a revolution in the usage and advancement of client-side methods that

leverage JavaScript in unique ways. Core to this advancement is the concept of

asynchronous communication between a client (i.e., a web browser) and server,

instantiated as the Asynchronous JavaScript and XML (AJAX) approach and so-

named by Garrett (2005). Simply put, the AJAX approach enables content on a web

page to be updated without having to reload the entire page. Google’s Gmail and

Maps web applications (deployed in 2004 and 2005, respectively) represented the

first wide-scale usage of the AJAX approach, and popularized the technique to the

extent that most major websites now use it in one form or another. AJAX

approaches are central to the development of RIA, which use AJAX directly, as well

as in supporting tools such as jQuery (2012), a library that simplifies and centralizes

client-side operations while providing cross-browser support. In the context of web-

based mapping applications, OpenLayers (2012) provides a powerful example of a

client-side mapping toolkit that supports the development of both simple and

complex web-mapping applications, all of which use the AJAX approach.

Web-based server-side software has also advanced in the past decade, particularly in

the area of open source mapping tools. MapServer (2012), a server-side open source

web mapping toolkit that was initially developed in 1994 and released under an open

source software license in 1999, has since undergone significant changes and is still

under active development. GeoServer (2012), written in Java, is an example of a

server-side web mapping toolkit that includes full implementation of the Open

7

Geospatial Consortium’s (OGC) web mapping service (WMS), web feature service

(WFS), and web coverage service (WCS) standards. Although server-side web

programming languages such as PHP have also undergone significant development

in the past decade, the advent of web application frameworks is perhaps a more

noteworthy event, particularly in the case of lightweight Python frameworks based

on the web server gateway interface (WSGI), such as Pyramid (2012). These

frameworks enable the fast development of targeted web-based applications that can

leverage other server-side Python processing code and deliver the results via the

hypertext transfer protocol (HTTP).

1.3 Automated Data Processing

To support real-time operations on spatiotemporal data in a web-based context, not

only must powerful server-side processing capabilities be used, but innovative

methods must be developed to automate and, ideally, generalize the related

processes. Automated processing of this type can require a complex set of linked

tools, services, databases, files, and custom code, and necessitates the efficient

handling of large quantities of multidimensional data.

As the size of spatiotemporal datasets and databases has grown, researchers have

devised automated methods to efficiently process and analyze them. Although the

storage and processing difficulties associated with “big data” seem increasingly

prevalent today, spatial data collections have presented formidable computational

8

challenges since the early days of GIS. Several discussions about automated

processing occurred in the 1980s. Openshaw (1987) advocated for the development

of fully automated geographical analysis systems, and Openshaw et al. (1987) put

theory into practice, building an automated geographical analysis machine (GAM)

on a Mark I computer system to perform repeated, automated point pattern analyses.

At the time, this was a fairly unique example of a dedicated machine developed for a

specific, automated spatial processing task (Goodchild et al. 1992). Addressing a

common spatial data processing issue, Brassel and Weibel (1988) reviewed the

possibilities of automated map generalization using currently available computer

technology.

In recent years, the automated processing of spatiotemporal data and automated

generation of geovisualizations have received an increasing amount of attention in

the research community. Sharma et al. (2012) devised an automated processing

chain to convert data from the Geographic Markup Language (GML) format to

shapefiles for use in a custom query and visualization tool. Lakshmanan (2012)

described the development of automated algorithms for the analysis of spatial grids.

Misra et al. (2011) describe the rapid development of software tools for automated

analysis of spatial data using open source software components. Today, advanced

server-side technology such as GIS-based server software, related application

programming interfaces (APIs), and custom code, enables the development of

9

powerful systems that can quickly process spatiotemporal data to produce output and

deliver it to the user for visualization, exploration, and further analysis.

The automation of geovisualizations refers to the automatic creation of output (e.g., a

movie file or interactive interface) from spatiotemporal data. This is often done by

converting multiple snapshots of data into an animated sequence, with each snapshot

representing a single slice in time for a given area. If the visualization methods are

extended (i.e., beyond the creation of a simple movie file), the output can become

interactive, providing controls that can be manipulated by the user. Relatively little

work has been done to automate the generation of geovisualizations that not only

utilize user input but also provide interactive controls in the generated interface,

although automation and user interactivity have both been identified as important

research priorities (e.g., Buckley et al. 2005).

1.4 Data Exploration and Visualization

GIS can help users identify patterns in data that are not otherwise readily apparent.

Similarly, scientific visualization often reveals patterns in data that lead to further

understanding, by displaying data in a form that had not been viewed before

(MacEachren et al. 1999). The term geovisualization refers to visualization

techniques that are used with spatial or spatiotemporal data. Spatiotemporal data are

particularly well-suited to geovisualization techniques that can display change in an

area over time, a situation that often occurs as the result of a larger process. One

example is the visualization of a simulated dataset representing a tsunami’s

10

propagation across the ocean and inundation of a community on the U.S. Pacific

coast.

Geovisualizations are powerful tools that can be used for identifying patterns within

complex multivariate datasets (Buckley et al. 2005, Kraak 2008), and can even be

used as a method of data mining and knowledge discovery (Gahegan et al. 2001).

Traditional methods of visualization typically involve the creation of an animated

representation of an area or object changing across multiple slices of time. The

animation is often rendered as a simple movie file. Many commercial software

packages (e.g., ArcScene) offer 3D capabilities and generation of fly-through

animations, but few (if any) have the capability of automating the dynamic

generation of visualizations given a set of user-defined input parameters. The

resulting animations are typically non-interactive, meaning that layers cannot be

activated or deactivated, and other features cannot be controlled. However, recent

developments in commercial software such as Esri CityEngine (2012) and Microsoft

Layerscape (2012) show promise for enabling these capabilities within a web

browser. Recently, Schultz and Bailey (2012) described an interesting approach for

processing spatiotemporal data and generating interactive OpenGL-based

visualizations of the datasets as extruded volumes.

An even smaller subset of software tools allow the display of time-series animations

to be overlaid with spatial layers and manipulated in that context. One example is

Google Earth which enables the control and animation of time-series data via time-

11

stamped KML-defined layers, manipulated by a time slider mechanism. However,

the user is still constrained by the fact that (1) Google Earth is a locally-installed

application (although it is a free product and can be installed on all common

operating systems, it still requires more steps than simply using a web browser) and

(2) it is not possible to query the underlying layers at any location, as the user could

do in a true GIS or web-based mapping tool designed for that purpose. In recent

versions, ArcGIS Desktop software includes tools for enabling time-based operations

on spatiotemporal datasets that include temporal attributes assigned using the

snapshot approach (ArcGIS Resource Center 2012). The ArcGIS graphical interface

utilizes a time slider similar approach similar to that available in Google Earth, but

includes additional functionality.

Interactive geovisualizations and related tools (e.g., interactive charts) that enable

spatiotemporal data exploration can effectively enhance the user experience. For

example, placing output data values in a static list or table is helpful, particularly if a

data export facility is provided so the user can easily obtain the data for further

analysis on their own computer, but placing data values in a dynamic table linked to

an interactive chart, overlaying them on an interactive mapping tool that highlights

temporal relationships, and generating and plotting meaningful statistical chart aids

based on the data values provides a richer user experience. If the data contain both

spatial and temporal components, it is worthwhile to invest the effort to make that

complexity available to, and interpretable by, the user. As Tufte (1983, p. 30) noted:

12

Time-series displays are at their best for big data sets with real
variability. Why waste the power of data graphics on simple linear
changes, which can usually be better summarized in one or two numbers?
Instead, graphics should be reserved for the richer, more complex, more
difficult statistical material.

Although written nearly 30 years ago, with innumerable technical advances in GIS,

computer graphics, and visualization realized in the intervening period, Tufte’s

statement remains just as applicable today.

1.5 Spatiotemporal Data Used in This Study

Spatiotemporal datasets exist in many forms and at multiple scales. The approach

taken in this study was to work with a set of large spatiotemporal datasets (on the

order of terabytes and millions of observations) to provide sufficiently complex test

cases and challenges for data acquisition, processing, storage, representation,

analysis, visualization, and dynamic value extraction. Data representing modeled

spatiotemporal phenomena (i.e., tsunami inundation modeling, tsunami evacuation

simulation, and climate modeling across the conterminous U.S.) were deemed

appropriate for this purpose, and are described briefly in this section.

1.5.1 Tsunami Inundation Modeling Input Data

Tsunami modeling involves defining a complex set of input parameters and

preparing the necessary gridded bathymetry and topography data to be used as inputs

for analysis. Tsunami simulations are performed using any of a number of modeling

13

codes that calculate the event initiation and propagation of the resulting tsunami

wave across the open ocean at each simulated time step, including the inundation of

the tsunami flow on land. One means of producing tsunami simulation time-series

output data is via the Tsunami Computational Portal (TCP 2012), a web-based

research portal that aggregates multiple tsunami simulation model codes and

provides a common parameterization interface for defining simulation runs. A large

number of gridded input bathymetry datasets are available for selection in the TCP.

The gridded datasets vary in resolution and extent, and have specific requirements

for nesting (i.e., substituting a high-resolution dataset for a near-shore area within a

low-resolution bathymetry grid), which complicate server-side data preparation and

processing operations.

1.5.2 Tsunami Evacuation Simulation Data

Tsunami simulation modeling runs produce binary output data products representing

gridded time-series wave height for each time step, maximum wave height across all

time steps, and, depending upon the selected model, matching U and V velocity

vectors. All of these data products are used as inputs in a tsunami simulation

modeling framework to provide per-pixel water depth values at each time step. The

simulation framework uses these data to calculate potential casualties during an

evacuation scenario, and produces an additional spatiotemporal dataset representing

the movement and status of the evacuating population at each time step. This dataset

drives a set of web-based tools that allow exploration of the simulation over time.

14

1.5.3 PRISM Modeled Climate Data

The PRISM Climate Group at Oregon State University produces climate grids using

weather station data and the Parameter-elevation Regressions on Independent Slopes

Model (PRISM) approach to model precipitation, maximum temperature, minimum

temperature, and mean temperature across the conterminous U.S. on daily, monthly,

and annual time scales (Daly et al. 1994, Daly et al. 2002). Data describing weather

stations, observation times, and other information are stored in a database, but the

modeled time-series data are all stored on the filesystem as spatial grids in the binary

interleaved by line (BIL) format. Currently over 49,000 PRISM climate grids are

stored on the filesystem, representing the set of time-series climate data used in this

study.

1.6 Research Goals

The overarching goal of this dissertation was to develop methods for storing,

accessing, analyzing, and processing spatiotemporal data in support of real-time

web-based operations. The projects undertaken in this dissertation represent real-

world research challenges and provide good test cases for attaining that goal. The

specific research goals of this dissertation include:

• Automate the processing of spatiotemporal data based on user input to

generate output data products and visualizations in support of data analysis

and exploration.

15

• For each project, determine the best spatiotemporal data representations for

fast access and processing.

• Create functional web-based tools that run within a common user interface

(i.e., a standard web browser).

• Build all web-based tools and related utilities using open source server-side

and client-side software, in addition to custom code.

• Animate time-series output data in a web-based geovisualization tool, while

allowing simultaneous interaction with the data (map operations, querying,

etc.).

The tools developed in this dissertation represent solutions designed for specific

research problems. However, the methods are typically generalized, such that they

could be applied to any discipline using similarly-structured spatiotemporal datasets.

Chapter 2 describes methods for data processing and storage for a unique web-based

application, while Chapters 3 and 4 describe the methods used to develop rich

internet applications for real-time interaction with large spatiotemporal datasets.

Chapter 5 presents the conclusion of the dissertation and suggested paths forward.

The purpose of Chapters 2-4 is described briefly below.

1.6.1 Spatial Data Handling in the Tsunami Computational Portal (Chapter 2)

The TCP enables tsunami researchers to configure simulation runs across three

different model codes using a common parameterization scheme. All input settings

are configured in a web interface that supports dynamic, map-based selection of the

gridded bathymetry and topography data used as inputs for the model codes. The

available bathymetry and topography datasets include global data such as GEBCO

16

(2010) and ETOPO1 (Amante and Eakins 2009), in addition to fine-scale grids

located near shore. The gridded datasets are all stored in a PostgreSQL (2012)

database, spatially enabled via PostGIS (2012). Assignment of the input datasets is a

dynamic process that involves ensuring alignment of grid points and dynamic, real-

time snapping of selected boundaries to existing datasets. Tsunami simulation runs

produce modeled time-series output data used to generate animations or as inputs for

further analysis. This chapter will be submitted for publication in the journal

Transactions in GIS.

1.6.2 Web-based Tsunami Scenario Simulation Framework (Chapter 3)

Modeled tsunami inundation data (from the TCP or other simulation tools) are used

as inputs for an evacuation simulation framework, for which the input parameters are

defined by the user via a web interface (i.e., the user controls the parameters

governing the evacuation scenario simulation). The framework simulates predicted

human movement and uses the time-series inundation data together with a casualty

model to identify each simulated individual’s casualty status at each time step of the

simulation. The time-series simulation output data is written to a spatial database

and used to dynamically populate a web-based evacuation simulation mapping tool,

in which the user can animate both the time-series inundation data and the time-

series evacuation scenario, plus query any of the underlying data at any point without

interrupting the animation. Most web-based GIS implementations allow attributes of

the underlying spatial layers to be queried; however, few web-based interfaces allow

17

time-series animations to be overlaid with spatial layers and, at the same time, enable

querying of the time-series data in a manner similar to the spatial layers. This

chapter will be submitted for publication in the International Journal of

Geographical Information Science.

1.6.3 Web-based Climate Grid Statistics (Chapter 4)

The PRISM climate grids represent a large (about 4.5 TB) set of time-series data,

with each grid approximately 85 MB in size. Loading the grids over the network for

analysis of large spatial or temporal scales can take a prohibitively long amount of

time, and analysis of the grid sets can require significant processing power.

Leveraging and extending a Python and open source GIS server-side grid processing

framework allows the time-series data to be dynamically extracted from selected grid

sets over user-defined spatial and temporal windows. The extracted data can be

analyzed using a number of statistical techniques, with the output data displayed on a

map and plotted on a chart, depending upon the type of analysis selected. All

operations are defined by the user via an interactive web-based interface that handles

the definition of input temporal and spatial scales as well as visualization and

exploration of the output data, which can be exported for further analysis. This

chapter will be submitted for publication in the journal Computers & Geosciences.

18

1.7 References

Amante, C. and B.W. Eakins. 2009. ETOPO1 1 arc-minute global relief model:
Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS
NGDC-24, 19 pp, March.

ArcGIS. 2012. Esri ArcGIS – Mapping & analysis for understanding our world,

http://www.esri.com/software/arcgis (last accessed 20 September 2012).

ArcGIS Resource Center. 2012. How time is supported in spatial data,

http://resources.arcgis.com/en/help/main/10.1/index.html#//005z00000004000000
(last accessed 27 September 2012).

Armstrong, M.P. 1988. Temporality in spatial databases. Proceedings: GIS/LIS '88

2: 880-889.

Beller, A., T. Giblin, K.V. Le, S. Litz, T. Kittel, and D. Schimel. 1991. A temporal

GIS prototype for global change research. Proceedings: GIS/LIS '91 2: 752-765.

Brassel, K.E. and R. Weibel. 1988. A review and conceptual framework of

automated map generalization. International Journal of Geographical
Information Science 2(3): 229-244.

Brown, B., M. Chui, and J. Manyika. 2011. Are you ready for the era of ‘big data?’

McKinsey Quarterly, October,
https://www.mckinseyquarterly.com/Are_you_ready_for_the_era_of_big_data_28
64 (last accessed 20 September 2012).

Buckley, A.R., M. Gahegan, and K. Clarke. 2005. Geographic visualization. Pages

313-333 in R. B. McMaster and E. L. Usery (eds.), A research agenda for
geographic information science. CRC Press, Boca Raton, FL.

Daly, C., R.P. Neilson, and D.L. Phillips. 1994. A statistical-topographic model for

mapping climatological precipitation over mountainous terrain. Journal of
Applied Meteorology 33: 140-158.

19

Daly, C., W.P. Gibson, G.H. Taylor, G.L. Johnson, and P. Pasteris. 2002. A
knowledge-based approach to the statistical mapping of climate. Climate
Research 22: 99-113.

Esri CityEngine. 2012. Esri CityEngine: Smart 3D city models,

http://www.esri.com/software/cityengine (last accessed 12 October 2012).

Gahegan, M., M. Wachowicz, M. Harrower, and T-M. Rhyne. 2001. The integration

of geographic visualization with knowledge discovery in databases and
geocomputation. Cartography and Geographic Information Science 28(1): 29-44.

Garrett, J.J. 2005. Ajax: A new approach to web applications,

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications (last
accessed 28 September 2012).

GEBCO. 2010. General bathymetric chart of the oceans: The GEBCO_08 grid,

http://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/ge
bco_08.pdf (last accessed 11 February 2012).

GeoServer. 2012. GeoServer – a Java-based software server that allows users to view

and edit geospatial data, http://www.geoserver.org (last accessed 28 September
2012).

Goodchild, M.F., R.P. Haining, S. Wise, et al. 1992. Integrating GIS and spatial

analysis – Problems and possibilities. International Journal of Geographic
Information Science 6(5): 407-423.

Goodchild, M.F., M.J. Egenhofer, K.K. Kemp, D.M. Mark, and E. Sheppard. 1999.

Introduction to the Varenius project. International Journal of Geographical
Information Science 13(8): 731-745.

Goodchild, M., M. Yuan, and T. Cova. 2007. Towards a general theory of

geographic representation in GIS. International Journal of Geographic
Information Science 21(3): 239-260.

Google Earth. 2012. Google Earth, http://earth.google.com (last accessed 20

September 2012).

20

Google Maps. 2012. Google Maps, http://maps.google.com (last accessed 20
September 2012).

Goth, G. 2012. The science of better science. Communications of the Association for

Computing Machinery 55(2): 13-15.

jQuery. 2012. jQuery JavaScript library, http://www.jquery.com (last accessed 13

September 2012).

Kraak, M.-J. 2008. Geovisualization and time – New opportunities for the space-time

cube. Pages 293-318 in M. Dodge, M. McDerby, and M. Turner (eds.),
Geographic visualization: Concepts, tools, and applications. Wiley, West Sussex,
England.

Lakshmanan, V. 2012. Automated analysis of spatial grids: Motivation and

challenges. Geotechnologies and the Environment 6: 1-18.

Langran, G. and N.R. Chrisman. 1988. A framework for temporal geographic

information. Cartographica 25(3): 1-14.

Langran, G. 1992. Time in geographic information systems. Taylor & Francis,

London.

Li, X. and M.-J. Kraak. 2012. Explore multivariable spatio-temporal data with the

time wave: Case study on meteorological data. Pages 79-92 in Advances in spatial
data handling and GIS. Lecture notes in geoinformation and cartography, part 3.
Springer, Berlin.

Lohr, S. 2012. The age of big data. The New York Times, February 11,

http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-
world.html (last accessed 20 September 2012).

MacEachren, A., M. Wachowicz, R. Edsall, D. Haug, and R. Masters. 1999.

Constructing knowledge from multivariate spatiotemporal data: Integrating
geographical visualization with knowledge discovery in database methods.
International Journal of Geographical Information Science 13(4): 311-334.

21

MapServer. 2012. MapServer – Open source web mapping,
http://www.mapserver.org (last accessed 20 September 2012).

McLachlan, J., D. Foster, S. Clayden, and S. Barry. 2005. Long-term forest and

landscape dynamics. Pages 125-141 in D.R. Foster and J.D. Aber (eds.), Forests
in time: The environmental consequences of 1,000 years of change in New
England. Yale University Press, New Haven, CT.

Microsoft LayerScape. 2012. Microsoft LayerScape,

http://research.microsoft.com/en-us/projects/layerscape (last accessed 12 October
2012).

Miller, H. and S.A. Bridwell. 2008. A field-based theory for time geography. Annals

of the Association of American Geographers 99(1): 49-75.

Misra, I., S.M. Moorthi, R.K. Gambhir, and R. Ramakrishnan. 2011. Evolutionary

rapid development using open source framework for geospatial data processing.
Trends in Information Management 7(1): 31-40.

OpenLayers. 2012. OpenLayers: Free maps for the web, http://www.openlayers.org

(last accessed 20 September 2012).

Openshaw, S. 1987. An automated geographical information system. Environment

and Planning A 19: 431-436.

Openshaw, S., M. Charlton, C. Wymer, and A. Craft. 1987. A Mark 1 geographical

analysis machine for the automated analysis of point data sets. International
Journal of Geographical Information Systems 1(4): 335-358.

Peuquet, D.J. 1984. A conceptual framework and comparison of spatial data models.

Cartographica 21(4): 66-113.

Peuquet, D.J. 1994. It's about time: A conceptual framework for the representation of

temporal dynamics in geographic information systems. Annals of the Association
of American Geographers 84(3): 441-461.

22

Peuquet, D.J. and N. Duan. 1995. An event-based spatiotemporal data model
(ESTDM) for temporal analysis of geographical data. International Journal of
Geographical Information Systems 9(1): 7-24.

Peuquet, D.J. 2001. Making space for time: Issues in space-time data representation.

GeoInformatica 5(1): 11-32.

Peuquet, D.J. 2002. Representations of space and time. Guilford Press, New York.

PostGIS. 2012. PostGIS – A spatial extension to PostgreSQL,

http://postgis.refractions.net (last accessed 20 September 2012).

PostgreSQL. 2012. The PostgreSQL relational database management system,

http://www.postgresql.org (last accessed 20 September 2012).

Pyramid. 2012. Pyramid open source web application framework,

http://www.pylonsproject.org/projects/pyramid/about (last accessed 18 August
2012).

Schultz, N. and M. Bailey. 2012. Using extruded volumes to visualize time-series

datasets. Pages 127-148 in J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P.C.
Wong (eds.), Expanding the frontiers of visual analytics and visualization.
Springer, London.

Sharma, S, U.S. Tim, and S. Gadia. 2012. AutoConViz: Automating the conversion

and visualization of spatio-temporal query results in GIS. Geo-spatial Information
Science (in press). Available online first at
http://dx.doi.org/10.1080/10095020.2012.714099 (last accessed 27 September
2012).

Snodgrass, R.T. 2000. Developing time-oriented database applications in SQL.

Morgan Kauffman, San Francisco.

TimeDB. 2012. TimeDB bitemporal relational DBMS,

http://www.timeconsult.com/Software/Software.html (last accessed 20 September
2012).

23

TCP. 2012. Tsunami Computational Portal, http://tsunamiportal.nacse.org (last
accessed 30 August 2012).

Tøssebro, E. and M. Nygård. 2011. Representing topological relationships for

spatiotemporal objects. Geoinformatica 15: 633-661.

Tufte, E.L. 1983. The visual display of quantitative information. Graphics Press,

Cheshire, CT.

Wang, S. and Y. Liu. 2009. TeraGrid GIScience gateway: Bridging

cyberinfrastructure and GIScience. International Journal of Geographical
Information Science 23(5): 631–656.

Wen, T.-H., M.-H. Lin, and C.-T. Fang. 2012. Population movement and vector-

borne disease transmission: Differentiating spatial-temporal diffusion patterns of
commuting and noncommuting dengue cases. Annals of the Association of
American Geographers 102(5): 1026-1037.

Worboys, M.F. 1992. A model for spatio-temporal information. Proceedings: The

5th International Symposium on Spatial Data Handling 2: 602-611.

Yuan, M. 1999. Use of a three-domain representation to enhance GIS support for

complex spatiotemporal queries. Transactions in GIS 3(2): 137-159.

Yuan, M. 2001. Representing complex geographic phenomena in GIS. Cartography

and Geographic Information Science 28(2): 83-96.

Yuan, M., D.M. Mark, M.J. Egenhofer, and D.J. Peuquet. 2005. Extensions to

geographic representations. Pages 129-156 in R.B. McMaster and E.L. Usery
(eds.), A research agenda for geographic information science. CRC Press, Boca
Raton, FL.

Zhong, C., T. Wang, W. Zeng, and S.M. Arisona. 2012. Spatiotemporal

visualization: A survey and outlook. Pages 299-317 in S.M. Arisona, G.
Aschwanden, J. Halatsch, and P. Wonka (eds.), Communications in computer and
information science, vol 242: Digital urban modeling and simulation. Springer,
New York.

24

Chapter 2: Spatial data configuration, storage, and analysis for web-based
tsunami computational modeling and visualization

Authors: Dylan B. Keon, Cherri M. Pancake, Harry H. Yeh, Dawn J. Wright

25

2.1 Abstract

The relative isolation of useful computational models and the difficulty of comparing

alternative approaches are common problems shared by many research disciplines.

Models typically have unique input/output formats and parameterization schemes,

and the codes may require specific hardware/software environments. This makes

running similar jobs against different models in order to compare results difficult.

Storage, representation, and efficient retrieval of massive data sets for analysis

present additional challenges.

The Tsunami Computational Portal (TCP) is a cyberinfrastructure service that brings

together computational models in a common environment to simplify comparison. Its

web-based interface facilitates executing the same inputs and controls against

multiple models, or modifying parameters incrementally for a particular model.

Researchers retrieve and visualize the results using tools available in the interface.

The web interface is driven by a large PostgreSQL database (spatially-enabled by

PostGIS) that contains global and local bathymetry and topography datasets (grids).

A web-based mapping tool allows users to select grids of interest, nesting fine-

resolution near-shore grids within coarse open-ocean grids, and automatically

snapping them to points in the database to satisfy alignment requirements of the

model codes. Custom utilities automatically handle the export of spatial objects

from the database in the binary grid format required for processing on large

computational clusters, and manage communication among related components.

26

Post-processing code automatically generates images and video of each model run

from the output data.

The TCP has made it possible to compare tsunami models and observe the effects of

alternative numerical methods in a common interface. A similar approach would

benefit any domain where alternative models need to be exercised broadly and

compared in order to increase scientific understanding of time-series phenomena.

Managing the spatial data required for model run parameterization and simulation

analysis presents data configuration and storage challenges, particularly with regard

to efficient real-time (i.e., via web interface) spatial queries and data export.

Through effective data storage, indexing, and spatial query techniques the TCP gives

researchers fast access to grids needed for tsunami modeling, while contributing a

useful, shared, web-based resource to the tsunami modeling community.

2.2 Introduction

Tsunami awareness has increased greatly in the past decade, in large part due to the

major tsunami events caused by the 2004 Indian Ocean earthquake and the 2011

Tōhoku earthquake near Japan, both of which resulted in widespread damage and

loss of human life in impacted coastal areas (Titov et al. 2005, Geist et al. 2006,

Dunbar et al. 2011, Gupta 2011). The 2011 Tōhoku tsunami also caused damage to

areas along the U.S. West Coast vulnerable to tsunami inundation, and resulted in

one death in California (Dunbar et al. 2011, Allan et al. 2012). Japanese tsunami

27

marine debris is still adrift in the Pacific Ocean and is actively being tracked

(Showstack 2011, NOAA 2012). Debris has already reached the U.S. West Coast

(e.g., Murphy 2012), with more predicted to land in 2013 (NOAA 2012), leading to

continued interest in tsunamis and their aftereffects from both researchers and the

general public. Along the U.S. West Coast, many tsunami-related educational and

outreach efforts have taken place at State and Federal levels (e.g., Bernard 2005), as

well as at the local level where tsunami hazard mitigation planning, inundation zone

mapping, and citizen education continue to be areas of active research (e.g., Johnston

et al. 2004, Tang et al. 2008). Significant work remains, however, in accurately

predicting tsunami behavior within specific geographic areas.

Post-tsunami surveys can provide useful data for interpreting tsunami behavior, but

field observations alone give only a partial understanding of a tsunami event (Lynett

and Liu 2011). Computational modeling of known and hypothetical tsunami events

can improve understanding of tsunami behavior. Tsunami modeling consists of three

phases: (1) generation of the tsunami event (typically by underwater earthquake but

possibly by landslide or other means), (2) propagation of the tsunami wave across

the ocean, and (3) inundation and run-up of the tsunami wave on shore, where

substantial tsunami energy can be released (Yeh 1991, Bernard et al. 2006, Gisler

2008). High-quality spatial data (bathymetry and coastal topography grids) at

multiple scales are required to effectively study tsunami wave generation,

propagation, and inundation. Typically, less detail (i.e, grid resolution) is needed in

28

mid-ocean domains, with an increasing amount of detail required as the modeled

tsunami wave approaches shore. This presents challenges from both computational

(i.e., switching resolutions dynamically during simulation) and data-availability (i.e.,

fine-resolution data must be aligned exactly with coarse-resolution data)

perspectives.

There is also growing recognition of the need for high quality data describing both

recent tsunami and paleotsunami events, to aid researchers in duplicating event

parameters for tsunami modeling purposes (Goff et al. 2011, Goff et al. 2012).

Databases describing such events have been established (e.g., Goff et al. 2010) and

are available online (e.g., Dunbar and McCullough 2011). However, while verified

event data may be available online and good quality global spatial data (combined

bathymetry and topography) are available at a coarse scale, the access and

availability of tsunami numerical modeling codes and computational systems on

which they can be run efficiently remain difficult to obtain. Furthermore, expert skill

is still required to interpolate or otherwise align grids from different sources and at

different scales by matching fine-scale data points with coarse-scale underlying data.

Processing a single simulation scenario across different model codes for comparative

studies has been impractical due to differences in model parameterization schemes

and idiosyncratic input requirements.

29

Computational portals can provide an effective means of assembling geographically

distributed resources and services in a single interface (Huang et al. 2006). The

Tsunami Computational Portal (TCP 2012) is a cyberinfrastructure service that

brings together multiple computational tsunami models in a common environment.

The purpose of the TCP is to provide a useful, centralized, web-based service to

researchers engaged in developing and comparing numerical models of tsunami

generation, propagation, and inundation, and to facilitate comparison and further

exploration of simulation output. Goals of the TCP service include:

• Provide an intuitive web-based portal with access to multiple models.

• Create a consistent user interface and model parameterization scheme.

• Enable parameter suite studies across sets of similar scenarios.

• Facilitate identical runs across different computational models.

• Give users the ability to view job status and retrieve results.

• Provide visualization tools that work directly with TCP output data.

The web-based portal interface allows tsunami researchers, as well as model

developers, to study and compare numerical models of tsunami generation,

propagation, and inundation. The TCP facilitates the execution of identical inputs

and controls across multiple models, as well as so-called parameter sweep studies

where parameters are modified incrementally while executing the same model

multiple times. Researchers can retrieve and visualize results using tools available in

the portal interface.

30

The TCP was developed as a collaborative effort involving Oregon State University

(OSU), the Northwest Alliance for Computational Science and Engineering

(NACSE) at OSU, the Arctic Region Supercomputing Center (ARSC) at University

of Alaska Fairbanks (UAF), and tsunami researchers from institutions worldwide.

Development of the TCP was funded by the U.S. National Oceanic and Atmospheric

Administration (NOAA) and the U.S. Department of Defense, through its High

Performance Computing Modernization Program (HPCMP).

A critical component of the TCP is the inclusion of, and rapid access to, high-quality

bathymetry and coastal topography grids. This presents multiple challenges related

to spatial data configuration, storage, and analysis. Tsunami numerical modeling

codes are often tasked with computing trans-oceanic simulations with high-

resolution near-shore datasets included for greater detail in select coastal areas.

Large computational problems like these can require tens of millions of gridded data

points to represent the domain of interest at multiple resolutions, exceeding the

processing capabilities of standalone servers (i.e., requiring parallel processing on

large computational systems). Time-critical simulations that require fast model run

configuration, including satisfying spatial data alignment issues across multiple

resolutions and preparing data for model input, also require fast processing. Finally,

post-processing of output time-series datasets can be resource intensive.

31

2.3 Tsunami Modeling

Although the increased focus on tsunami science has drawn attention to tsunami

modeling techniques and numerical codes used for tsunami simulation, the relative

isolation of useful computational models and the difficulty of comparing alternative

approaches remain common problems shared not only by the tsunami research

community, but also by many other scientific research disciplines. Model source

code cannot always be shared and, even when it is, other research groups may find it

difficult to install and run an unfamiliar model. Each model has unique input/output

formats and parameterization schemes, and the model codes themselves must often

be run with exactly the hardware (e.g., parallel clusters running the Solaris vs. Linux

operating system) or software (e.g., Fortran-based vs. C-based) environments used

by the original developers of the model codes. The result is that a significant amount

of work may be required simply to run a similar job configuration on two different

model codes in order to compare results. Furthermore, researchers may have limited

access to “big iron” – the supercomputing resources needed to efficiently compute

large tsunami simulation processing jobs.

Several established hydrodynamic numerical modeling codes exist for modeling

tsunami propagation and inundation (Table 2.1).

32

Table 2.1: Selected set of established tsunami numerical modeling codes.
Numerical model names in bold text are available in the portal.

Numerical Model Reference Model Description

ADCIRC (A
[Parallel] Advanced
Circulation Model
for Oceanic, Coastal
and Estuarine
Waters)

Blain and Kelly
2001; ADCIRC
2012

Utilizes equations discretized in space
using the finite element method and in
time using the finite difference method.
Can be run using either the spherical or
Cartesian coordinate system.

COMCOT (Cornell
Multi-grid Coupled
Tsunami Model)

Liu et al. 1995;
Liu et al. 1998

A package of computational programs
for solving the linear shallow water
(LSW) equations in both spherical and
Cartesian coordinate systems, and the
nonlinear shallow water (NLSW)
equations in the Cartesian coordinate
system.

MOST (Method of
Splitting Tsunami)

Titov and
Gonzales 1997;
NOAA Center for
Tsunami
Research 2012

A suite of numerical codes for
simulating event generation, wave
propagation, and inundation. Uses a
finite difference method to divide its
computational domain.

Tsunami CLAW George and
LeVeque 2006

An adaptive-mesh model that uses a
finite-volume approach for solving the
NLSW equations but allows for zooming
in on coastal regions to better capture the
effects of local bathymetry variation.

TUNAMI-N2
(Tohoku University's
Numerical Analysis
Model for
Investigation of Near
field tsunamis)

Imamura et al.
2006

Uses a finite distance model to apply
linear theory in deep ocean areas, and
shallow-water theory in shallow areas
and runup on land with constant grids.

UAF Tsunami
Model

Kowalik and
Murty 1993;
Suleimani 2004

A finite difference model that solves the
NLSW equations for transoceanic
tsunami propagation in the spherical
coordinate system, and in the Cartesian
coordinate system for runup calculation.

33

Effective tsunami inundation modeling depends upon three important requirements

(National Research Council 2011):

1. An understanding of the phenomenon that generated the tsunami event (often

via earthquake and associated shifting of the seafloor), including information

that can be used to parameterize a computational model.

2. Accurate and precise gridded bathymetry and coastal topography data

representing the ocean/land interface (preferably with higher-resolution data

representing near-shore areas).

3. Hydrodynamic computational model code to simulate wave propagation and

inundation, as well as the computing hardware required to effectively process

the simulation.

The TCP addresses all three of these requirements:

1. Researchers using the TCP provide parameters that describe the event

generation, to simulate either a past tsunami-generating event using known

seafloor displacement information or a hypothetical event.

2. The TCP includes common global-scale bathymetry and coastal topography

data (GEBCO and ETOPO), as well as fine-resolution bathymetry and coastal

topography data provided by researchers to represent specific near-shore

areas at various locations around the world. All grids added to the system are

made available to any researcher using the portal.

3. Parameters and controls from the three established numerical tsunami

modeling codes were mapped to create a common parameterization scheme:

COMCOT, the UAF Tsunami Model, and Tsunami CLAW.

34

The three model codes available in the TCP were retrofitted to the shared

parameterization scheme and ported to run on ARSC supercomputers. All of the

codes can process multiple nested grids (i.e., a coarse-resolution grid can contain

multiple, finer-resolution grids representing near-shore geographic locations or other

regions where more detailed modeling is required).

2.4 Portal Infrastructure

The Tsunami Computational Portal system comprises multiple components

distributed among various systems at NACSE and ARSC (Figure 2.1). Spatial data

configuration, storage, and analysis operations are central to the system and are

driven primarily by the relational database management system. The portal database,

website, and custom-built data processing tools are all driven by open source

software.

The portal website is a step-by-step guided interface written in a mix of PHP and

JavaScript that allows the user to configure a model run and provides them with

intelligent choices and defaults based upon their previous selections. Extensive error

checking code validates every parameter value and provides the user with

35

Figure 2.1: Tsunami Computational Portal system-level view architecture. Aside from job initiation and finalization messages
sent by NACSE servers, all communication (including data transfers) is initiated by ARSC. This is done for security reasons
(ARSC is a secure DoD site).

36

information about the expected size of result files based on their current settings.

Each user can retrieve results, configure new jobs, and easily replicate or modify

previous settings to create suites of jobs for comparison across different model

codes.

The numerical models available in the portal require individual input configurations

in different formats. A unified configuration scheme was developed that utilizes

nearly all of the same input parameters across all models, facilitating the use of

shared components in the system. Developing a common parameterization scheme

across model codes was a challenging task undertaken primarily by ARSC staff.

Custom utilities perform automatic communication and transfer of data between

NACSE and ARSC, and enable the automatic export of spatial objects in the binary

format required for processing on ARSC supercomputers. The export utility was

developed as a database function that dynamically extracts the necessary slices of

data from each requested grid as text and packs them into an ordered binary format

that can be directly pulled into ARSC processing jobs.

Grids made available in the portal are stored and managed in the open source

PostgreSQL (2012) relational database management system that is spatially enabled

via the open source PostGIS (2012) module. The PostgreSQL database server

instance runs on a dedicated Dell PowerEdge R710 server containing four quad-core

2.53 GHz Intel Xeon processors and 32 GB memory, with data stored across eight

37

320GB 10,000 RPM serial-attached SCSI disks in a RAID 5 configuration (via a

hardware RAID controller). The server runs the Red Hat Enterprise Linux 6

operating system.

The database structure (Figure 2.2) was designed to store metadata that describes the

bathymetry and coastal topography grids used as model inputs, the grids themselves,

and detailed information about each configured model run.

Figure 2.2: Generalized database structure diagram (key tables displayed). The
database is designed to hold an unlimited number of gridded spatial datasets and
their associated metadata, as well as information describing model runs configured
by portal users.

38

Storing this detailed information allows the user to reconstruct a model run, which is

particularly useful in comparative studies where the user may want to change a

single parameter value while keeping the rest constant. Grids are stored as

individual tables (one table per grid), while a management table stores information

about each grid (e.g., the grid point spacing value, number of rows and columns,

maximum extent in each direction, and calculated values describing the grid

domain). A separate PostGIS management table (geometry_columns) stores

information about each grid’s coordinate system.

Information about completed jobs is added automatically to the database, and the

output data files are automatically made available within the portal interface. Users

receive notification via email when the results are ready, and can download the files

from their account in the portal. Automatically-triggered post-processing code at

NACSE generates images and video of each model run to provide a quick

visualization of model output.

2.4.1 Database Configuration

PostgreSQL was selected as the production relational database management system

for the following reasons:

• Highly regarded reputation as an enterprise-class open source relational

database management system (e.g., Garbin and Fisher 2010).

39

• Spatial query capabilities via PostGIS that conform to the OpenGIS Simple

Features Specification for SQL (Open Geospatial Consortium Inc. 2010).

• Support for unlimited rows and indexes per table, as well as a very large (32

TB) maximum table size (PostgreSQL 2012).

• Proven in-house ability to run efficiently on Linux-based servers in a

production computing environment.

To enable the full set of spatial operations supported by PostGIS, the PROJ.4,

GEOS, and LibXML2 open source packages must be compiled and PostGIS must be

configured to use them (Table 2.2). Of particular importance, GEOS supports key

spatial operations within PostGIS, as well as operators for controlling which indexes

are utilized in queries (Zhang and Yi 2010). The PROJ.4 package is necessary for

performing coordinate conversions within the database.

Table 2.2: Software packages required for PostgreSQL database installation and
support of spatial features and operations. All software packages listed in this table
are released as open source products.

Software Package Purpose

PostgreSQL
(postgresql.org) Relational database management system.

PostGIS
(postgis.refractions.net)

Spatial database extension for PostgreSQL (adds support
for spatial objects and operations).

GEOS
(geos.osgeo.org)

C++ port of the Java Topology Suite. Provides OpenGIS
Simple Features operations to PostgreSQL/PostGIS.

PROJ.4
(proj.osgeo.org)

Cartographic projections library that allows the database
engine to perform coordinate system transformations on
spatial objects.

LibXML2
(xmlsoft.org)

XML C parser and toolkit for building tag-based
structured data and documents.

40

The PostgreSQL database server can be tuned via the many configuration parameters

in the postgresql.conf file that affect the database system. Four particular settings

have the greatest effect on database read/write performance (Table 2.3), and have

been modified on the TCP production database server to match the server’s hardware

configuration.

Table 2.3: Key parameter settings in the PostgreSQL postgresql.conf configuration
file. The “Modified Setting” column displays values in use on the TCP production
database server.

Parameter Default
Setting

Modified
Setting Rationale

shared_buffers 32 MB 8192 MB
A value that is 25% of the memory on a
dedicated server gives the best balance of
memory allocation and performance.

effective_
cache_size 128 MB 16384 MB

A value that is 50% of the memory on a
dedicated server gives the best balance of
memory allocation and performance.

checkpoint_
segments 3 32

Best set higher than default (somewhere
between 16 and 64) so that the system is
not continually writing checkpoints.

wal_buffers 64 kB 512 kB
Set higher than the default value (but
below 1MB total) to improve performance
in write-heavy operations.

2.5 Spatial Data Handling

Tsunami propagation across the ocean is strongly influenced by bathymetry and

coastal topography (Lynett 2011, National Research Council 2011). Many tsunami

inundation models require bathymetry data that cover the entire ocean basin as a

coarse-resolution continuous base layer, with additional higher-resolution

41

bathymetry and integrated topography data included for more detailed modeling of

wave propagation and inundation along coastal areas. In the tsunami computational

modeling domain, these bathymetry and coastal topography datasets are typically

represented as gridded point data rather than raster-based data products.

Data points located on a regularly-spaced grid are necessary for numerical models,

giving them a framework for calculating tsunami movement from one point to the

next across the modeled domain. A continuous coarse-resolution grid (i.e., 30 arc-

second, or ~900 m) covering the globe exists and can be used for this purpose.

Researchers examining particular near-shore areas often generate finer-scale (i.e.,

< 100 m) bathymetry and coastal topography grids from survey data, or obtain finer-

scale grids from sources such as the NOAA/NGDC coastal relief models

(www.ngdc.noaa.gov/mgg/coastal), which are 1 arc-second (~30 m) or finer

resolution.

2.5.1 Input Grid Specifications

Grids stored in the spatial database consist of bathymetry and coastal topography

datasets representing global and regional extents. Grids added to the database are

often acquired as large space-delimited ASCII text files in “xyz” format (i.e.,

containing longitude, latitude, and depth [elevation] values), although grids are

occasionally acquired in netCDF format. The open source geospatial processing

tools GMT (2012), PROJ.4 (2012), and the OGR Simple Features Library (OGR

42

2012) are used in various combinations for data preparation and pre-processing tasks

such as grid point alignment or reordering operations, or coordinate system

conversion.

Because most gridded data to be inserted in the database are typically obtained in

xyz (or zxy, etc.) format, a Perl (2012) script was developed to process the gridded

data (Appendix A). Following any pre-processing work, files in space-delimited xyz

format are parsed into a series of structured query language (SQL) insert statements

via the processing script, and inserted into the database as spatial objects via PostGIS

functions. After insertion of each grid, B-tree (generalized binary search tree)

indexes are built for the Cartesian x and y columns and a GiST (Generalized Search

Tree)-based spatial index (specifically, R-tree-over-GiST as implemented by

PostGIS) is built for the column that stores the geometry point objects. A

multicolumn index (combining the indexes on the x and y columns) is also built for

very large datasets (e.g., GEBCO_08) to speed queries in instances when any

WHERE clauses applied to the individual x and y indexes then need to be ANDed or

ORed across both columns (i.e., to query a range of points between minimum and

maximum values of x and y).

After a grid is added to the spatial database, an operation is performed to update the

internal statistics the database maintains for each table. Finally, custom database

functions written in PostgreSQL’s PL/pgSQL procedural language automatically

43

calculate the maximum allowable time step for each grid, and the time required to

cross the maximum domain of each grid (Appendix B). These values then feed

directly into the TCP interface to provide guidance for users and for the system to

verify that input grids are prepared to the specifications required by the model codes

at ARSC.

The TCP spatial database contains the two global relief grids GEBCO_08 (GEBCO

2010) and ETOPO1 (Amante and Eakins 2009), in addition to a number of fine-

resolution near-shore grids (Table 2.4). GEBCO_08 is a 30 arc-second global grid

developed via the collaborative effort of a number of international oceanographic

and hydrographic governmental agencies. ETOPO1 is a 1 arc-minute global relief

model built from multiple global and regional datasets by the U.S. NOAA National

Geophysical Data Center. Earlier versions of both global grids (GEBCO 1 arc-

minute and ETOPO2 2 arc-minute) were initially added to the TCP spatial database

and used in the portal prior to the availability of the newer versions. Although both

earlier versions have been deprecated, and ETOPO2 may actually be misregistered in

latitude and longitude (Marks and Smith 2006), the grids remains available in the

TCP spatial database for researchers who may need to use them for comparative

studies or to reproduce past results.

44

Table 2.4: Selected grids available in the TCP spatial database. The parameters max_allowable_time_step and
time_to_cross_max_domain are not calculated for global grids (e.g., etopo1), as they only apply to grids of less than global
extent. The "etopor" grid is a "rolled" version of the global etopo2 grid with longitude configured 0 to 360 (vs. -180 to 180),
which allows researchers to run transoceanic simulations across the Pacific Ocean. The gebco30 grid is the full global
GEBCO_08 30 arc-second dataset, the largest global grid stored in the TCP spatial database at nearly a billion rows of data.
Latitude, longitude, and spacing values were rounded to three decimal places in this table.

Grid Name Min_x
(longitude)

Min_y
(latitude)

Max_x
(longitude)

Max_y
(latitude)

Spacing
(arc sec) Rows Columns Point count

(dbase rows)

cook_inlet_24s -155.997 55.003 -147.003 61.997 24 1350 1050 1,417,500
crm_or_wa_coast_12s -126 44 -123 47 12 901 901 811,801
crm_or_wa_coast_3s -126 44 -123 47 3 3601 3601 12,967,901
etopo1 -180 -90 180 90 60 21601 10801 233,312,401
etopo2 -180 -89.967 179.967 90 120 10800 5400 58,320,000
etopor 0 -89.967 359.967 90 120 10800 5400 58,320,000
gebco -180 -90 179.983 90 60 21600 10801 233,301,600
gebco30 -179.996 -89.996 179.996 89.996 30 43200 21600 933,120,000
gulf_of_alaska_2m -168.983 52.017 -140.017 61.983 120 870 300 261,000
homer_1s -151.558 59.584 -151.367 59.667 0.889 777 339 263,403
homer_3s -151.751 59.534 -150.907 59.793 2.667 1140 351 400,140
homer_8s -152.166 59.254 -150.908 59.792 8 567 243 137,781
kingscove5s -163.3 53.2 -161.701 55.399 5 1152 1584 1,824,768
seaside_3s -126 45 -123.5 47 3 3001 2401 7,205,401
seldovia_1s -151.782 59.392 -151.684 59.47 0.889 399 336 134,064
seldovia_3s -151.882 59.391 -151.476 59.533 2.667 549 192 105,408
seward_1s -149.467 60.059 -149.308 60.158 0.889 639 402 135,000
seward_3s -149.5 59.876 -149.251 60.166 2.667 336 393 132,441
seward_8s -149.999 59.501 -149.001 60.165 8 450 300 137,781

45

2.5.2 Grid Alignment

Grids stored in the spatial database are grid/node registered, meaning that grid cells

are centered on lines of latitude and longitude rather than the grid cell edges being

aligned to lines of latitude and longitude (Figure 2.3). The TCP system enforces

strict grid spacing alignment requirements to ensure that points in fine-resolution

grids are exactly co-located with matching points (i.e., identical lat/lon coordinates)

in coarse-resolution grids when the grids are nested together. The implemented

tsunami numerical codes support grid spacing ratios of 5:1 and 3:1. For instance,

five fine-resolution (e.g., 12 arc-second or ~360 m) gridded point spaces fit within

the space between a pair of coarse-resolution (e.g., 60 arc-second or ~1.8 km)

gridded points. Figure 2.3 illustrates these grid spacing requirements and provides a

grid cell-level example of nesting a fine-resolution grid in a coarse-resolution grid.

This grid spacing regularity enables the computational model codes to seamlessly

switch from processing coarse-resolution data to fine-resolution data on an expected

alignment and spacing ratio within a single model run. Fine-resolution grids require

two rows and columns of “padding” points around their perimeter. This requirement

satisfies the alignment system built into the grid verification code and matches the

fine-resolution grids originally provided to the TCP system by UAF researchers.

46

Figure 2.3: Illustration of spacing requirements for gridded data used in the TCP. Fine-resolution grids nested in coarse-
resolution grids must align exactly with the coarse grid points and must have the correct coarse-to-fine spacing ratio.

47

Up to four fine-resolution subgrids can be nested in a master grid, with an extra

subgrid nested within each of the first-level subgrids (Figure 2.4); however, subgrid

borders cannot cross or touch one other, and each model restricts how deeply nesting

can occur. To simplify this selection process for portal users configuring model

runs, the TCP handles these restrictions automatically – a validation system written

in mix of PHP and JavaScript (examples in Appendix C) ensures that nested subgrids

are aligned properly within parent grids and match the acceptable 5:1 or 3:1 grid

spacing ratios. A custom map-based grid selection tool (Figure 2.5) allows users to

select input grids dynamically, and user-selected extents of nested subgrids are

automatically snapped to matching points within their parent grids according to the

requirements of the selected model code. The mapping tool displays the grid

selection and nesting arrangement graphically, with the defined extent outlined and

the grid name and resolution labeled within each extent (Figure 2.6). Actions such

as snapping subgrid points to parent grid points and checking parameter settings

against the selected spatial extent all take place in real time while the user is

configuring a model run. Storing the grids in a spatial database makes these real-

time checking and verification operations possible – the PHP-based website code can

quickly connect to the PostgreSQL database, run a query, process the result, and

provide the necessary feedback to the user.

48

Figure 2.4. Representation of an acceptable grid nesting arrangement. This is the
maximum allowed number of grids and level of nesting for a single model run. The
largest region (Grid_Number=1) represents the master grid, containing four subgrids
(numbers 2, 3, 4, 8), each of which also contain a subgrid (numbers 5, 6, 7, 9).

49

Figure 2.5: Step 2 of the TCP interface, displaying the use of the custom mapping
tool to define the master grid extent for a COMCOT model run. If exact coordinates
are known, they can be entered and the selection box will snap to the defined extent.

50

Figure 2.6: Step 3 of the TCP interface, displaying the map-based subgrid selection
mechanism. Subgrids must be placed within the master grid (dashed line boundary),
and may not overlap or touch the boundaries of any other defined subgrids.

51

2.5.3 Grid Preparation for a Model Run

Once a model run is parameterized and the user has submitted the job for processing,

the selected master grid and subgrids are prepared and packaged along with the

metadata and parameters that define the model run. These operations take place on

NACSE servers. To be compatible with the model codes running on ARSC

supercomputers, all gridded datasets submitted for tsunami simulation processing

must be converted to a binary file format that matches the following specification:

• Each data element must be:

o Four bytes in size.

o Type float or real.

o Big-endian (MSB) byte order.

• The file must not have a header.

• The file must contain n data elements, where n is the product of the number

of rows and columns.

Data to be configured as input grids for model runs are extracted from the database

and packaged into the necessary binary format via a database function written in the

PostgreSQL C application programmer’s interface (API). The PostgreSQL C API is

implemented as the libpq C library, which provides a set of functions that allow C

programs to submit queries to the PostgreSQL server instance and receive the results.

Performing these operations via compiled C code can be much faster than running

the equivalent query using an interpreted programming language (e.g., Perl) or the

PL/pgSQL procedural language. Writing the grid export functions in C facilitates

52

the export of gridded point data directly from the database to the required binary file

format (Appendix D). The clipped grids are packaged along with metadata and

model run configuration parameters, and made available to ARSC for processing.

2.6 Results

The TCP system is actively used by researchers interested in modeling tsunami

propagation and inundation across multiple model codes. A range of input

bathymetry grids are available by default, and additional grids can be added to the

system. Powerful computer hardware at NACSE, together with effective indexing of

database columns, provides fast access to the input datasets for region selection and

preparation. Fast supercomputers at ARSC, where configured simulation jobs are

executed, guarantee quick turnaround of complex modeling scenarios.

2.6.1 Portal Usage

Over 100 TCP user accounts have been approved and established. Over 800 jobs

have been configured and run by portal users since the portal was introduced.

Output data have been described in technical papers and conference presentations

(e.g., Barkan et al. 2008, Keon et al. 2009), and have also been used in various

quantitative analyses. To investigate possible effects of a large earthquake-generated

tsunami on coastal Europe, Barkan et al. (2009) used the portal to run multiple

simulations of a large tsunami event based upon known historic information about

the 1755 Lisbon earthquake-generated tsunami. Barkan and ten Brink (2010) later

53

used the portal to model multiple simulations of the tsunami generated by the 1867

Virgin Island earthquake.

2.6.2 Input Grid Availability

Of the 30 bathymetry and coastal topography grids available in the spatial database,

four are global datasets acquired and processed by NACSE personnel and the

remaining 26 are of sub-global extent (and typically finer-resolution than the global

grids), and were provided by researchers who used them in model runs and made

them available to all portal users. The portal interface at NACSE runs on servers

protected by redundant network access and backup power capabilities, which

guarantees high availability. Configuring the system to store and serve input grids

via a fast spatial database gives portal users effective real-time web-based access to

these large datasets, as well as the built-in verification of grid spacing, alignment,

and overlap protection that the database calculates dynamically using stored

metadata, user input, and fast spatial queries.

2.6.3 Output Grids and Data Products

Several data output products are delivered upon completion of a model run (Table

2.5). All output data products are file-based (i.e., none are inserted into the

database), but are linked to database metadata records via unique identifiers. Of

particular interest for further modeling or visualization are the time series and sea

54

level max files, each of which can be converted to an image (or a set of images or

video in the case of the series file).

Table 2.5: Output data products produced by numerical codes at ARSC for each
model run. These sets of files are transferred from ARSC to NACSE for post-
processing and then made available to the user who submitted the job.

Ouput Data
Product Format Description

Time series Binary
Contains sea level height at each grid cell location
for each time step. One file is returned for each
input grid.

Sea level max Binary
Contains the single highest sea level height
recorded at each grid cell location across all time
steps.

Model run statistics ASCII
System-level statistics related to the model run
(host, model code & version, job ID, elapsed time,
etc.).

U velocity vectors Binary Optional output. Data describing the U velocity
component for every grid cell at each time step.

V velocity vectors Binary Optional output. Data describing the V velocity
component for every grid cell at each time step.

Input configuration ASCII Copy of the input configuration defining the
successfully completed model run.

When the data output products are successfully transferred from ARSC to NACSE,

automatically-triggered processes at NACSE unpack the files to the correct location

on the filesystem and update the database to indicate the availability of the output

data products. Post-processing code renders a complete set of images for the time

series data (one image per time step) and automatically assembles them into a video

file (Figure 2.7).

55

Figure 2.7: Sequence of three selected images representing tsunami propagation in a
North Atlantic Ocean model run. The images were generated via post-processing of
the time series data output, with one image generated for each output time step.

time step 0

time step 50

time step 100

56

2.6.4 Spatial Database Performance

The grid management system developed for this project, in which the spatial

database is a key component central to web-based model parameterization and

preparation of clipped input grids, relies upon particular database optimizations (e.g.,

spatial indexes) to function at the speed necessary to support portal operations.

Spatial indexing schemes, such as the R-tree-over-GiST spatial index that PostGIS

functions utilize, facilitate fast querying across spatial features stored in the database

(Nguyen 2009, Keon 2010). Spatial indexes are essential for enabling efficient

queries against very large datasets; without them, spatial queries would resort to

sequential scans of the data, which would run extremely slow in comparison.

By generating spatial indexes on all grids stored in the database, the performance of

queries necessary for (1) real-time portal responsiveness and (2) gridded data export

for preparation of model input grids was greatly increased. The sample comparison

below demonstrates the speed of a real-world query against the GEBCO_08 grid that

utilizes the spatial index vs. the identical query with the spatial index disabled (pre-

pending an underscore on the PostGIS function name ST_Within disables usage of

the spatial index, which simulates the absence of a spatial index on the column). In

this comparison, all gridded points within a bounding box of two degrees longitude

by one degree latitude were extracted:

57

 QUERY #1 (spatial index enabled)

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat

FROM gebco30

WHERE ST_Within(geom, GeometryFromText('POLYGON((-125 44,

-125 45, -123 45, -123 44, -125 44))', 4326));

28800 rows returned

query time: 342 ms

 QUERY #2 (spatial index disabled)

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat

FROM gebco30

WHERE _ST_Within(geom, GeometryFromText('POLYGON((-125 44, -125 45,

-123 45, -123 44, -125 44))', 4326));

28800 rows returned

query time: 489180 ms

The sample query run with the spatial index disabled results in a query execution

time many orders of magnitude slower (489.18 seconds vs. 0.34 seconds) than with

the spatial index enabled. Similarly, the creation of indexes on the Cartesian x and y

columns of every grid table facilitates fast querying of data based on the indexed

values. This is particularly beneficial for exporting gridded data as binary files to

deliver to ARSC for processing, since the data are queried based on sequential x,y

point position prior to conversion to binary (Appendix D).

For very large tables (e.g., GEBCO_08), a combined (i.e., “multicolumn”) index was

generated based on the existing x and y column indexes, which provides much faster

query response than relying solely upon the individual column indexes. In the

comparison below, a random set of grid points was selected by setting a WHERE

58

clause on the Cartesian x and y grid point location values, first on a copy of the

GEBCO_08 grid for which indexes were built on x, y, and xy, and second on a copy

of the same grid for which indexes were built only on x and y.

 QUERY #3 (with x, y, and xy spatial indexes)

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat

FROM gebco30

WHERE x < 19048 and x > 11429 and y < 98 and y > 21;

578968 rows returned

query time: 3370 ms

 QUERY #4 (with x, y spatial indexes only)

SELECT id, x, y, ST_x(geom) AS lon, ST_y(geom) AS lat
FROM gebco30

WHERE x < 19048 and x > 11429 and y < 98 and y > 21;

578968 rows returned
query time: 7551 ms

The difference in query speed is not nearly as dramatic as in the previous spatial

query example, but use of the multicolumn index decreased query execution time by

more than half of the time (3.37 s vs. 7.55 s) required using single-column indexes.

This is a significant performance gain that is particularly effective when querying

large sets of points, or when concurrent queries place a high load on the database

server. Gains in overall database performance were also obtained by modifying

postgresql.conf parameters as described in Table 2.3. These configuration

modifications are particularly helpful for write-heavy operations such as initial grid

loading.

59

2.7 Discussion

The specialized handling required for large spatial datasets used in the TCP presents

a challenging set of constraints that must be met in near-real-time scenarios.

Successfully meeting those constraints and generating the inputs required by the

model codes at ARSC requires tight integration among system components, as well

as the development of specialized code to (1) prepare and package spatial data and

metadata for simulation modeling jobs, and (2) automatically process the

spatiotemporal output data into useful products.

2.7.1 System Integration

The TCP’s integration of the input bathymetry grids, spatial database, and web portal

system at NACSE, together with the supercomputing resources at ARSC, represents

a unique implementation of a distributed scientific portal framework. A number of

important factors contribute to system operations; one of the key factors is the

common model parameterization scheme, which enables job configuration within a

single interface (the web portal) and facilitates job processing at ARSC. Leveraging

the computational resources at ARSC allows the fast computation of complex

modeling scenarios that would otherwise be difficult (or impossible) to compute in a

timely fashion.

Gains in multi-core processor speed may make local processing of model codes more

feasible, but large tsunami modeling jobs will still require the parallel processing

60

advantage of a large computational cluster or supercomputer. Running parallel

computational tsunami modeling operations on a graphics processing unit (GPU)

presents interesting possibilities for relatively low-cost, yet fast, computation across

large domains. This approach was tested using the set of linear shallow-water

equations by Schmidt et al. (2010) who, using a single GPU, found an increase in

processing speed by a factor of eight over the processing speed required by a single

CPU.

2.7.2 Portal Design and Spatial Data Handling

The methods described for spatial data configuration, storage, and analysis in support

of tsunami computational modeling enable fast access to large quantities of spatial

data both in a web-based context and for export and packaging of grids in

preparation for processing. Open source database and spatial data processing

software packages constitute an effective platform for importing, exporting,

querying, and manipulating grids used as inputs for tsunami numerical modeling.

APIs provided by some of the products give portal developers the ability to design

and implement custom solutions for particular applications. GIS-based mapping and

visualization aids help the user to define the extent of interest and grid nesting

arrangement for a model run. As others have noted (e.g., Merati et al. 2010), these

capabilities are extremely useful in hazard assessment and modeling tools.

61

Access to data and a common parameterization interface facilitates the comparison

of both hypothetical and actual tsunami events across multiple models. An important

benefit of the TCP system is the ability to parameterize a single simulation and run it

across multiple models, all within the same interface. The TCP represents a useful

implementation of a scientific web-based portal that gives users access to high-

performance computing resources. The system was written specifically for this

project – no framework was used in its development, although such frameworks have

since been developed (e.g., Van Hemert et al. 2011).

Maintaining bathymetry and coastal topography grids in a relational database gives

researchers easy access to the data and associated metadata via a web-based

interface, and enables fast spatial queries for real-time alignment and validation

checks performed by the portal interface. Spatial indexing is essential for enabling

fast spatial queries in the database. The use of multicolumn indexes in particularly

large grid tables also decreases query time, reducing the total time required to

configure a new model run. A disk space penalty is incurred when an index is built

on a grid table. For instance, the table containing the GEBCO_08 grid (including

spatial objects) occupies approximately 59 GB of disk space on the production

system, while the four column indexes (x, y, xy, and spatial) created for that table

occupy approximately 112 GB. However, the efficiency in query speed gained by

effective index usage far outweighs the associated disk space penalty.

62

2.7.3 Automation and Output Data Products

A key feature of the TCP system is automation – in particular, the automated

processing of spatial data as inputs for analysis and of output time-series data for

interpretation and visualization. While the spatial database greatly facilitates the

exploration and selection of grids via the web-based interface, and the PostgreSQL C

API enables fast data extraction queries via external code, the spatial database itself

may not be the fastest solution for extracting and packaging data to prepare inputs

for analysis. Since the initial development of the TCP system, advancements in open

source GIS toolkits and scripting languages such as Python have provided improved

compatibility with native formats such as netCDF, a common format used for

gridded bathymetry data. It should be possible today to develop a grid extraction

tool written in Python that uses the GDAL Python API to dynamically clip and

extract netCDF files (i.e., read from and write to netCDF directly, which GDAL

supports). However, any potential speed improvement may be insignificant in the

context of the portal system, which processes jobs in a queued manner depending

upon resource availability at ARSC.

Although tsunami model output data are often used to produce visualizations or

quantitative comparisons of varying event conditions, the output products can also be

used as inputs for visualization of simulated inundation of the modeled time-series

phenomenon, or utilized in other types of simulation modeling such as human

evacuation behavior during tsunami events. To support this type of simulation

63

modeling, the model codes must calculate and return U and V velocity vectors along

with the other output data. Two of the model codes currently in the TCP system

support the computation of these output products as an optional feature. Other non-

web-based visualization tools can also utilize the output data products as inputs. For

instance, Janik et al. (2007) developed a Java-based software tool for direct

exploration and visualization of TCP output data products. The tool can be triggered

from the TCP interface via Java Web Start to begin exploration of a user’s output

data. Similar tools have been developed by other groups: Vance et al. (2007)

developed a Java-based tool that utilizes the Visualization Toolkit and ESRI’s

ArcObjects to support exploration and visualization of tsunami simulation output

data. Merati et al. (2010) developed Java-based tools for exploration and

visualization of simulated NOAA tsunami inundation data.

2.8 Conclusion

The TCP is a unique web-based system in which three tsunami simulation model

codes can be configured using a common parameterization scheme, multiple global

and local bathymetry data are available for selection, and complex simulation jobs

are processed quickly on ARSC supercomputers. The TCP’s integration among web,

database, and supercomputing systems, combined with its support of disparate

computational models in a common environment, represent a model platform that

can be emulated in other disciplines where a collection of computational models in a

comparative environment is required.

64

Cyberinfrastructure is characterized by transformative computational approaches

leading to technological innovations that can be used by broader communities

(Atkins et al. 2003). The specialized resources and abilities of multiple research

groups and domain experts were leveraged to develop the TCP system and provide

access to multiple tsunami computational models within a common interface. This

cyberinfrastructure approach has greatly expanded the audience for the models and

has made it possible for the first time to perform in-depth comparisons of different

models and observe the effects of alternative algorithms step by step. Model runs

with iterative changes can be conducted simply by modifying configuration

parameters in the web portal and submitting the jobs for processing, and the results

can be compared by distributed teams of researchers.

The tsunami research community has benefitted from these capabilities. An equally

notable contribution is the design of the TCP. The portal system architecture is not

limited to the tsunami modeling domain – it is extensible to other computational

domains such as weather modeling or ecological modeling, in which alternative

modeling approaches need to be exercised broadly and compared to increase

scientific understanding. Improvements to the TCP could include the porting of new

modeling codes, as well as the addition of more high-resolution datasets providing

bathymetry and coastal topography coverage of near-shore areas vulnerable to

tsunami inundation, and more advanced visualization tools.

65

2.9 Acknowledgments

Development of the Tsunami Computational Portal was supported by funding from

NOAA/NWS and DoD/HPCMP. Rob Steiner and Ben Steinberg contributed code to

the portal and database systems at NACSE. Tom Logan ported the tsunami

simulation model codes to the ARSC platform and developed model parameter and

constraint information. Elena Suleimani provided several grids for the Alaska

region, information about the UAF Tsunami Model code, and feedback on TCP

system functionality. Philip Liu provided information about the COMCOT model

code and assistance in porting it to the ARSC platform. David George and Randy

LeVeque provided information about the Tsunami CLAW model code and assistance

with its parameterization. Craig Stephenson provided assistance with TCP

operations at ARSC.

66

2.10 References

ADCIRC. 2012. A (Parallel) Advanced Circulation Model for Oceanic, Coastal and
Estuarine Waters, http://www.adcirc.org (last accessed 10 February 2012).

Allan, J.C., P.D. Komar, P. Ruggiero, and R. Witter. 2012. The March 2011 Tōhoku

tsunami and its impacts along the U.S. West Coast. Journal of Coastal Research
28(5): 1142-1153.

Amante, C. and B.W. Eakins. 2009. ETOPO1 1 arc-minute global relief model:

Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS
NGDC-24, 19 pp, March.

Atkins, D.E., K.K. Droegemeier, S. Feldman, H. Garcia-Molina, M.L. Klein, D.G.

Messerschmitt, P. Messina, J.P. Ostriker, and M.H. Wright. 2003.
Revolutionizing science and engineering through cyberinfrastructure: Report of
the National Science Foundation blue-ribbon advisory panel on
cyberinfrastructure, http://www.nsf.gov/cise/sci/reports/atkins.pdf (last accessed
24 February 2012).

Barkan, R., U.S. ten Brink, and J. Lin. 2008. Trans-Atlantic tsunamis: Simulations of

the 1755 Lisbon and of hypothetical Puerto Rico trench earthquake tsunamis.
American Geophysical Union (AGU) Fall Meeting, San Francisco, CA,
December 15-19.

Barkan, R., U.S. ten Brink, and J. Lin. 2009. Far field simulations of the 1755 Lisbon

earthquake: Implications for tsunami hazard to the U.S. East Coast and the
Caribbean. Marine Geology 264(1-2): 109-122.

Barkan, R. and U. ten Brink. 2010. Tsunami simulations of the 1867 Virgin Island

earthquake: Constraints on epicenter location and fault parameters. Bulletin of the
Seismological Society of America 100(3): 995-1009.

Bernard, E.N. 2005. The U.S. National Tsunami Hazard Mitigation Program: A

successful state-federal partnership. Natural Hazards 35(1): 5-24.

67

Bernard, E.N., H.O. Mofjeld, V. Titov, C.E. Synolakis, and F.I. González. 2006.
Tsunami: Scientific frontiers, mitigation, forecasting and policy implications.
Philosophical Transactions of the Royal Society 364: 1989-2007.

Blain, C.A. and K. Kelly. 2001. Software design description for the Advanced

Circulation Model (ADCIRC). NRL Memorandum Report, NRL/MR/7320-01-
8271, Naval Research Laboratory, Department of the Navy, 12/2001.

Dunbar, P. and H. McCullough. 2011. Global tsunami deposits database. Natural

Hazards 63(1): 267-278.

Dunbar, P., H. McCullough, and G. Mungov. 2011. 2011 Tohoku earthquake and

tsunami data available from the National Oceanic and Atmospheric
Administration/National Geophysical Data Center. Geomatics, Natural Hazards
and Risk 2(4): 305-323.

Garbin, D.A. and J.L. Fisher. 2010. Open source for enterprise geographic

information systems. IT Professional 12(6): 38-45.

GEBCO. 2010. General bathymetric chart of the oceans: The GEBCO_08 grid,

http://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/ge
bco_08.pdf (last accessed 11 February 2012).

Geist, E.L., V.V. Titov, and C.E. Synolakis. 2006. Tsunami: Wave of change.

Scientific American 294(1): 56-63.

George, D.L. and R.J. LeVeque. 2006. Finite volume methods and adaptive

refinement for global tsunami propagation and local inundation. Science of
Tsunami Hazards 24(5): 319-328.

Gisler, G.R. 2008. Tsunami simulations. Annual Review of Fluid Mechanics 40: 71-

90.

GMT. 2012. Generic Mapping Tools, http://gmt.soest.hawaii.edu (last accessed 24

January 2012).

Goff, J.R., S.L. Nichol, and D. Kennedy. 2010. Development of a palaeotsunami

database for New Zealand. Natural Hazards 54(2): 193-208.

68

Goff, J., C. Chagué-Goff, D. Dominey-Howes, B. McAdoo, S. Cronin, M. Bonté-
Grapetin, S. Nichol, M. Horrocks, M. Cisternas, G. Lamarche, B. Pelletier, B.
Jaffe, and W. Dudley. 2011. Palaeotsunamis in the Pacific Islands. Earth-Science
Reviews 107: 141-146.

Goff, J.R., C. Chagué-Goff, and J.P. Terry. 2012. The value of a Pacific-wide

tsunami database to risk reduction: Putting theory into practice. Geological
Society, London, Special Publications 361: 209-220.

Gupta, A.K. 2011. Recent Tohoku tsunami and earthquake: A natural consequence

of the movement of the Pacific plate along the trench, east of the Japanese island
arc. Science and Culture 77(5-6): 175-185.

Huang, W., C.-L. Huang, and C.-H. Wu. 2006. The development of a computational

grid portal. In Proceedings of the sixth IEEE international symposium on cluster
computing and the grid, Singapore, May 16-19.

Imamura, F., A.C. Yalciner, and G. Ozyurt. 2006. Tsunami modeling manual

(TUNAMI model),
http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf
(last accessed 10 February 2012).

Janik, C., M. Bailey, D. Keon, C. Pancake, and H. Yeh. 2007. Web-based tsunami

visualization. 9th International Conference on Fluid Control, Measurements, and
Visualization (FLUCOME), Tallahassee, FL, September 16-19.

Johnston, D., D. Paton, G.L. Crawford, K. Ronan, B. Houghton, and P. Bürgelt.

2004. Measuring tsunami preparedness in coastal Washington, United States.
Natural Hazards 35(1): 173-184.

Keon, D., C. Pancake, H. Yeh, and T. Logan. 2009. The Tsunami Computational

Portal: Distributed infrastructure for executing and comparing multiple
computational models. Association of American Geographers (AAG) Annual
Meeting, Cyberinfrastructure Specialty Group, Las Vegas, NV, March 22-27.

Keon, D. 2010. Database management systems. Pages 671-675 in B. Warf (ed.),

Encyclopedia of geography. SAGE Publications, Thousand Oaks, CA.

69

Kowalik, Z. and T.S. Murty. 1993. Numerical simulation of two-dimensional
tsunami runup. Marine Geodesy 16: 87-100.

Liu, P.L.-F., Y-S. Cho, M.J. Briggs, C.E. Synolakis, and U. Kanoglu. 1995. Run-up

of solitary waves on a circular island. Journal of Fluid Mechanics 302: 259-285.

Liu, P.L.-F., S.-B. Woo, and Y.-S. Cho. 1998. Computer programs for tsunami

propagation and inundation, http://ceeserver.cee.cornell.edu/pll-
group/doc/comcot_technical_manual.pdf (last accessed 14 February 2012).

Lynett, P.J. 2011. Tsunami inundation, modeling of. Pages 1008-1021 in R.A.

Meyers (ed.), Extreme environmental events: Complexity in forecasting and early
warning. Springer, New York.

Lynett, P.J. and P.L.F. Liu. 2011. Numerical simulation of complex tsunami

behavior. Computing in Science & Engineering 13(4): 50-57.

Marks, K. and W. Smith. 2006. An evaluation of publicly available global

bathymetry grids. Marine Geophysical Research 27(1): 19-34.

Merati, N., C. Chamberlin, C. Moore, V. Titov, and T.C. Vance. 2010. Integration of

tsunami analysis tools into a GIS workspace – Research, modeling, and hazard
mitigation efforts within NOAA’s Center for Tsunami Research. Pages 273-294
in P.S. Showalter and Y. Lu (eds.), Geospatial techniques in urban hazard and
disaster analysis 2. Springer, Netherlands.

Murphy, K. 2012. Tsunami debris: Huge dock washes up on Oregon coast. Los

Angeles Times, 6 Jun 2012, http://articles.latimes.com/2012/jun/06/nation/la-na-
nn-huge-dock-tsunami-20120606 (last accessed 20 July 2012).

National Research Council. 2011. Tsunami warning and preparedness: An

assessment of the U.S. tsunami program and the nation’s preparedness efforts.
The National Academies Press, Washington, D.C. 284 pp.

Nguyen, T.T. 2009. Indexing PostGIS databases and spatial query performance

evaluations. International Journal of Geoinformatics 5(3): 1-9.

70

NOAA. 2012. Japan tsunami marine debris. NOAA Marine Debris Program,
http://marinedebris.noaa.gov/info/pdf/japanfaq.pdf (last accessed 10 February
2012).

NOAA Center for Tsunami Research. 2012. NOAA Center for Tsunami Research:

Tsunami Modeling and Research, http://nctr.pmel.noaa.gov/model.html (last
accessed 14 February 2012).

OGR. 2012. OGR Simple Features Library, http://www.gdal.org/ogr (last accessed

24 January 2012).

Open Geospatial Consortium, Inc. 2010. OpenGIS® implementation standard for

geographic information - simple feature access - part 2: SQL option. Reference
number OGC 06-104r4, http://portal.opengeospatial.org/files/?artifact_id=25354
(last accessed 8 February 2012).

Perl. 2012. Perl: Practical Extraction and Report Language, http://www.perl.org (last

accessed 13 February 2012).

PostGIS. 2012. PostGIS – A spatial extension to PostgreSQL,

http://postgis.refractions.net (last accessed 21 January 2012).

PostgreSQL. 2012. PostgreSQL relational database management system,

http://www.postgresql.org (last accessed 21 January 2012).

PROJ.4. 2012. PROJ.4 Cartographic Projections Library, http://proj.osgeo.org (last

accessed 21 January 2012).

Schmidt, J., C. Piret, N. Zhang, B.J. Kadlec, D.A. Yuen, Y. Liu, G.B. Wright, and

E.O.D. Sevre. 2010. Modeling of tsunami waves and atmospheric swirling flows
with graphics processing unit (GPU) and radial bias functions (RBF).
Concurrency and Computation: Practice and Experience 22: 1813-1835.

Showstack, R. 2011. Oceanographer tracks marine debris from the Japan tsunami

and other incidents. Eos Transactions American Geophysical Union 92(37): 306.

71

Suleimani, E. 2004. UAF Tsunami Code,
http://tsunamiportal.nacse.org/documentation/UAF_TsunamiCode.pdf (last
accessed 14 February 2012).

Tang, Z., M.K. Lindell, C.S. Prater, and S.D. Brody. 2008. Measuring tsunami

planning capacity on U.S. Pacific Coast. Natural Hazards Review 9(2): 91-100.

TCP. 2012. Tsunami Computational Portal, http://tsunamiportal.nacse.org (last

accessed 15 September 2012).

Titov, V. and F.I. González. 1997. Implementation and testing of the Method of

Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-
122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11 pp.

Titov, V., A.B. Rabinovich, H.O. Mofjeld, R.E. Thomson, and F.I. González. 2005.

The global reach of the 26 December 2004 Sumatra tsunami. Science 309: 2045-
2048.

Van Hemert, J., J. Koetsier, L. Torterolo, I. Porro, M. Melato, and R. Barbera. 2011.

Generating web-based user interfaces for computational science. Concurrency
and Computation: Practice and Experience 23: 256-268.

Vance, T.C., N. Merati, S.M. Mesick, C.W. Moore, and D.J. Wright. 2007.

GeoModeler: Tightly linking spatially-explicit models and data with a GIS for
analysis and geovisualization. In Proceedings of the 15th ACM International
Symposium on Advances in Geographic Information Systems (ACM GIS 2007),
Seattle, WA, 7-9 November.

Yeh, H.H. 1991. Tsunami bore runup. Natural Hazards 4(2): 209-220.

Zhang, L. and J. Yi. 2010. Management methods of spatial data based on PostGIS.

Pages 410-413 in Proceedings of the Second Pacific-Asia Conference on Circuits,
Communications and System (PACCS), August 1-2.

72

Chapter 3: Web-based simulation modeling and visualization of tsunami
inundation and potential human response

Authors: Dylan B. Keon, Benjamin M. Steinberg, Harry H. Yeh, Cherri M. Pancake,
Dawn J. Wright

73

3.1 Abstract

Modeling spatiotemporal phenomena can provide insight into the potential behavior

of simulated objects during hypothetical events. Simulation frameworks are one

means of modeling such scenarios, and become more flexible when developed in a

generalized fashion that facilitates the automated generation of output based on

variable input parameters. By wrapping a simulation framework within a web-based

system, users can not only assign input parameters of their choosing, but also run a

simulation and explore output data in a dynamic, animated, map-based context.

The framework described here utilizes tsunami simulation data and user input to

generate a combined web-based tsunami visualization and simulation model of

human response to tsunami inundation. Input parameters that define the human

population and response are provided by the user and guide the automated

development of a simulation model scenario of spatiotemporal human response to a

hypothetical tsunami inundation event. Simulated human movement is calculated

per time step on the processing server using casualty model algorithms informed by

behavioral research and variables such as water depth and road networks, while a

mix of server-side and client-side code renders the mapping interface and supports

user interaction within the web browser. Interactive controls included in the web-

based simulation viewer allow the user to manipulate the map display and query the

underlying data either manually by time step or interactively while the animation is

underway.

74

Vector-based simulation data stored as files or spatial objects in a relational database

(PostgreSQL with PostGIS) are overlaid on raster data and accessed on-the-fly to

render the animation, which is displayed in a web interface developed using PHP and

open source mapping tools such as OpenLayers, MapServer, and GDAL. The

server-side simulation framework is written in a mix of custom C++ and Python

code.

In a web-based system, an effective user experience is defined to a large extent by

the responsiveness of the web-based interface. To that end, performance

enhancements on both the server- and client-side were addressed, including web and

database server configuration, database indexing, and spatiotemporal data

representation.

3.2 Introduction

Property damage and potential loss of life due to tsunami inundation are relevant

concerns in coastal communities. The 2004 Indian Ocean tsunami and the 2011

Tōhoku tsunami both caused extreme damage to coastal communities and raised

awareness of tsunami danger around the world (Titov et al. 2005, Geist et al. 2006,

Dunbar et al. 2011, Gupta 2011). Simulating potential human response to a modeled

tsunami inundation event can lead to a better understanding of how a population

might move in such a scenario. The development and implementation of an

automated simulation framework system to process multiple inputs and produce

75

simulation output for use in visualization represents a significant research challenge,

one that is addressed in this study.

3.2.1 Tsunami Evacuation

Although U.S. states along the Pacific coast have tsunami awareness programs and

evacuation maps in place (e.g., Oregon.gov 2012), tsunami hazard management

plans in many coastal counties are lacking in implementation (Tang et al. 2008,

Lindell and Prater 2010). Several different types of tsunami modeling and human

evacuation scenarios have been conducted for areas along the U.S. Pacific Northwest

coast (e.g., Geist and Parsons 2006, Dominey-Howes et al. 2010, Priest et al. 2010,

Schneider 2011, Karon and Yeh 2011). Simulating potential human response during

a tsunami evacuation scenario can help researchers and local planners understand

risks to the community under varying population composition and tsunami

inundation conditions. Designing a unified interface that allows users to conduct

simulation scenarios, examine the output data, and view the results is a challenge,

and work remains to effectively simulate human movement during tsunami

evacuation scenarios and visualize output in a user-friendly fashion. Automating the

production of simulation output based on user input is an added research challenge.

This study examines the town of Seaside, Oregon as a test case for modeling tsunami

inundation and human movement during a tsunami evacuation scenario generated by

a custom simulation framework controlled via a web-based interface.

76

3.2.2 Simulation Modeling

To model dynamic phenomena, one must consider change in objects and their

attributes across both space and time. Complexities arise from spatial and temporal

representation of the objects and their attributes, analysis and characterization of

interactions among objects, effective visualization, and usability of simulated output.

Fast processing of potentially large datasets presents an additional challenge in

applications for which real-time responsiveness is required. In particular, modeling

potential human movement across space and time is a challenging task that is

important to many research fields (Yu and Shaw 2008). Representation of

spatiotemporal data in relational databases is a longstanding research challenge (e.g.,

Yuan et al. 2005, Le 2012), and many approaches have been devised for analyzing

spatiotemporal data describing human movement (summarized in Andrienko et al.

2011). Through the use of specific computational techniques, relational database

engines, and effective visualization methods, such analyses can provide both

understanding and prediction of potential human movement (Andrienko et al. 2007,

Yu 2007).

Computational simulation frameworks can provide a useful means of addressing the

challenges inherent to analysis of spatiotemporal data and movement prediction.

Properly designed, a simulation framework can efficiently process large amounts of

spatiotemporal data, predict potential human movement, and help the user interpret

output to provide better understanding of the modeled event. Simulation frameworks

77

are typically designed to be run in a “closed” system (i.e., in specialized software

running on the researcher’s computer or on a localized computer network). A

researcher might define a set of input parameters, run a simulation, and interpret the

results as raw data in a spreadsheet, or perhaps in a visualized form in their

specialized software package. Simulation frameworks become more flexible when

developed in a generalized manner that facilitates the automated generation of

simulation output based on variable, user-defined input parameters. Enabling

input/output access to a simulation framework from within a web-based interface

gives researchers the ability to access and run simulations without requiring any

specialized software on their computer apart from a standard web browser. In this

manner, a user can guide the input parameterization of the simulation, as well as the

visualization of simulated output, all from within a common user interface. User

interactivity is an important feature common to effective web-based visualizations.

Giving the user the ability to interactively guide the work of the system can improve

a simulation by incorporating the user’s expert knowledge (Andrienko et al. 2007).

3.2.3 Spatiotemporal Data Representation

Effective representation and display of time-series data in a spatial context is a

challenging problem that has been explored in many forms (Miller 1991, Langran

1992, Yuan 1996, Peuquet 2002, Kapler and Wright 2005, Yu 2006, Yu and Shaw

2007, Miller and Bridwell 2008). The earliest approach, developed by Hägerstrand

(1970) and often used today in 3D spatiotemporal geovisualizations, is the concept of

78

a space-time prism with space as the horizontal dimension and time as the vertical

dimension (Figure 3.1).

Figure 3.1: Conceptual diagram representing the space-time prism (after Miller
1991, Raubal et al. 2007).

Although the space-time prism is effective for visualizing relationships in space and

time, it is less effective at helping the user understand the actual spatial context of

temporal phenomena. Conversely, although static cartographic maps are very

effective at displaying spatial context and can convey some spatiotemporal

relationships to the viewer when temporal snapshot data are overlaid, static maps are

inherently limited in effective representation of changing temporal information.

Well-designed dynamic or animated maps can better express spatiotemporal

relationships than static cartographic maps. Although map-based animation of

79

movement over time is sometimes characterized as having limited effectiveness (e.g.,

Andrienko et al. 2011), map-based approaches remain one of the best methods of

data visualization and exploration, particularly when developed as dynamic,

interactive systems that integrate spatiotemporal data. Such data are often

represented as an individual’s movement over time, in the form of space-time paths

(Hägerstrand 1970, Kraak 2003, Shaw et al. 2008) or geospatial lifelines (Mark

1998, Hornsby and Egenhofer 2002). Figure 3.2 displays a generalized diagram of a

space-time path.

Figure 3.2: Conceptual diagram representing an individual’s space-time path (after
Miller 1991).

80

3.2.4 Animation of Spatiotemporal Data

Animated representations of spatiotemporal phenomena are often produced as static

video files or simple Adobe Flash-based animations. Interactivity can be

programmed into advanced Flash-based animations via frameworks such as Flex

(Adobe 2012), for example, and useful tools and toolkits can be constructed in this

manner (e.g., Van Ho et al. 2011). However, the user is often limited to a set of

fixed choices for manipulating the display of maps or content in the animation.

Moreover, controls for querying or retrieving information may not function while an

animation is in progress, and Flash itself is susceptible to security vulnerabilities.

Although non-interactive data visualizations may be useful, they can limit the level

of information and understanding the user gains from the experience. User

interaction with the underlying data is typically limited to querying static layers in a

non-animated system or running pre-defined queries in a system that may support

animation, and support for in-depth exploration of spatiotemporal datasets within

web-based applications remains limited. Advances in web-based technology and

both client-side and server-side processing enable the development of sophisticated

query and visualization tools that can run within a web browser.

3.2.5 Evacuation Modeling

Time-series phenomena such as modeled tsunami inundation events provide good

test cases for the development of interactive web-based visualizations that are both

data-rich and visually interesting. Tsunami simulation modeling and visualization of

81

results are important methods for helping researchers understand the potential

behavior of a tsunami flow. It is also important to understand how people may

respond to a tsunami inundation event or disaster warning. Bernard et al. (2006)

noted: “Little research has been done on the human response to tsunamis. These

studies would represent a new frontier in modelling the response of humans to this

threat.” Similarly, Lindell and Prater (2010) called for research integrating

computer-based analysis tools for evacuation simulation and planning in Oregon and

Washington.

In this study, a prototype system was designed that utilizes modeled tsunami

simulation data representing water depth and location in both space and time as an

input into a custom-built simulation framework. The Seaside, Oregon region, which

is at risk of tsunami inundation from a local Cascadia earthquake and tsunami

(Figure 3.3), was used as a test case in the prototype development. Many coastal

communities in the U.S. Pacific Northwest have nearby topographic features that rise

significantly above sea level, providing locations for individuals to ascend to safety

in the event of a tsunami. The community of Seaside remains considerably flat for a

significant distance inland, meaning an incoming tsunami flow could potentially

travel quite far, making evacuation in the event of a tsunami more difficult than in

other coastal communities.

82

Figure 3.3: Tsunami risk area in the Seaside, Oregon region (NANOOS 2012).

83

Pre-existing high-resolution tsunami inundation data for the Seaside region were

used during prototype development, but the system can also utilize modeled tsunami

data created as output products from the Tsunami Computational Portal (TCP), a

web-based research portal that provides generalized access to multiple tsunami

computational codes and runs model simulations on supercomputers. The modeled

data are combined with data describing a hypothetical population, structures, roads,

and other features to simulate potential human response to a tsunami inundation

event.

3.2.6 Study Goals

The prototype system was developed with six primary goals in mind:

1. Develop a framework for simulating potential human response to a modeled

tsunami inundation event.

2. Automate the production of simulation output and geovisualizations that

incorporate the output data products.

3. Create a web-based system to interface with the simulation framework, so

that all framework features are accessible and configurable via a web

browser.

4. Enable user interactivity features to help drive simulation generation, and to

enhance usability of simulation output.

5. Develop a web-based mapping and visualization tool capable of animating

time-series data in a spatial context, while allowing simultaneous use of map

navigation and query functions to examine the data driving the animation.

6. Attempt to build and integrate the simulation framework, web-based system,

and related processing code using open source software tools.

84

A number of techniques were employed to create the simulation framework,

including a range of computational, database, and mapping and visualization

technologies. The simulation framework models not only potential human

movement but also the interaction of moving objects (wave inundation and human

movement) over time.

3.3 Related Work

Simulation frameworks, tsunami modeling, visualization, modeling of human

movement, and other topics addressed in this study are active areas of research

across multiple disciplines. In this section, related research is discussed in the

context of the main themes explored by this study.

3.3.1 Simulation Frameworks

Advances in computing technology have made it possible to simulate large, complex,

dynamic systems using relatively inexpensive hardware resources. By linking

custom software tools with existing software packages, a powerful framework for

processing inputs and generating simulation outputs can be produced. Simulation

frameworks have been developed for modeling behavior in many disciplines; they

are commonly developed in the computational sciences for research projects such as

simulating wireless sensor network performance in adaptive environments (Niazi and

Hussain 2011) or modeling cloud computing configuration and resource provisioning

(Calheiros et al. 2010). Simulation frameworks have also been implemented in the

85

biological sciences (e.g., Dalquen et al. 2012), the agricultural sciences (e.g.,

McCarthy et al. 2010), and other research areas. The simulation framework

developed for this study uses a uniquely multidisciplinary approach in its design and

implementation, incorporating elements from geography, tsunami simulation,

hydrodynamics, structural engineering, and human factors analysis.

3.3.2 Tsunami Modeling and Visualization

Output data from tsunami modeling serve as an important input data source for the

simulation framework developed for this study. Tsunami modeling involves the use

of complex computational codes to simulate tsunami wave generation, propagation

across the ocean, and inundation on shore. A number of authors have described the

research behind tsunami modeling and the related algorithms and computational

processing requirements (e.g., Geist et al. 2006, Synolakis and Bernard 2006, Gisler

2008, Lynett 2011, Lynett and Liu 2011). Tsunami computational codes that model

tsunami propagation across the ocean often process multiple nested grids at

increasingly higher spatial resolutions as they progress toward near-shore areas.

These computational tasks can require significant processing power (i.e.,

supercomputers or computational clusters) to reach completion in a reasonable

amount of time.

Several tsunami computational models have been developed and are in use today.

One of the most commonly used models is NOAA’s Method of Splitting Tsunami

86

(MOST), a suite of numerical codes for modeling tsunami generation, propagation,

and inundation (Titov and González 1997). The TUNAMI-N2 (Tohoku University's

Numerical Analysis Model for Investigation of Near field tsunamis) model is also

commonly used for developing tsunami simulations (Imamura et al. 2006). The

Tsunami Computational Portal (Keon et al. 2009, TCP 2012) incorporates three

tsunami computational model codes (COMCOT, UAF Tsunami, and Tsunami

CLAW) that share a common parameterization scheme and are made available to

researchers via a web-based portal interface. The TCP’s output data products can be

used as inputs by the simulation framework developed for this study.

In addition to tsunami computational models, NOAA researchers have developed a

simulation framework that integrates modeled tsunami simulation output with data

analysis and visualization capabilities in a GIS-based system (Vance et al. 2007).

Their Java-based software application uses Esri’s ArcEngine and ArcObjects

products, as well as the Visualization Toolkit 3D API, and links directly to the

Regional Ocean Modeling System (ROMS) and MOST models to visualize and

analyze tsunami runup data. NOAA has also developed Python- and ArcGIS-based

tools to process and visualize modeled tsunami propagation and inundation data

(Merati et al. 2007). More recently, NOAA programmers developed the Community

Model Interface for Tsunami (ComMIT) tool, a Java-based application that allows a

user to control input parameters for the MOST model and access the model output

files for visualization and analysis, and the Tsunami GIS application, a custom

87

ArcGIS-based tool that facilitates the integration of gridded tsunami inundation

output data with vector-based socioeconomic and infrastructure data (Merati et al.

2010). U.S. Geological Survey personnel developed a GIS-based approach for

modeling sea level rise (including potential surge effects from tsunamis) at global,

regional, and local scales via statistical summary data representing elevation, land

cover, and population, and produced non-interactive animations of their simulation

output (Usery et al. 2010).

3.3.3 Modeling Human Movement

Human movement across space and time can be represented using time geography

concepts such as those described by Hägerstrand (1970) and Miller (1991). By

implementing Hägerstrand’s space-time prism using a network-based approach, an

individual’s potential path can be calculated and represented visually in a two-

dimensional GIS environment (Miller 1991, Miller and Wu 2000) or in a three-

dimensional GIS (Yu 2007, Yu and Shaw 2008). With spatiotemporal data

describing human movement, that individual’s space-time path can be visualized,

queried, and summarized (Mountain 2005). The context in which a person’s

movement occurs can affect the spatial and temporal relationships that influence that

person’s decision-making process. Andrienko et al. (2011a) developed a conceptual

framework and general taxonomy of techniques for analyzing movement data, and

Andrienko et al. (2011b) analyzed movement data in their spatiotemporal context in

order to describe relationships among objects as events.

88

In simulated evacuation scenarios, human movement is often modeled along existing

road networks leading to evacuation points (e.g., tsunami shelters on high ground in

coastal communities). The shortest-path method is commonly used to model

movement along a route from start to end point (Katada et al. 2006, Chen and Zhan

2006), although dynamic routing and agent-based modeling approaches are

increasingly used (Liu et al. 2008, Goto et al. 2012, Mas et al. 2012, Nagarajan et al.

2012). Network flow models (e.g., Cova and Johnson 2003) can be used to develop

optimal routing plans for human movement in traffic-based scenarios.

3.3.4 Tsunami Evacuation Simulation

Simulating an evacuation simulation in response to a disaster such as a tsunami can

be treated as a specific case of modeling human movement. Katada (2003)

researched tsunami inundation events and human behavior in disaster situations and

designed a simulation system to predict human movement during hypothetical

evacuation scenarios. His work was influenced by Oikawa and Katada (1999), who

studied the effects of flood experience and human behavior on evacuation scenarios,

and Katada et al. (2000), who developed an early, related version of a scenario

simulator for dissemination of disaster warnings. As part of the work that followed

Katada (2003), a tsunami scenario simulator was developed, which took into account

human factors engineering and other simulation variables such as warning

transmission type and timing (Katada et al. 2004, Wolman 2005). Later, Katada et

al. (2006) developed a GIS-based version of the simulation framework and used it to

89

produce several evacuation scenarios for the Owase, Japan area. In a related effort,

the researchers developed a web-based interface to present the Owase simulation

output, incorporating non-interactive video files that portray four individual, pre-

configured simulations of human response to a tsunami event (OWASE 2012).

These simulations were used by Goto et al. (2010) for disaster reduction education

and research. Uno and Kashiyama (2008) developed a disaster evacuation

simulation system based on a multi-agent model, using GIS data and routing

algorithms to model human movement. Goto et al. (2012) also developed a multi-

agent simulation model. Using a modeling approach similar to Katada et al. (2006),

Karon and Yeh (2011) conducted a simulation of human response to a tsunami

inundation event in the Cannon Beach, Oregon area. Their simulation framework

was implemented as a system that generated animated output as video files

representing various scenarios (Tappister 2012). All of these simulation systems

were developed as locally-installed software products and produce video-based

output that cannot be queried for further information. Moreover, they are limited in

the use of tsunami inundation modeling data as an input to inform the simulation of

water depth at each time step.

Similar to Katada’s warning dissemination research, Nagarajan et al. (2012)

developed an agent-based model of multiple agents (households) in a hypothetical

community to simulate the influence of human behavior on message transmission.

Clerveaux et al. (2008) used the Katada et al. (2006) tsunami evacuation scenario

90

tool for simulating a tsunami inundation event in the Turks and Caicos Islands,

focusing on warning message dissemination challenges in multi-language

communities. Drawing upon community input, Kobayashi et al. (2007) used a

unique disaster simulation system with a tangible user interface to support

collaborative planning of disaster warning and damage prevention. Liu et al. (2007)

worked with community members to help understand tsunami evacuation behavior

and used their input, in part, to help design a multi-agent evacuation simulation

system. Mas et al. (2011) examined and modeled the evacuation decision process

based on human risk perception in tsunami scenarios and, using modeled tsunami

wave output data from the TUNAMI-N2 model combined with an agent-based

modeling approach, Mas et al. (2012) simulated a potential evacuation scenario for

the Arahama Town area in Japan, which was inundated during the destructive 2011

Tōhoku tsunami.

3.3.5 Casualty and Loss Estimation

The modeling of human movement in response to a tsunami inundation event must

incorporate some method of determining the conditions under which a person would

be overtaken by the tsunami flow. Many variables must be considered when

estimating casualties in this manner. Koshimura et al. (2006) developed a tsunami

casualty estimation method based on a simple model of hydrodynamic forces as they

affect the human body, tested the method using tsunami simulation data for the

Seattle, WA area, and produced a tsunami casualty index to show the casualty

91

potential at a location. While they did consider a person’s weight in their casualty

estimation equation, they did not consider other anthropometric variables. Yeh

(2010) developed a tsunami casualty estimation method that takes into account

gender and age factors. Using mean anthropometric data values from Kroemer et al.

(1997) including height, weight, and eight body measurements (foot width, shoulder

breadth, etc.), Yeh developed equations to estimate casualties while considering two

different failure modes (force balance and moment balance). Both Koshimura et al.

and Yeh made the assumption that when a person is swept off their feet by the

tsunami flow, they are considered a casualty. Yeh’s tsunami casualty estimation

method is implemented in the simulation framework developed for this study.

Several similar efforts have developed methods for estimating loss of life due to

flooding. Jonkman et al. (2008) developed estimation methods for different types of

floods in different regions, and related the loss of life to flood characteristics and

possibilities for evacuation. They also conducted a comprehensive review of extant

methods for casualty estimation due to flooding, including human instability in

flowing water from tsunami inundation. Usery et al. (2010) considered tsunami

surge effects at multiple scales and the resulting impact on population. A number of

studies have developed computer-based flood evacuation models and simulations, or

examined the use of integrated geographic information systems for flood risk

assessment and management (e.g., Zerger and Wealands 2004, Simonovic and

92

Ahmad 2005, Maantay et al. 2010). Remotely sensed data have also been used for

estimating coastal vulnerability (Koshimura and Takashima 2005).

In addition to the human impact of tsunamis, it is also important to predict the

potential impact of tsunamis on the built environment. GIS-based approaches are

often used for modeling the vulnerability of buildings to tsunami inundation (Wood

and Good 2004, Tarbotton et al. 2012), and Leone et al. (2011) developed a spatial

model of tsunami risk assessment. The Papathoma Tsunami Vulnerability

Assessment (PTVA) model establishes an assessment equation based on building

design, condition, and surroundings (Papathoma and Dominey-Howes 2003).

Revised twice, the model has been used to conduct building assessments of several

study areas around the world (Papathoma et al. 2003, Dall’Osso et al. 2009,

Dall’Osso et al. 2010, Dominey-Howes et al. 2010). Other numerical modeling

approaches to vulnerability assessment have been developed (e.g., Wood and Good

2004, Omira et al. 2010), and Eckert et al. (2012) used digital surface models

derived from remotely sensed data to assess tsunami risk to structures in Egypt.

Increasingly, “fragility functions” are used to mathematically estimate the

probability of house/structural damage due to tsunami inundation (Koshimura et al.

2009a, Koshimura et al. 2009b, Reese et al. 2011, Suppasri et al. 2012).

93

3.4 Simulation Framework

The simulation framework developed for this study includes the software and custom

code that processes input data, runs the simulation model, generates output data, and

runs the web-based results interface. To simulate potential human movement in

response to a tsunami event, the simulation framework must:

• Read large gridded tsunami inundation input datasets.

• Generate an initial population distribution for the community of interest,

place people in known residential and commercial structures, and write the

data to a spatial database.

• Route the population along an established road network toward identified

evacuation locations.

• Compute the intersection of tsunami inundation data with population

locations at each time step (i.e., simulated moments in time, separated by a

defined interval) and, using human factors data and a casualty determination

algorithm, compute whether casualties occur and write the spatiotemporal

data to the database.

• Generate visualizations of the output in an interactive map-based context that

allows data exploration.

3.4.1 Framework Architecture

The simulation framework is composed of the hardware (processing and database

servers), software (custom server-side and client-side code, APIs, relational database

management system), and input data (tsunami inundation, GIS framework) that run

the simulation model and produce outputs used in queries and visualizations. Figure

3.4 provides a diagrammatic description of the framework architecture.

94

Figure 3.4: Diagram of the simulation framework system architecture. Software
packages used are listed beside each diagram element, while objects passed from one
element to another are listed beside the arrows. Tsunami inundation input data are
generated via a separate tsunami modeling framework (the TCP or another modeling
tool).

One goal of this study was to attempt to build the entire simulation framework using

open source software tools, in addition to custom code. The open source software

packages used by the simulation framework are listed in Table 3.1, along with the

purpose for which each package was used. Custom code for the study was written in

the programming languages C++, Python, PHP, JavaScript, and HTML, as well as

the pl/pgSQL procedural database language.

95

Table 3.1: Open source software packages used by the simulation framework, and
the purpose for which they were used.

Software Package Purpose
PostgreSQL
(postgresql.org)

Storage and management of input and output data used by
the simulation framework.

PostGIS
(postgis.refractions.net)

Support for spatial objects and operations within
PostgreSQL, enable spatial queries.

GEOS
(geos.osgeo.org)

OpenGIS Simple Features operations used within
PostgreSQL/PostGIS.

PROJ.4
(proj.osgeo.org)

Coordinate system transformations on spatial objects
stored in the database.

GDAL
(gdal.org)

Process water depth data into TIFFs, and process other
raster datasets.

OGR
(gdal.org/ogr)

Process vector datasets, convert vector output from
PostgreSQL/PostGIS to GeoJSON format.

MapServer
(mapserver.org)

Prepares map layers on the server for inclusion in the
OpenLayers web mapping and visualization interface.

OpenLayers
(openlayers.org)

Enables the web mapping and visualization interface
including base maps, vector data, and animated results.

Highcharts
(highcharts.com)

Client-side charting – enables interactive charting
capabilities via JavaScript.

Python
(python.org)

Scripting language used for server-side tasks in the
simulation framework.

PHP
(php.net)

Server-side web programming language that drives the
simulation results web interface.

3.4.2 Spatial Database

Spatiotemporal data describing human movement are represented in the database by

time-stamping at the record level – each simulated person is represented as a

database object that is assigned a set of time stamps, locations, and status data by the

simulation framework. This approach provides greater relational flexibility than the

traditional “snapshot” method of storing a separate GIS layer to represent each time

96

step, yet, with proper indexing, also allows for extremely fast queries. Figure 3.5

displays a generalized diagram of the database schema used to store data that

describe the initial population distribution, as well as the time-series data that

describe the state of the simulated objects at each time step of the modeled tsunami

event. All frequently-used columns in the database tables are indexed for fast query

performance. GiST (Generalized Search Tree) indexes are created on all columns

storing spatial geometries, and can greatly increase the performance of spatial

queries.

The database used by the simulation framework is stored and managed in an instance

of the open source PostgreSQL (2012) relational database management system with

the open source PostGIS (2012) module included to support the storage,

manipulation, and querying of spatial data as database objects. PostgreSQL/PostGIS

allow the execution of advanced spatial queries and can be accessed directly via web

programming languages such as PHP and web mapping tools such as MapServer

(Lime 2008, MapServer 2012). The PostgreSQL database server instance runs on a

dedicated Dell PowerEdge R710 server containing four quad-core 2.53 GHz Intel

Xeon processors and 32 GB memory, with data stored across eight 320GB 10,000

RPM serial-attached SCSI disks in a RAID 5 configuration (via a hardware RAID

controller). The server runs the Red Hat Enterprise Linux 6 operating system.

97

Figure 3.5: Generalized database schema diagram representing the major database
tables used by the simulation framework. Simulation outputs (including time-series
data) are written to various “Job” tables with matching IDs that relate back to the
metadata used to generate the simulation run.

3.4.3 Input Data Sources and Data Preparation

Input data for the simulation framework come from three primary sources: (1) Input

parameters defined by a user on the settings web page (Figure 3.6), (2) tsunami

simulation modeling output data, and (3) GIS data for the modeled community. The

settings web page allows the user to select a predefined set of tsunami simulation

output data to use as an input into the simulation model, as well as the initial

population size, general time of day (morning, afternoon, evening, night), the time

98

Figure 3.6: Settings web page for defining the input parameter settings used by the simulation model.

99

step at which to begin the evacuation process, and the evacuation points to use as

destinations. Tsunami simulation output data consist of a wave series file

representing water depth at each time step of the simulated tsunami event, as well as

U and V velocity vector files that are used to determine the force and direction of the

tsunami flow.

GIS data were essential to the development of the simulation framework. Data

representing roads, bridges, and taxlots were obtained from Clatsop County, OR (the

county in which Seaside is located). At the time of initial development, a detailed

GIS layer representing buildings (structures) in Seaside could not be obtained.

Instead, a structures layer was digitized from high-resolution (0.5 m) aerial imagery

provided by the State of Oregon. The digitized layer was georeferenced and

converted to shapefile format, then loaded into the spatial database. The Clatsop

County GIS layer representing taxlots contained attributes such as structure age and

type, year built, and a three-digit “stat_class” code representing a classification of

building type and land use.

After loading the taxlot GIS data into the spatial database, PostGIS spatial queries

were developed to identify the intersection of taxlots with the digitized structure

data, spatially assigning taxlot ID, street address, and the stat_class code as attributes

to each structure polygon within the database. The resulting attributed structures

data were used to (1) identify starting locations for the initial population distribution,

100

and (2) coarsely distribute the starting population among structure type (i.e.,

residential vs. commercial) based on the general starting time of the simulation. A

similar assignment of residential vs. commercial/industrial building types based on

the stat_class attribute was used by Dominey-Howes et al. (2010) for estimating

building vulnerability and property loss from a tsunami event affecting the Seaside

community.

In this study, all simulated individuals were routed along the established road

network in the Seaside community. Each individual moved toward one of three

official evacuation locations (whichever location is closest to the individual at the

start of the simulation process), identified by DOGAMI (2005). Routing along the

road network was performed using the Dijkstra shortest-path algorithm, as initially

described in Dijkstra (1959). Several steps were followed to prepare the road

network for use in this manner:

1. A spatial data layer representing roads in the area was obtained in Esri

shapefile format.

2. The roads layer was imported into the existing PostgreSQL/PostGIS spatial

database.

3. Elevated road segments (bridges) were identified and their average height

above ground level was recorded in the database.

4. A representation of the roads layer as a network of edges and vertices was

produced.

101

Following preparation of the roads network, the Dijkstra shortest-path algorithm was

applied to the simulated population in order to route them along the prepared

network. The assumed evacuation speed, based on a pedestrian walking rate for

average adult males (1.65 m/s) and females (1.37 m/s) suggested by Eubanks (1994)

and used in Yeh (2010), was used to advance each individual a certain distance along

the road network at each time step. The routed location of each individual at each

time step was recorded in the spatial database and later used in the modeling process.

3.4.4 Casualty Determination

To determine the status of each individual at each time step, certain assumptions

must be made about generalized body types to determine whether an individual is

overtaken by the water depth and velocity at their location. Yeh (2010) evaluated

gender and age factors in tsunami casualties and, using mean values of

anthropometric measured data from Kroemer et al. (1997), developed casualty

curves representing the critical conditions that cause casualties during tsunami

inundation flows. The casualty curves are plotted on charts of inundation depth vs.

flow speed, with distinctions made among male and female body types, and adults

vs. children. Table 3.2 contains the anthropometric values used in this simulation

model. In this study, adult male and female body types are evaluated.

Casualty determination is calculated by a series of algorithms that take into account

the anthropometric values, water depth, force, and direction of the tsunami flow.

102

These algorithms are implemented on the processing server in a C++ program that

iterates across all individuals still standing at each time step of the simulation. The

first evaluations determine (1) whether there is any water present at that time step (if

false, no casualty exists), and (2) whether the water speed is equivalent to zero (if

true, no casualty exists). Next, each individual’s hip height is compared to the water

depth at the current time step. Following Yeh (2010), values representing the wetted

area of a human body (A), the centroid of the area A relative to ground level (Ay0),

and the submerged volume of the individual’s body (V) are calculated for each

individual. If the water depth is shallow (below hip height), A, Ay0, and V are

calculated using body parameters representing the lower half of the body; otherwise,

the values are calculated using the full set of body parameters.

103

Table 3.2: Mean values of anthropometric measured data for U.S. adult male and females (Kroemer et al. 1997), used by
Yeh (2010) to calculate casualty curves for individuals subjected to tsunami flow. The values in this table are used in the
casualty determination algorithm built into the simulation model.

Age and
gender

Height
(m)

Weight
(kg)

Foot
width
a (m)

Hip
breadth
b (m)

Shoulder
breadth
c (m)

Hip
height
hb (m)

Shoulder
height
hc (m)

Foot
length
d (m)

Abdominal
depth
e (m)

Chest
depth
f (m)

Moment
arm
x (m)

Adult
male 175.6 78.0 0.202 0.367 0.492 0.928 1.443 0.101 0.236 0.243 0.300

Adult
female 162.9 62.0 0.180 0.385 0.433 0.862 1.334 0.090 0.219 0.239 0.278

104

The C++ code block below handles the conditional calculations involved in casualty

determination (the code that implements these algorithms is provided in more detail

in Appendix E). The set of equations in the first conditional statement represents the

calculations performed if water depth is below hip height.

if (h < hb) {

 A = a*h+(b-a)*((h*h)/(2.*hb));

 Ay0 = ((a/2.)*(h*h)+((b-a)/(3*hb))*powf(h,3.));

 V = h * 3.1415926 * ((a + (b - a) * (h/hb))/2.) *

 ((d + (e-d) * (h/hb))/2.);

} else {

 A = ((a + b)/2.)*hb+b*(h-hb)+((c-b)/(2.*(hc-hb))) *

 (h-hb)*(h-hb);

 Ay0 = ((a/2.)*hb*hb+((b-a)/3.)*hb*hb+(1./(6.*(hb-hc))) *

 (3*c*h*h*hb-(2*b+c)*powf(hb,3.)+3*b*hb*hb*hc+h*h *

 (2.*(b-c)*h-3.*b*hc)));

 V = hb * 3.1415926 * ((a + (b - a) * (h/hb))/2.) *

 ((d + (e-d) * (h/hb))/2.0) + (h-hb)*3.1415926 *

 ((b+(c-b) * ((h-hb)/(hc-hb)))/2.) * ((e+(f-e) *

 ((h-hb)/(hc-hb)))/2.0);
}

An individual can be displaced by a tsunami flow by two different failure modes.

The first is based on force balance and occurs when the force of the tsunami flow

surpasses the individual’s frictional force (i.e., their ability to remain standing

against the flow). When the flow force exceeds the frictional force, the individual is

assumed to be brought down by the tsunami flow and displaced in the flow direction

(i.e., carried away). The second mode is based on moment balance and occurs when

the moment of the flow exceeds the moment of the individual – that is, the rotational

105

force exerted by the flow exceeds the individual’s ability to remain standing, causing

them to be knocked over into the flow. Following calculation of the values A, Ay0,

and V, the code below determines whether an individual will succumb to either force

imbalance or moment imbalance, or remain standing, based on the anthropometric

values and data describing water depth, velocity, and direction at their location. If

they are determined to be a casualty, they are marked as such in the database at that

time step, and not evaluated in subsequent time steps.

if (w < (sigma*V)) {

 Location currentPersonLocation = p->get_location();

 p->set_dead(true);

 return;
}

wsv = w-sigma*V;

um = sqrt((2.*wsv*x)/(Cd*Density*Ay0));
uf = sqrt((2.*ff*wsv)/(Cd*Density*A));

minu = HSDMIN((um),(uf));

if ((speed/minu) < 1.) {
 return;

} else {

 p->set_dead(true);

}

3.4.5 Simulation Model

The simulation model operates on a time-step basis, as defined by the tsunami

inundation input data used in the model run. The state of all objects is calculated and

evaluated at each time step, resulting in model outputs that are written to the

filesystem (e.g. time-series grids representing tsunami inundation), and to the

database (e.g., time-series data representing the position and state of each modeled

individual at each time step). Figure 3.7 illustrates the modeling process and the

106

flow of logic in the simulation model, while Figure 3.8 describes the sub-process that

evaluates each person’s casualty status at each time step as the simulation progresses.

The simulation model accepts user-defined parameters as inputs that determine, in

part, the initial population distribution in the community of interest. Based on the

taxlot information related to the structures data stored in the spatial database,

structures are identified as residential or commercial (including businesses, schools,

medical facilities, etc.). The randomly generated population is distributed among the

structures in the community depending upon the general time of day assigned by the

user (i.e., early morning, daytime, evening, or night). Table 3.3 displays the

percentages of occupancy assigned by structure type, depending upon the simulated

time of day – in general, more people are assumed at home at night than during the

daytime (the simulation model assumes the event occurs on a weekday), based on

data from the American Time Use Survey (2012). This population distribution

represents the starting condition for the simulation model.

107

Figure 3.7: Flowchart representing logic flow in the simulation model. The “Route
along road network” and “Evaluate casualty status” sub-processes are described in
more detail elsewhere in the document.

108

Figure 3.8: Flowchart representing the casualty evaluation sub-process. This sub-
process executes the casualty determination algorithm as part of a loop process in the
larger simulation model. The casualty status for each person is evaluated at each
time step within the loop, and the status is written to the database as part of the time-
series information stored for each person.

109

Table 3.3: Estimated percentages of occupancy by structure type across different
periods of a typical weekday.

General
location

Early
Morning Daytime Evening Night

Residential 70 20 60 90
Commercial 30 80 40 10

Once assigned to a structure, a person is ready to be moved onto the road network

during the first time step of the simulation. By modeling the movement of the

population in a synchronized fashion with the tsunami inundation data (i.e., time

steps), the simulation model assumes that all members of the population receive the

tsunami warning at the same time, and begin moving simultaneously.

3.4.6 Output Data Products

As indicated in Figures 3.6 and 3.7, the simulation modeling process generates

multiple output data products for each model run. The output data products are

summarized in Table 3.4. A Python script run early in the processing chain of events

generates a randomized initial population distribution, using spatial database queries

to place individuals in known structures. This output data product is produced as a

file, which then serves as an input data source for subsequent steps of the modeling

process. Water depth at each time step is read from a binary wave series input file

by a C++ program that calls a GDAL function to generate a TIFF image representing

water depth for each time step. The TIFF images are used for visualizing water

110

depth in the results interface, and are generated once for the related simulation and

then stored for later use (i.e., they are not generated dynamically every time the

simulation is viewed).

Table 3.4: Output data products generated by the simulation framework.

Output Data
Product Format Description

Population
distribution

ASCII
file

File containing initial randomly-generated
population distribution assigned to structures
in the study area; created by Python script.

Water depth Binary
files

TIFF images generated via C++ and GDAL,
one per time step representing water depth
across the domain, used as a semi-transparent
map overlay.

Space-time path Spatial
database

Data representing each simulated individual’s
location in space and time, for each time step.
Used for queries and generation/animation of
space-time paths.

Casualties Database
Record of each individual’s casualty status at
each time step as calculated by the casualty
determination algorithm.

The routing algorithm advances each individual along the road network, recording

their position in space and time in the spatial database. Those data are used for

visualizing the progression of each individual on the animated map, as well as for

satisfying queries and displaying an individual’s space-time path on the map. As the

simulation model advances, the casualty determination algorithm evaluates each

individual’s casualty status at each time step and records that status in the database.

111

Those data are used for visualizing each individual’s status on the map and are

particularly effective for identifying change over time during animation. A custom

database function (Appendix F) calculates simulation run summary statistics at the

end of the process.

3.4.7 Simulation Results Interface

Once a simulation model run is complete the output can be viewed in the web-based

results interface (Figure 3.9). All automated output products (time series population

data, individual space-time paths, modeled water depth as TIFFs) are automatically

made available in the interface. The results interface contains:

• A dynamic map with multiple base layers that supports animation of the

time-series result data and an individual’s space-time path.

• An interactive chart displaying water depth across all time steps at any

clicked point on the map.

• A dynamic table containing a selected individual’s data for each time step.

• Controls for navigating among the set of time steps, starting and stopping the

animation, and interpreting a user’s map click.

112

Figure 3.9: Simulation results web interface. The map and chart are rendered
dynamically and are interactively linked (i.e., clicking one updates the other). This
figure displays the starting condition, and the layer switcher is expanded to display
the available base layer and overlay options.

 Mapping and Animation Tool 3.4.7.1

The mapping and animation tool enables exploration and visualization of both the

tsunami inundation data and the simulated human response (i.e., movement of all

113

simulated individuals across all time steps). By clicking the “Next” or “Previous”

buttons the user can step through time steps one by one to view the conditions at

each time step. Alternatively, the user can jump directly to a numbered time step of

interest, automatically loading the data for that time step. Clicking the “Start

Animation” button causes the interface to progressively load the simulation result

data for each time step in an automated fashion, enabling the user to view evacuation

movement as an interactive animation. All map operations are accessible during

animation – panning, zooming, layer substitution and toggling, water depth chart

display update, and data table generation can all be performed during animation, as

well as when the animation is stopped. At each time step, the database is queried to

determine whether an individual’s map symbol should be a green circle, indicating

they are still evacuating, a red dot, indicating that they were overtaken by the

tsunami flow at that time step, or a red X, which indicates their final routed position

in subsequent time steps. Figure 3.10 shows the interface at time step 100. In this

figure, the routed individuals have already navigated the city streets and are moving

along main routes to the evacuation points.

The simulation results web interface was built using PHP code on the server-side,

and JavaScript and HTML on the client-side. JavaScript is heavily used in the

interface codebase to provide tight integration among the OpenLayers-based

mapping/visualization component, the animation controls, and the dynamic chart

constructed using the Highcharts package. Additional client-side code sends

114

Figure 3.10: Simulation results web interface displaying time step 100. The red line
on the chart moves automatically to indicate the current time step on the water depth
profile. Individuals are moving along established evacuation routes.

asynchronous JavaScript and XML (AJAX) requests to the server, which enable

dynamic updating and loading of additional content on the results page without

requiring a page reload for each request (i.e., the map can be clicked at any time to

update the chart or return other data, without reloading the map view).

115

The OpenLayers client-side mapping toolkit is fully JavaScript-based, enabling tight

integration with other client components, both in terms of code (Appendix G) and

functionality. The OpenLayers map interface developed for this study includes the

four standard Google Maps base layers (streets, terrain [aka “physical”], satellite,

hybrid), as well as the Esri Ocean Basemap layer, which is implemented as an

ArcGIS REST API layer via OpenLayers. All base layers can be included natively

in the OpenLayers code. To include raster and vector layers stored locally (on the

website domain serving the map), a server-side mapping engine must be used. The

open source package MapServer was used to render wave runup (raster), population

(vector), water depth points (vector), and space-time paths (vector) for this study.

Each time a map view is generated, OpenLayers sends a request to MapServer for

the layer(s) making up the overlay view, and MapServer returns an image that

OpenLayers composites with the rendered client-side map to produce the output the

user sees in the map window. Through Proj.4, OpenLayers can reproject layers on

the fly (e.g., to Google’s “Spherical Mercator” projection) for integration with the

map view.

The tsunami simulation data used in this study modeled an extreme tsunami

inundation event, with a maximum water depth of nearly 20 m in some areas

(evident in the chart in Figure 3.10, for example, around time step 120). Figure 3.11

displays the conditions at time step 130, after the first and largest inundation event

has arrived on shore.

116

Figure 3.11: Simulation results web interface displaying time step 130. In this
extreme simulation scenario, nearly all individuals are marked as casualties by this
time step.

 Interactive Chart 3.4.7.2

When the user selects the “Update water depth chart for selected point” radio button

(the default selection) and clicks a desired point on the map, a yellow marker is

placed on the map (as in Figure 3.11), the selected pixel coordinates are transformed

117

to latitude and longitude, and an AJAX call is made to a C++ utility program that

reads the binary tsunami wave series file and retrieves the water depths across all

time steps at the requested point. The data are returned from the server in JavaScript

Object Notation (JSON) format, delivered to the client, and processed by the chart

code (Appendix G) to dynamically create the filled line chart without reloading the

web page. The dynamic chart has several features (some are displayed in Figure

3.12):

• Hovering the mouse cursor over the chart area displays the water depth value

at the time step indicated by the cursor.

• Clicking and dragging the mouse cursor across the chart area causes the chart

to zoom in to the selected region to display finer detail. The chart also

automatically adjusts the X and Y axes to the new data range if necessary.

• The chart area is active and is linked to the map display – clicking on the

chart area causes the map to jump to the selected time step and load the

related map data, and also update the time step and casualty count.

• A red, vertical tracking line on the chart area indicates the currently selected

time step and moves dynamically when the animation mode is running,

making it easy to track the current position and correlate the chart with the

map view.

118

Figure 3.12: Examples of the interactive water depth chart. Each time step in this
example represents an 18 second interval. Top: the chart has been clicked to set the
map animation to time step 141 (red line), while the cursor hovers over time step 375
to display water depth. Middle: an area is highlighted by dragging the mouse cursor.
Bottom: the chart is zoomed in to the highlighted area.

119

 Space-Time Path Construction and Rendering 3.4.7.3

An individual’s path representing their movement in space and time during the

duration of the simulation can be displayed simply by clicking on their map marker.

Figure 3.13 displays full and zoomed-in views of a space-time path displayed on the

results interface map. Because the space-time path is rendered dynamically as a

vector layer based on the current time step and view extent, it is re-rendered correctly

as the user performs any map operations such as zooming and panning, and it also

becomes animated if the user chooses to start animating the map view. During

animation, the individual’s current position on the space-time path is highlighted as a

yellow segment. Moreover, data retrieval and space-time path rendering can occur at

any time (e.g., if an animation is already underway the user can select the “Open data

table…” radio button, click near an individual on the map, and the space-time path

will automatically be rendered and animated). Clicking near a different individual

will update the map with the new space-time path while the animation continues.

When a user selects the “Open data table…” radio button and clicks near an

individual on the map, a custom PHP function (getPathPoints(); see the “db.php”

section in Appendix G) performs a spatial query via an AJAX call to retrieve all

points representing the individual’s space-time path. The returned point data are

processed into the GeoJSON format by the ogr2ogr utility and returned to the client,

where custom JavaScript code and OpenLayers are used to create and render a

colorized track on the map representing the individual’s space-time path.

120

Figure 3.13: Clipped map views representing an individual’s fully rendered space-
time path (left) and a zoomed-in view of the path origin (right). The currently
selected time step is visible as the segment highlighted in yellow.

This is accomplished by using the built-in OpenLayers.Layer.PointTrack vector layer

type. Although PostGIS can output data directly to the GeoJSON format via the

ST_AsGeoJSON() function, only the geometries can be exported (i.e., no attributes

are included). By retrieving an individual’s space-time path data directly from the

database, both the geometries and attributes can be encoded as GeoJSON via ogr2ogr

and passed to OpenLayers, allowing feature labeling as well as vector layer

symbolization on the map.

121

 Interactive Data Table 3.4.7.4

As the space-time path is rendered on the map, an interactive data table is also

constructed and displayed in a popup browser window (Figure 3.14). The columns

in the data table can be sorted – clicking a column heading will sort the table on that

column, toggling between ascending or descending order. The data table is

interactively linked to the results interface window, so that clicking a table row

highlights it and causes the results interface to jump to the selected time step

indicated in the table, simultaneously updating the map, counters, and red indicator

line on the chart. The matching highlighted yellow segment of the individual’s

space-time path is also updated, giving the user an effective way to view the selected

individual’s evacuation progress and casualty status at any time step, in the context

of the incoming tsunami inundation. Links in the table window provide downloads

of the data contained in the table in shapefile or text (comma-separated value)

formats, both of which are built dynamically upon the user’s request.

The data table (Figure 3.14) was implemented using the DataTable class from the

Google Visualization API (2012). Upon detection of a map click, a custom PHP

function is called (getTimeSeries(); see the “table.php” section in Appendix G) that

(1) performs a spatial query in the database to retrieve that individual’s time series

data, (2) processes the result, and (3) delivers the formatted data to the

google.visualization.DataTable JavaScript object, which in turn renders the data as

an interactive table.

122

Figure 3.14: Data table with matching map view. A map click on an individual of
interest highlights that individual’s space-time path for the simulation event, and
displays an interactive table of the individual’s status at each time step. In this
example the evacuation began at time step 10 of the simulation, so the tenth routed
segment (20th time step overall) is highlighted on the space-time path.

123

3.5 Discussion

Casualty simulation is an important method for estimating risk to coastal

communities in the event of a tsunami. Simulation models can help make the

concept of tsunami inundation real and intelligible to communities that could be at

risk. Watching a representation of a tsunami flow inundate land on an interactive

map is interesting, but watching how the flow could affect individuals in a

community, as well as animate and query their simulated movement over time and

space, can provide a deeper understanding of its potential effect.

The simulation framework developed in this study is a prototype system designed to

test the automation of simulation model runs and output generation based on user

input, and to display the results in an interactive, usable, web-based context.

Although significant effort went into examining theoretical aspects of spatiotemporal

data representation and analysis, casualty determination approaches, and other

important issues, the main focus of the study was on code and framework

development in support of the stated study goals. There are many aspects of the

prototype system that could be enhanced and improved with additional work – those

aspects are discussed in this section, along with alternative approaches.

3.5.1 Casualty Determination and Evacuation Movement

One of the unique strengths of this simulation framework is the incorporation of the

casualty model that evaluates various criteria to determine whether a person can

124

remain standing in a tsunami flow at each time step of the simulation. The

simulation framework developed by Katada et al. (2006) was sophisticated;

however, once an area was inundated by a tsunami, all people within the area were

automatically assumed dead (i.e., no casualty model was implemented in that

framework).

Although this prototype system does include a casualty model, it is currently limited

to simulating adult male and female body types. Extending the system to simulate

the additional body types defined by Kroemer et al. (1997) would likely result in a

more realistic assessment of evacuation movement and casualty determination. The

similarity in the fixed set of adult male and female body type parameters is evident in

the visualization output, where individuals can often be observed traveling an

identical route while landing at the same point at each simulated time step.

Modeling additional body types based on age and gender, and introducing some

degree of variation within the anthropometric parameters representing them, should

result in a more realistic simulation model and visualization output. To further

extend this system into a true agent-based model, the simulation model could be

redesigned to assess the position and group density of nearby individuals at each

time step, as well as nearby topographic features (e.g., an individual could cross an

empty lot as a shortcut rather than remaining on the road network) and other

environmental variables.

125

In its current implementation, the simulation framework advances simulated humans

a measured amount along their routed tracks at each time step, based on the

estimated walking speeds of male and female adults. The temporal resolution of the

time steps is defined as an input parameter during the tsunami modeling

parameterization process that generates the tsunami simulation and is often defined

on the order of seconds, but may also be as long as minutes in scale. The simulation

framework could be configured to represent human movement on a finer temporal

scale by generating position data more frequently than the fixed temporal scale of the

tsunami simulation. However, while position data could be updated more frequently,

casualty determination data (i.e., indicating whether the subject has become

inundated by the tsunami flow) could only be updated on the fixed temporal scale of

the tsunami simulation.

Because this study focused on prototype framework design, one of the assumptions

made is that all individuals in the modeled population begin moving at the same time

(i.e., they all receive a tsunami warning and act upon it simultaneously). Future

enhancements could include the ability to vary warning transmission type (radio/TV

announcements, siren, police notification, etc.) and timing, as in Katada et al. (2006),

or perhaps take into account warning transmission using a neighbor-to-neighbor

agent based modeling approach as in Nagarajan et al. (2012). An additional

consideration is the subtle decision factors that are more difficult to quantify. For

instance, although the average male may be able to run faster than the average

126

female (cf. Kroemer et al. 1997), if the two individuals have a relationship of some

kind, would the male run faster? The male evacuee may decide to run at the same

speed as the female evacuee. Factors such as these could be explored further and

perhaps represented in some fashion in a future version of the simulation framework.

3.5.2 Data Sources and Issues

As with most projects that rely upon multiple sources of spatial data as inputs for

analysis and interpretation, a certain amount of error is introduced by the data

sources. In this study, error could be present in the spatial data representing roads

and structures for the Seaside area. Examples of error could include misattribution

of structure type, missing structure data, or problems with the road network

topology. In a prototype system, however, in most cases these issues are secondary

to any larger issues that would cause the data to not function properly when used

within the simulation framework.

This simulation framework (indeed, any simulation system requiring such data)

would also benefit from higher-resolution tsunami runup data, which would allow

more precise estimation of casualties. Low-resolution tsunami inundation data

represent a source of potential error in a simulation framework. Since modeled

water depth is the same for all individuals within a given grid cell, any individuals

matching the casualty model conditions who are spatially located within that grid

cell will be evaluated against that water depth, even if their locations are several

127

meters apart at that time step. Advances in high-resolution bathymetry data mapping

(e.g., via LiDAR technology), together with better techniques for modeling wave

propagation in near-shore environments where bathymetry and topography data

merge, will lead to more realistic simulations of wave runup and calculations of

water depth per grid cell.

The spatial database was populated with additional structure-related data that were

not used in the prototype system. The simulation framework could be extended to

include estimation of losses due to structural damage, similar to Dominey-Howes et

al. (2010), who conducted building damage estimation for the town of Seaside using

structural data in the event of a tsunami.

Although data representing temporal phenomena are becoming increasingly

important and available (e.g., climate data, sensor network data), representation of

spatiotemporal data in spatial databases and generalized GIS tools for working with

spatiotemporal data remain limited. Esri has made progress with enabling support

for temporal data in their software products – ArcGIS 10 introduced new support and

tools for working with temporal data, capabilities which are enabled in both ArcGIS

Desktop and in ArcGIS Server applications (ArcGIS Help 2012). Esri’s approach is

to store time stamps at the feature level rather than storing separate layers to

represent snapshots in time. Some relational database software products such as

TimeDB (2012) are built specifically to handle temporal data in an object-relational

128

fashion, and typically only store changes to each database object over time to

minimize database size and complexity. In the prototype system developed for this

project, the database objects (i.e., simulated evacuating individuals) are moving at

every time step for which they have not been overtaken by the tsunami flow, so

information about their position and state is stored for every time step prior to

reaching a casualty state.

3.5.3 Hardware and Software Technology

Fast performance is a challenge in any web-based system. In this prototype system,

the spatial database, which drives many of the processes related to the web interface,

is stored on a dedicated server with plenty of processing power and memory, fast

SCSI disks and internal and external network connections. The database server

parameters are optimized for read performance, and the database tables are properly

indexed to optimize both spatial and non-spatial query performance. The Apache

web server and PHP installation are also optimized for fast generation and

transmission of web pages. While all of this is necessary for fast performance in

general, it is especially important for the interactive web-based display in this

prototype system, where the animation performance depends upon fast transmission

of data from the server to the client.

Continued advances in web-based technology for spatial visualization (e.g.,

Anderson et al. 2011) will make more techniques available for the development of

129

complex interactive web-based systems. For instance, web mapping applications

that dynamically render spatial features (i.e., as vector data features rather than as a

generated map image) may benefit from compression of vector data on transmission

from server to client (e.g., Bashar et al. 2012). However, although this approach

may lessen server-side load under heavy usage, it can impose a performance penalty

on the client-side if many features are requested in the map view. Another example

is the potential of vector-based rendering via HTML5 or scalable vector graphics

(SVG) – each has some important differences, but also represents an important new

method for creating map-based graphics in a web browser.

3.5.4 User Interactivity

A goal of this study was to provide an interactive web-based interface for displaying

results that included animation capability in an easy-to-use form, while conveying

important information about the content. In considering the general user experience,

some studies indicate that animations are no better than static diagrams at helping

people understand concepts portrayed in the content (Hegarty et al. 2003, Mayer et

al. 2005, Kim et al. 2007). However, animations that incorporate interactive controls

provide additional benefits over fixed animations and static graphics (Tversky et al.

2002, Betrancourt 2005). Map-based animations that include tools for starting,

stopping, zooming, panning, etc., give users control over the functioning of the

animation, which allows them to discover data and relationships at their own pace.

Furthermore, implementing the animated mapping interface in a web browser

130

increases accessibility and, potentially, ease-of-use. The next phase of prototype

development will include usability testing conducted by selected users in a controlled

environment.

3.6 Conclusion

The intent of this study was to develop a prototype framework for simulating

potential human movement in response to a hypothetical tsunami inundation event.

Spatiotemporal tsunami inundation data and other spatial data describing the Seaside,

Oregon region were used as inputs to the simulation framework. One of the primary

goals was to automate the production of simulation output, based on user input, and

also automate the inclusion of the output in a web-based data exploration and

visualization interface. These goals were accomplished by developing custom

software tools on both the server- and client-side, and implementing those tools in a

framework system that integrated them with a centralized spatiotemporal database as

well as key open source software tools.

As part of the simulation framework, modeled individuals were (1) routed along an

existing road network and (2) evaluated at each time step of the simulation using a

casualty determination algorithm. Although certain assumptions had to be made

(i.e., using a standard set of body parameters for males and females), the inclusion of

the casualty model, itself based upon research evaluating human stability in tsunami

131

inundation conditions, gives a firm basis for determination of casualties given water

depth and velocity conditions at any time step.

An additional research challenge addressed in this prototype system is the animation

of time-series simulation output data within a web-based mapping and visualization

interface. The goal was to give the user full control over the interface (including

querying the underlying time-series data) at any time, even while the animation is

underway. The additional features (dynamic interactive chart, animated space-time

path, interactive data table) can provide the user with extra insight into the time-

series data, the tsunami inundation conditions, and the casualty state at each time

step. This goal was successfully accomplished using a mix of custom code with

open source software packages such as OpenLayers, MapServer, Highcharts, and

GDAL/OGR.

The prototype system developed in this study demonstrates an effective simulation

framework for the automated modeling and visualization of spatiotemporal data.

The framework can be expanded upon to provide additional functionality, or used as

a foundation for developing a similar system in another discipline that requires the

simulation, analysis, and display of spatiotemporal data.

132

3.7 Acknowledgments

Initial development of the simulation framework was supported by the National

Science Foundation under Grant No. SES-0527520. Additional funding was

provided by an NWACC 2008 Grant. Toshitaka Katada provided helpful advice

early in the study. Eric Geist provided high-resolution runup simulation data for the

Seaside, Oregon area that were used in prototype development. Clatsop County

personnel provided some of the GIS data used in this study.

133

3.8 References

Adobe. 2012. Adobe Flex framework, http://www.adobe.com/products/flex.html
(last accessed 17 May 2012).

American Time Use Survey. 2012. Bureau of Labor Statistics – American Time Use

Survey, http://www.bls.gov/tus (last accessed 2 August 2012).

Anderson, J.C., M. Davis, K. Fujiwara, T. Fang, J. Andres, and M. Nedbal. 2011.

Web-based scientific visualization software for geospatial displays and
collaborative applications. In Proceedings of the OCEANS ’11 Conference. Kona,
Hawaii.

Andrienko, G., N. Andrienko, and S. Wrobel. 2007. Visual analytics tools for

analysis of movement data. SIGKDD Explorations 9(2): 38-46.

Andrienko, G., N. Andrienko, P. Bak, D. Keim, S. Kisilevich, and S. Wrobel. 2011a.

A conceptual framework and taxonomy of techniques for analyzing movement.
Journal of Visual Languages and Computing 22(3): 213-232.

Andrienko, G., N. Andrienko, and M. Heurich. 2011b. An event-based conceptual

model for context-aware movement analysis. International Journal of
Geographical Information Science 25(9): 1347-1370.

ArcGIS Help. 2012. What’s new for temporal data in ArcGIS 10,

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00qp00000018000
000.htm (last accessed 20 April 2012).

Bashar, M.A., M. Islam, M.A. Chowdhury, M.P. Sajjad, and M.T. Ahmed. 2012.

Concept for a web map implementation with faster query response. Journal of
Information Engineering and Applications 2(1): 30-37.

Bernard, E.N., H.O. Mofjeld, V. Titov, C.E. Synolakis, and F.I. González. 2006.

Tsunami: Scientific frontiers, mitigation, forecasting and policy implications.
Philosophical Transactions of the Royal Society 364: 1989-2007.

134

Betrancourt, M. 2005. The animation and interactivity principles in multimedia
learning. Pages 287-296 in R.E. Mayer (ed.), Cambridge handbook of multimedia
learning. Cambridge University Press, New York.

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A.F. DeRose, and R. Buyya. 2010.

CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience 41(1): 23-50.

Chen, X. and F.B. Zhan. 2008. Agent-based modelling and simulation of urban

evacuation: Relative effectiveness of simultaneous and staged evacuation
strategies. Journal of the Operational Research Society 59(1): 25-33.

Clerveaux, V., T. Katada, and K. Hosoi. 2008. Tsunami scenario simulator: A tool

for ensuring effective disaster management and coastal evacuation in a
multilanguage society. Science of Tsunami Hazards 27(3): 48-71.

Cova, T.J. and J.P. Johnson. 2003. A network flow model for lane-based evacuation

routing. Transportation Research Part A 37(7): 579-604.

Dall’Osso, F., M. Gonella, G. Gabbianelli, G. Withycombe, and D. Dominey-Howes.

2009. A revised (PTVA) model for assessing the vulnerability of buildings to
tsunami damage. Natural Hazards and Earth System Sciences 9: 1557-1565.

Dall’Osso, F., A. Maramai, L. Graziani, B. Brizuela, A. Cavalletti, M. Gonella, and

S. Tinti. 2010. Applying and validating the PTVA-3 Model at the Aeolian Islands,
Italy: Assessment of the vulnerability of buildings to tsunamis. Natural Hazards
and Earth System Sciences 10: 1547-1562.

Dalquen, D.A., M. Anisimova, G.H. Gonnet, and C. Dessimoz. 2012. ALF – A

simulation framework for genome evolution. Molecular Biology and Evolution
29(4): 1115-1123.

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische

Mathematik 1(1): 269-271.

135

DOGAMI. 2005. Tsunami evacuation map: Seaside. Oregon Department of Geology
and Mineral Industries publication DOGAMI-TS-EB-SEA-01 (11/05),
http://www.oregongeology.org/pubs/tsubrochures/SeasideEvac.pdf (last accessed
2 May 2012).

Dominey-Howes, D., P. Dunbar, J. Varner, and M. Papathoma-Köhle. 2010.

Estimating probable maximum loss from a Cascadia tsunami. Natural Hazards
53: 43-61.

Dunbar, P., H. McCullough, and G. Mungov. 2011. 2011 Tohoku earthquake and

tsunami data available from the National Oceanic and Atmospheric
Administration/National Geophysical Data Center. Geomatics, Natural Hazards
and Risk 2(4): 305-323.

Eckert, S., R. Jelinek, G. Zeug, and E. Krausmann. 2012. Remote sensing-based

assessment of tsunami vulnerability and risk in Alexandria, Egypt. Applied
Geography 32(2): 714-723.

Eubanks, J. 1994. Pedestrian accident reconstruction. Lawyers and Judges, Tucson,

AZ.

Geist, E.L. and T. Parsons. 2006. Probabilistic analysis of tsunami hazards. Natural

Hazards 37: 277-314.

Geist, E.L., V.V. Titov, and C.E. Synolakis. 2006. Tsunami: Wave of change.

Scientific American 294(1): 56-63.

Gisler, G.R. 2008. Tsunami simulations. Annual Review of Fluid Mechanics 40: 71-

90.

Google Visualization API. 2012. Google Visualization API Reference,

https://developers.google.com/chart/interactive/docs/reference (last accessed 21
July 2012).

Goto, Y., Y. Ogawa, and T. Komura. 2010. Tsunami disaster reduction education

using town watching and moving tsunami evacuation animation – trial in Banda
Aceh. Journal of Earthquake and Tsunami 4(2): 115-126.

136

Goto, Y., M. Affan, Agussabti, Y. Nurdin, D.K. Yuliana, and Ardiansyah. 2012.
Tsunami evacuation simulation for disaster education and city planning. Journal
of Disaster Research 7(1): 92-101.

Gupta, A.K. 2011. Recent Tohoku tsunami and earthquake: A natural consequence

of the movement of the Pacific plate along the trench, east of the Japanese island
arc. Science and Culture 77(5-6): 175-185.

Hägerstrand, T. 1970. What about people in regional science? Papers of the Regional

Science Association 24: 7-21.

Hegarty, M., S. Kriz, and C. Cate. 2003. The roles of mental animations and external

animations in understanding mechanical systems. Cognition and Instruction
21(4): 209-249.

Hornsby, K. and M.J. Egenhofer. 2002. Modeling moving objects over multiple

granularities. Annals of Mathematics and Artificial Intelligence 36(1-2): 177-194.

Imamura, F., A.C. Yalciner, and G. Ozyurt. 2006. Tsunami modeling manual

(TUNAMI model),
http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf
(last accessed 10 February 2012).

Jonkman, S.N., J.K. Vrijling, and A.C.W.M. Vrouwenvelder. 2008. Methods for the

estimation of loss of life due to floods: A literature review and a proposal for a
new method. Natural Hazards 46: 353-389.

Kapler, T. and W. Wright. 2005. GeoTime information visualization. Information

Visualization 4(2): 136-146.

Karon, J. and H. Yeh. 2011. Comprehensive tsunami simulator for Cannon Beach,

Oregon. Final Report submitted to the City of Cannon Beach, May 2011,
http://www.tappister.com/assets/content/2011/05/Cannon-Beach-Tsunami-Final-
Report-May-2011.pdf (last accessed 22 April 2012).

Katada, T., J. Asada, N. Kuwasawa, and Y. Oikawa. 2000. Development of practical

scenario simulator for dissemination of disaster information. Journal of Civil
Engineering Information Processing System 9: 129-136.

137

Katada, T. 2003. A preliminary integrated tsunami scenario simulation. Workshop
for Integrated Tsunami Scenario Simulation, Oregon State University,
http://tsunami.orst.edu/workshop/2003/pdf/Katada.pdf (last accessed 20 April
2012).

Katada, T., N. Kuwasawa, and H. Yeh. 2004. Tsunami scenario simulator. 2nd

Workshop for Integrated Tsunami Scenario Simulation, Oregon State University,
http://tsunami.orst.edu/workshop/2004/doc/Katada.pdf (last accessed 20 April
2012).

Katada, T., N. Kuwasawa, H. Yeh, and C. Pancake. 2006. Integrated simulation of

tsunami hazards. EERI's 8th U.S. National Conference on Earthquake
Engineering (8NCEE), San Francisco, CA. Paper No. 1727.

Keon, D., C. Pancake, H. Yeh, and T. Logan. 2009. The Tsunami Computational

Portal: Distributed infrastructure for executing and comparing multiple
computational models. Association of American Geographers (AAG) Annual
Meeting, Cyberinfrastructure Specialty Group, Las Vegas, NV, 22-27 March.

Kim, S., M. Yoon, S.-M. Whang, B. Tversky, and J.B. Morrison. 2007. The effect of

animation on comprehension and interest. Journal of Computer Assisted Learning
23(3): 260-270.

Kobayashi, K. T. Katada, N. Kuwasara, A. Narita, M. Hirano, and I. Kase. 2007.

Collaborative interface for disaster simulation. In Proceedings of the 2nd
International Conference on Urban Disaster Reduction, Taipei, Taiwan.

Koshimura, S. and M. Takashima. 2005. Remote sensing, GIS, and modeling

technologies enhance the synergic capability to comprehend the impact of great
tsunami disaster. In Proceedings of the 3rd International Workshop on Remote
Sensing for Post Disaster Response, Chiba, Japan.

Koshimura, S., T. Katada, H.O. Mofjeld, and Y. Kawata. 2006. A method for

estimating casualties due to the tsunami inundation flow. Natural Hazards 39(2):
265-274.

Koshimura, S., Y. Namegaya, and H. Yanagisawa. 2009a. Tsunami fragility – A new

measure to identify tsunami damage. Journal of Disaster Research 4(6): 479-488.

138

Koshimura, S., T. Oie, H. Yanagisawa, and F. Imamura. 2009b. Developing fragility
functions for tsunami damage estimation using numerical model and post-tsunami
data from Banda Aceh, Indonesia. Coastal Engineering Journal 51(3): 243-273.

Kraak, M. 2003. The space-time cube revisited from a geovisualization perspective.

Pages 1988-1996 in Proceedings of the 21st International Cartographic
Conference (ICC), Durban, South Africa.

Kroemer, K.H.E., H.J. Kroemer, and K.E. Kroemer-Elbert, 1997. Engineering

physiology: Bases of human factors/ergonomics, 3rd Ed. Van Nostrand Reinhold,
New York.

Langran, G. 1992. Time in geographic information systems. Taylor & Francis,

Bristol, PA.

Le, Y. 2012. Challenges in data integration for spatiotemporal analysis. Journal of

Map & Geography Libraries: Advances in Geospatial Information, Collections &
Archives 8(1): 58-67.

Leone, F., F. Lavigne, R. Paris, J-C. Denain, and F. Vinet. 2011. A spatial analysis of

the December 26th, 2004 tsunami-induced damages: Lessons learned for a better
risk assessment integrating buildings vulnerability. Applied Geography 31(1):
363-375.

Lime, S. 2008. MapServer. Pages 65-85 in G.B. Hall and M.G. Leahy (eds.), Open

source approaches in spatial data handling. Advances in geographic information
science 2. Springer-Verlag, Berlin.

Lindell, M.K. and C.S. Prater. 2010. Tsunami preparedness on the Oregon and

Washington coast: Recommendations for research. Natural Hazards Review 11:
69-81.

Liu, Y., Y. Takeuchi, and N. Okada. 2007. Multi-agent based collaborative modeling

for flood evacuation planning – Case study of Nagata, Kobe. Annals of Disaster
Prevention Research Institute 50(B): 241-249.

139

Liu, Y., N. Okada, and Y. Takeuchi. 2008. Dynamic route decision model-based
multi-agent evacuation simulation – Case study of Nagata Ward, Kobe. Journal of
Natural Disaster Science 28(2): 91-98.

Lynett, P.J. 2011. Tsunami inundation, modeling of. Pages 1008-1021 in R.A.

Meyers (ed.), Extreme environmental events: Complexity in forecasting and early
warning. Springer, New York.

Lynett, P.J. and P.L.F. Liu. 2011. Numerical simulation of complex tsunami

behavior. Computing in Science & Engineering 13(4): 50-57.

Maantay, J., A. Maroko, and G. Culp. 2010. Using geographic information science to

estimate vulnerable urban populations for flood hazard and risk assessment in
New York City. Pages 71-97 in P.S. Showalter and Y. Lu (eds.), Geospatial
techniques in urban hazard and disaster analysis. Springer, Netherlands.

MapServer. 2012. MapServer – Open source web mapping,

http://www.mapserver.org (last accessed 20 July 2012).

Mark, D. 1998. Geospatial lifelines [abstract]. Page 12 in O. Günther, T. Sellis, and

B. Theodoulidis (eds.), Integrating spatial and temporal databases. Dagstuhl
Seminar Report No. 228.

Mas, E., F. Imamura, and S. Koshimura. 2011. Modeling the decision of evacuation

from tsunami based on human risk perception. Tohoku Branch Annual Meeting.
Sendai: Japan Society of Civil Engineering (JSCE),
http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/shibu/22/erick_11.pdf (last
accessed 3 May 2012).

Mas, E., F. Imamura, and S. Koshimura. 2012. An agent based model for the tsunami

evacuation simulation. A case study of the 2011 great East Japan tsunami in
Arahama Town. In Joint Conference Proceedings: 9th International Conference
on Urban Earthquake Engineering & 4th Asia Conference on Earthquake
Engineering, Tokyo.

140

Mayer, R.E., M. Hegarty, S. Mayer, and J. Campbell. 2005. When static media
promote active learning: Annotated illustrations versus narrated animations in
multimedia instructions. Journal of Experimental Psychology: Applied 11(4):
256-265.

McCarthy, A.C., N.H. Hancock, and S.R. Raine. 2010. VARIwise: A general-

purpose adaptive control simulation framework for spatially and temporally
varied irrigation at sub-field scale. Computers and Electronics in Agriculture
70(1): 117-128.

Merati, N., E. Gica, and C. Chamberlin. 2007. Building tsunami analysis tools into a

GIS workspace. In ESRI International User Conference Proceedings (UC1889),
San Diego.

Merati, N., C. Chamberlin, C. Moore, V. Titov, and T.C. Vance. 2010. Integration of

tsunami analysis tools into a GIS workspace – Research, modeling, and hazard
mitigation efforts within NOAA’s Center for Tsunami Research. Pages 273-294
in P.S. Showalter and Y. Lu (eds.), Geospatial techniques in urban hazard and
disaster analysis. Springer, Netherlands.

Miller, H. 1991. Modelling accessibility using space-time prism concepts within

geographical information systems. International Journal of Geographical
Information Systems 5(3): 287-301.

Miller, H. and Y. Wu. 2000. GIS software for measuring space-time accessibility in

transportation planning and analysis. GeoInformatica 4(2): 141-159.

Miller, H. and S.A. Bridwell. 2008. A field-based theory for time geography. Annals

of the Association of American Geographers 99(1): 49-75.

Mountain, D. 2005. Visualizing, querying, and summarizing individual spatio-

temporal behavior. Pages 181-200 in J. Dykes, A.M. MacEachren, M-J. Kraak
(eds.), Exploring geovisualization. Elsevier, London.

Nagarajan, M., D. Shaw, and P. Albores. 2012. Disseminating a warning message to

evacuate: A simulation study of the behaviour of neighbours. European Journal
of Operational Research 220(3): 810-819.

141

NANOOS. 2012. NANOOS Visualization System (NVS),
http://www.nanoos.org/nvs/nvs.php?section=NVS-Products-Tsunamis-
Evacuation (last accessed 12 July 2012).

Niazi, M.A. and A. Hussain. 2011. A novel agent-based simulation framework for

sensing in complex adaptive environments. IEEE Sensors Journal 11(2): 404-412.

Oikawa, Y. and T. Katada. 1999. A study on the effect of flood experience on the

evacuation activity. Journal of Japan Society for Natural Disaster Science 18(1):
103-116.

Omira, R., M.A. Baptista, J.M. Miranda, E. Toto, C. Catita, and J. Catalão. 2010.

Tsunami vulnerability assessment of Casablanca-Morocco using numerical
modelling and GIS tools. Natural Hazards 54: 75-95.

Oregon.gov. 2012. Department of Geology and Mineral Industries – Tsunami

Evacuation Route Maps,
http://www.oregon.gov/DOGAMI/earthquakes/Coastal/CoastalHazardsMain.shtm
l (last accessed 15 May 2012).

OWASE. 2012. Owase Dynamic Tsunami Hazard Map. Disaster Social Engineering

Laboratory, Gunma University, Japan, http://dsel.ce.gunma-
u.ac.jp/simulator/owase/en (last accessed 20 April 2012).

Papathoma, M. and D. Dominey-Howes. 2003. Tsunami vulnerability assessment

and its implications for coastal hazard analysis and disaster management
planning, Gulf of Corinth, Greece. Natural Hazards and Earth System Sciences 3:
733-747.

Papathoma, M., D. Dominey-Howes, Y. Zong, and D. Smith. 2003. Assessing

tsunami vulnerability, an example from Herakleio, Crete. Natural Hazards and
Earth System Sciences 3: 377-389.

Peuquet, D.J. 2002. Representations of space and time. The Guilford Press, New

York.

PostGIS. 2012. PostGIS – A spatial extension to PostgreSQL,

http://postgis.refractions.net (last accessed 20 July 2012).

142

PostgreSQL. 2012. PostgreSQL relational database management system,
http://www.postgresql.org (last accessed 20 July 2012).

Priest, G.R., C. Goldfinger, K. Wang, R.C. Witter, Y. Zhang, and A.M. Baptista.

2010. Confidence levels for tsunami-inundation limits in northern Oregon inferred
from a 10,000-year history of great earthquakes at the Cascadia subduction zone.
Natural Hazards 54: 27-73.

Raubal, M., S. Winter, S. Teβmann, and C. Gaisbauer. 2007. Time geography for ad-

hoc shared-ride trip planning in mobile geosensor networks. ISPRS Journal of
Photogrammetry and Remote Sensing 62(5): 366-381.

Reese, S., B.A. Bradley, J. Bind, G. Smart, W. Power, and J. Sturman. 2011.

Empirical building fragilities from observed damage in the 2009 South Pacific
tsunami. Earth-Science Reviews 107(1-2): 156-173.

Schneider, P. 2011. Tsunami modeling for Seaside, Oregon. Pages 408-416 in

Proceedings of the 2011 Solutions to Coastal Disasters Conference. American
Society of Civil Engineers, Reston, VA.

Shaw, S-L., H. Yu, and L.S. Bombom. 2008. A space-time GIS approach to

exploring large individual-based spatiotemporal datasets. Transactions in GIS
12(4): 425-441.

Simonovic, S.P. and S. Ahmad. 2005. Computer-based model for flood evacuation

emergency planning. Natural Hazards 34: 25-51.

Suppasri, A., E. Mas, S. Koshimura, and K. Imai. 2012. Developing tsunami fragility

curves from the surveyed data of the 2011 great East Japan tsunami in Sendai and
Ishinomaki plains. Coastal Engineering Journal 54(1): 1250008(1-16).

Synolakis, C.E. and E.N. Bernard. 2006. Tsunami science before and beyond Boxing

Day 2004. Philosophical Transactions of the Royal Society 364: 2231-2265.

Tang, Z., M.K. Lindell, C.S. Prater, and S.D. Brody. 2008. Measuring tsunami

planning capacity on U.S. Pacific Coast. Natural Hazards Review 9(2): 91-100.

143

Tappister. 2012. Cannon Beach tsunami inundation and evacuation study 2010-2011,
http://www.tappister.com/cannon-beach (last accessed 29 April 2012).

Tarbotton, C., D. Dominey-Howes, J.R. Goff, M. Papathoma-Kohle, F. Dall’Osso,

and I.L. Turner. 2012. GIS-based techniques for assessing the vulnerability of
buildings to tsunami: Current approaches and future steps. Geological Society,
London, Special Publications 361: 115-125.

TCP. 2012. Tsunami Computational Portal, http://tsunamiportal.nacse.org (last

accessed 28 April 2012).

TimeDB. 2012. TimeDB bitemporal relational DBMS,

http://www.timeconsult.com/Software/Software.html (last accessed 24 July
2012).

Titov, V. and F.I. González. 1997. Implementation and testing of the Method of

Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-
122773), NOAA/Pacific Marine Environmental Laboratory, Seattle. 11 pp.

Titov, V., A.B. Rabinovich, H.O. Mofjeld, R.E. Thomson, and F.I. Gonzalez. 2005.

The global reach of the 26 December 2004 Sumatra tsunami. Science 309: 2045-
2048.

Tversky, B., J.B. Morrison, and M. Betrancourt. 2002. Animation: Can it facilitate?

International Journal of Human-Computer Studies 57: 247-262.

Uno, K. and K. Kashiyama. 2008. Development of a simulation system for the

disaster evacuation based on multi-agent model using GIS. Tsinghua Science and
Technology 13(S1): 348-353.

Usery, E.L., J. Choi, and M.P. Finn. 2010. Modeling sea-level rise and surge in low-

lying urban areas using spatial data, geographic information systems, and
animation methods. Pages 11-30 in P.S. Showalter and Y. Lu (eds.), Geospatial
techniques in urban hazard and disaster analysis. Springer, Netherlands.

Van Ho, Q., P. Lundblad, T. Åström, and M. Jern. 2011. A web-enabled

visualization toolkit for geovisual analytics. Information Visualization 11(1): 22-
42.

144

Vance, T.C., N. Merati, S.M. Mesick, C.W. Moore, and D.J. Wright. 2007.
GeoModeler: Tightly linking spatially-explicit models and data with a GIS for
analysis and geovisualization. In Proceedings of the 15th ACM International
Symposium on Advances in Geographic Information Systems (ACM GIS 2007),
Seattle, WA, 7-9 November.

Wolman, D. 2005. Reaching safe ground. Technology Review, 26 July 2005,

http://www.technologyreview.com/business/14626 (last accessed 21 April 2012).

Wood, N.J. and J.W. Good. 2004. Vulnerability of port and harbor communities to

earthquake and tsunami hazards: The use of GIS in community hazard planning.
Coastal Management 32(3): 243-269.

Yeh, H. 2010. Gender and age factors in tsunami casualties. Natural Hazards Review

11: 29-34.

Yu, H. 2006. Spatial-temporal GIS design for exploring interactions of human

activities. Cartography and Geographic Information Systems 33(1): 3-19.

Yu, H. 2008. Visualizing and analyzing activities in an integrated space-time

environment: Temporal geographic information system design and
implementation. Transportation Research Record 2024: 54-62.

Yu, H. and S.-L. Shaw. 2007. Revisiting Hägerstrand’s time-geographic framework

for individual activities in the age of instant access. Pages 103-118 in H.J. Miller
(ed.), Societies and cities in the age of instant access. Springer, Netherlands.

Yu, H. and S.-L. Shaw. 2008. Exploring potential human activities in physical and

virtual spaces: A spatio-temporal GIS approach. International Journal of
Geographical Information Science 22(4): 409-430.

Yuan, M., D.M. Mark, M.J. Egenhofer, and D.J. Peuquet. 2005. Extensions to

geographic representations. Pages 129-156 in R.B. McMaster and E.L. Usery
(eds). A research agenda for geographic information science. CRC Press, Boca
Raton, FL.

145

Yuan, M. 1996. Modeling semantics, temporal, and spatial information in geographic
information systems. Pages 334-347 in M. Craglia and E.L. Usery (eds.),
Geographic information research: Bridging the Atlantic. Taylor & Francis,
London.

Zerger, A. and S. Wealands. 2004. Beyond modelling: Linking models with GIS for

flood risk management. Natural Hazards 33: 191-208.

146

Chapter 4: GridStats: A web-based system for calculating climate grid
statistics over varying spatial and temporal scales

Authors: Dylan B. Keon, Christopher Daly, Adam Ryan

147

4.1 Abstract

Raster-based datasets (grids) provide a simple yet powerful data structure for storing

numerical data and performing spatial and statistical analyses across several datasets

(i.e., map algebra). Each grid can contain a data representation for a given time

period, enabling analysis over time. However, grid file sizes can be very large,

particularly at high grid cell resolution. Performing statistical calculations on

multiple grids across varying spatial and temporal scales can be computationally

intensive, typically requiring a specialized geographic information system (GIS) or

image processing software package.

The PRISM Climate Group produces modeled climate grids representing

precipitation, minimum temperature, maximum temperature, and mean temperature

for the conterminous U.S. at 800 m resolution over multiple time scales (daily,

monthly, and annual). With currently over 49,000 climate grids available, grid

loading and processing times can become prohibitively long, particularly when

performing analyses across large temporal and/or spatial scales. Leveraging and

extending a custom server-side solution designed in-house for quickly processing

multiple grids, the GridStats system was developed to provide fast, targeted

statistical summary and analysis capabilities across virtually any set of PRISM

climate grids.

148

The GridStats system is a scalable, extensible, web-based framework that provides

fast access and analysis capability to all PRISM climate grids. Any available

gridded PRISM climate parameter can be analyzed over user-selectable space and

time ranges using an extendable set of statistical methods. The system is accessed

via a web browser, which provides user-level control over all parameter settings, as

well as dynamic map-based spatial selection aids to help identify and select a

bounded region for analysis. When a request is submitted, custom server-side code

processes the requested grid set and returns output that can be viewed and explored

in the resulting web pages, which feature synchronized input/output dynamic maps

for comparison, as well as dynamically-built interactive charts that display both

plotted data points and statistical information (mean, ±1 standard deviation, centered

moving averages).

The GridStats system is unique in its ability to process large sets of relatively high-

resolution (800 m) gridded climate data very quickly, span virtually any combination

of spatial and temporal ranges within the available datasets, perform statistical

calculations over space and time, and render the output in dynamic tools that allow

further data exploration, while requiring no specialized software apart from a

standard web browser.

149

4.2 Introduction

Climate data, such as accumulated precipitation on a monthly time scale, are

typically stored in raster GIS formats (grids). Inherent to each grid are elements of

time (the time interval represented by the grid) and space (the spatial extent covered

by the grid and the grid resolution). Large collections of climate grids enable the

analysis of climate parameters over varying spatial and temporal scales. By altering

the spatial extent (i.e., clipping a grid to a defined extent) and selecting a time series

of interest (e.g., a set of monthly grids representing January 2000 to December

2003), any number of analyses can be performed on the collection of grids over time.

One possibility is to perform a statistical analysis through each set of co-located

time-series grid cells, resulting in an output grid with each cell containing the

calculated output statistic value. This approach is known generally as map algebra

(Tomlin 1990) and is available in any GIS software package that supports raster

processing, such as ArcGIS (2012), Geographic Resources Analysis Support System

(GRASS) (2012), or Idrisi (2012). Although web-based mapping and services have

grown significantly in scope and availability since the introduction of Esri’s ArcIMS

in 2000 and the introduction of the Google Maps application programming interface

(API) in 2005, web-based raster analysis capabilities remain limited.

4.2.1 PRISM Climate Grids

The Precipitation-elevation Regressions on Independent Slopes Model (PRISM) is a

statistical-topographic model that uses point data (weather station observations) and

150

a digital elevation model (DEM) to calculate modeled grids representing climate

parameters across the conterminous United States (CONUS) (Daly et al. 1994, Daly

et al. 1997). The PRISM Climate Group at Oregon State University has produced

gridded climate data at 4 km resolution on monthly and annual time scales since

1995 using a sophisticated knowledge-based approach incorporating extensive

inference, refinement, and quality assurance procedures (Daly et al. 2002, Daly et al.

2008). More recently, the PRISM Climate Group partnered with the Northwest

Alliance for Computational Science and Engineering (NACSE) and has begun

automated production of CONUS climate grids at 800 m resolution on a daily time

scale, using a Linux-based computational cluster to facilitate time-effective

processing of daily data. Grids produced in this manner represent the climate

parameters precipitation (ppt), minimum temperature (tmin), maximum temperature

(tmax), and mean temperature (tmean).

PRISM staff often need to make a quick assessment of a particular climate parameter

across space or time, or may need to load hundreds of grids to perform a larger

statistical summary or analysis. Across all time series, there are currently over

49,000 climate grids stored on the PRISM filesystem. Performing grid processing

operations over large spatial or temporal scales can be time-prohibitive due to (1)

moving large quantities of data over the network, and (2) processing large quantities

of data on a computer workstation. Moreover, sophisticated web-based grid querying

utilities under development by NACSE and PRISM need fast access to grids for real-

151

time processing. A server-side solution was required not only for fast grid access

and processing, but also for performing real-time statistical summaries and analyses

on selected grid sets over space and time.

4.2.2 Real-time Grid Calculations

By nature of their format, grids provide a simple yet powerful data structure for

storing numerical data and performing spatial and statistical analyses across multiple

datasets. Each grid can contain a data representation for a snapshot in time (or an

interval), enabling analysis over both space and time. Specialized locally-installed

GIS software is typically used to perform grid-based analysis. However, the

software is usually installed on a particular computer and, in many cases, requires a

purchased license before the software can be used. GRASS GIS is the only full-

featured open source raster GIS software package, but for most people it requires a

steeper learning curve than commercial software, even with the Quantum GIS (QGIS

2012) software package as a front end. Data size and format can also serve as

impediments to fast processing of grids, particularly if large quantities of gridded

data need to be loaded across a network for processing.

With a powerful server or clustered server environment, centralizing grid storage and

processing on the server-side can speed delivery of the output product to the client,

whether the client is a locally-installed GIS software package or a web browser.

This is the driving concept behind ArcGIS Server (ArcGIS 2012), which recently

152

began offering more server-side grid processing capabilities (ArcGIS Resource

Center 2012), and similar software products. However, dynamic grid processing

(i.e., not just delivering data, but rather performing complex grid processing

operations and delivering the output) in a server environment remains a challenge.

Programmatic approaches offer the most flexibility for designing a server-side grid

processing solution, but can also require significant effort to build. Significant

advances in open source GIS software over the past decade have resulted in powerful

server-side software components such as the Geospatial Data Abstraction Layer

(GDAL 2012), OGR Simple Features Library library (OGR 2012), MapServer (Lime

2008, MapServer 2012), and PostGIS (PostGIS 2012), all of which can potentially be

leveraged and combined with custom software to create a grid processing system.

If the grid processing work can be moved to the server, and the client only requires

operations such as data exploration, visualization, and querying of the output data,

custom web-based tools become ideal candidates for a client interface. Requiring no

specialized software apart from a standard web browser, web-based tools have the

benefit of being accessible from virtually anywhere. With the current panoply of

advanced JavaScript-based client-side libraries designed to enhance the user

experience, such as OpenLayers (OpenLayers 2012), jQuery (jQuery 2012), and

Highcharts (Highcharts 2012), and the availability of powerful techniques for

making asynchronous calls to server-side processes to retrieve data, web-based

interfaces designed today can be more useful and powerful than ever before.

153

Using the internet as the basis for a grid analysis framework requires inherently fast

approaches to grid processing and delivery. Although it is possible, for example, to

develop a web-based system that e-mails the user when a computationally-intensive

job is complete, the user experience is greatly enhanced by near-real-time processing

and delivery of the output products. This necessitates a streamlined grid processing

solution on the server-side, capable of quickly handling complex grid processing

operations as well as multiple simultaneous requests.

4.2.3 Project Goals

The intent of this project was to implement a usable web-based approach for

analyzing PRISM climate grids over varying spatial and temporal scales.

Leveraging the structured system of PRISM climate grids and extending a

previously-developed grid processing toolkit, the GridStats system was developed

with these goals in mind:

1. Determine the feasibility of performing statistical analyses across multiple

grids in a real-time web environment.

2. Create a web-based system for calculating statistics across multiple grids

over user-defined spatial and temporal scales.

3. Leverage the custom server-side solution (the GridServer) designed in-house

for quickly processing multiple grids and extend its point-based processing

capability to process regions across multiple grids.

154

4. Design a system that can handle the processing power necessary for

calculating analyses across the high resolution (800 m) PRISM grids.

5. Design user interactivity features that help the user properly define input

parameters and interpret the output data.

6. Incorporate dynamic mapping tools, both for setting the initial area of interest

and for exploring the statistical output grids.

7. Develop dynamic, interactive charts that display the output data and allow

their exploration, plus incorporate in-chart statistical reference aids.

8. Attempt to build the system framework, statistical analysis, and grid

processing code using open source software tools.

A range of hardware, software, database, mapping, analysis, and development

techniques were used in the design and implementation of the GridStats system. The

overarching goal of the project was to combine this complex set of elements into a

system that provides automated, easy-to-use exploration and analysis of large

datasets in a web-based context. Developing a modular framework that can be used

with additional climate parameters, raster data types, and statistical methods was also

an important consideration in this project.

4.3 Related Work

Several topics associated with this project such as climate mapping, web-based grid

processing, temporal map algebra, and calculation of grid statistics have been

155

examined by others. In this section, related research is discussed in the context of

these topics, with particular attention given to the central theme of processing grids

across space and time.

4.3.1 Web-based Grid Processing

The concept of real-time web-based processing of raster datasets has existed for

several years (e.g., Baumann 2001). Websites processing grids (either by querying

grids and delivering the data to the user, or by clipping grids and delivering a grid

product) have typically used processing scripts that either call a GRASS GIS utility

on the server to process a set of grids, or a custom-written software tool to perform

grid querying or clipping. Many examples of these data analysis and delivery

approach exist on websites today (e.g., PRISM Data Explorer 2012, USGS National

Elevation Dataset 2012).

Prior to the advent of the Open Geospatial Consortium (OGC) Web Coverage

Service (OGC WCS 2010), no standards existed for the processing and delivery of

raster datasets. The WCS standard defines procedures for the processing and

delivery of time-series raster-based datasets (“coverages”) on remote servers, with

delivery of the output to the requesting server. Since its introduction, OGC WCS

capabilities have been added to certain spatial data infrastructures (SDIs), enabling

access and analysis capabilities to any client. For example, Bernard and Ostländer

(2007) demonstrated the use of a WCS server that included a map algebra service for

156

assessing climate change vulnerability in Arctic regions. Foerster et al. (2011)

described the use of the OGC WCS and WPS (Web Processing Service) standards

for multiple grid-based spatial analysis scenarios.

The GDAL library contains driver support for the OGC WCS standard, handling any

WCS coverage as a raster dataset, with GDAL acting as a client to the WCS server.

In the current version (10.1) of ArcGIS, Esri enables geoprocessing services to be

published with ArcGIS for Server. Esri also indicates in documentation (ArcGIS

Resource Center 2012) that server-side processing can be performed with raster

functions and published via ArcGIS for Server. ArcGIS for Server also includes

support for the OGC WCS standard.

4.3.2 Web-based Climate Grid Analysis

Certain websites allow the user to retrieve data values across multiple time-series

climate grids and calculate statistics across the selected grid sets. The PRISM

Climate Group developed and continues to support the PRISM Data Explorer (2012),

designed several years ago and built around a mix of technologies including

MapServer, JpGraph, and GRASS GIS. The user can select a point location of

interest via a map click or by entering coordinates manually, select a month, and then

select a year range for which to retrieve data for that month (i.e., all Januaries from

1934 to 1967). When the request is submitted, a report is returned with information

about the selected grid cell, the data values for that grid cell by year, and a filled line

157

chart graphing the data values across the time series. The system works by sending a

request to a script that calls a GRASS GIS utility to dynamically fetch the data

values from the requested grids and return them to the browser. The PRISM Data

Explorer extracts values from 4 km resolution PRISM grids. It works well for

extracting data over time for a single month or all months in a range, but uses dated

technology and lacks interactive tools for examining the output or for performing

more sophisticated queries.

WestMap, a climate grid analysis website developed through a collaboration of the

University of Arizona, the Western Regional Climate Center (WRCC), the Desert

Research Institute (DRI), and PRISM, enables fairly extensive analysis of PRISM

climate grids (Comrie et al. 2006, Glueck et al. 2008, WestMap 2012). A WestMap

user can select a location of interest using a number of methods (states, counties,

climate divisions, hydro units, by pixel, or by polygon). The first four location

selection methods use a custom imagemap-selection method, while the last two use a

Google Maps API-based map to set a point or define a polygon. After selecting a

point or region of interest, the user can choose to create either a time series chart or a

map of the region. Time series charts display parameter data for the selected time

interval, as well as a running mean plotted as points, and an optional summary

statistics report for the selected data values. Three types of maps can be generated

for any of the climate parameters: (1) anomaly, expressed as a difference or a percent

158

of normal, (2) a composite of several years, or (3) a difference between two years (or

two year ranges).

WestMap covers states in the mountainous western US (west of Kansas) and

analyzes PRISM 4 km climate grids. The website is written in the PHP: Hypertext

Preprocessor (PHP) language, with a combination of C, Fortran, Perl, and other

languages used to dynamically retrieve data from PRISM climate grids and perform

analyses on them. Output charts and maps are static (i.e., there is no interactive

component once the products are generated). Output values cannot be retrieved from

the resulting maps, and cannot be viewed on the chart (although there is an option to

print them below the chart). The generated maps and charts can be saved as images.

The Nature Conservancy, in collaboration with the University of Washington and the

University of Southern Mississippi, developed the ClimateWizard website, a tool

that allows the user to select a state or country and learn how climate has changed

over time in that region (Girvetz et al. 2009, ClimateWizard 2012). As with the

other climate grid analysis tools mentioned in this section, ClimateWizard uses the

PRISM 4 km climate grids for analysis (in addition to other data sources). Various

general circulation models and emission scenarios can be selected for future climate

projections, and resulting maps are displayed in an Esri-based interactive mapping

tool. Cell values can be retrieved by clicking on the interactive map, and are plotted

on an interactive chart that displays the model and value for each data point for the

159

modeled scenarios (the data values are also supplied in a table). Data and map

images can be exported from the tool. A separate custom query interface

(ClimateWizard Custom 2012) allows more advanced analysis of global regions (50

km resolution) or regions in the U.S. (4 km to 12 km resolution). Advanced analysis

options include departure analysis (from the 1961-1990 normals) and linear trend

analysis.

4.3.3 Map Algebra and Grid Statistics

Map algebra, the operation of performing calculations through aligned grid cells to

produce a new grid, is a key concept in grid processing (Tomlin 1990, Tomlin 1994).

Programmatically, map algebra calculations on grid sets representing data across

space and time (i.e., the space-time cube) can be approached as multidimensional

array operations, where each grid is a 2-dimensional (2D) array of rows and

columns, and the set of time-series grids aligned for processing represents the third

dimension. By calculating through columns of the 2D arrays (Figure 4.1), map

algebra can be performed to produce an output array, with each output array element

containing a calculated value. This approach is discussed in detail by Frank (2005),

who described an extended version of Tomlin’s map algebra for handling

calculations across spatiotemporal raster datasets. Frank’s extended map algebra

provides consistent operations for single maps, time series data, and stacks of

gridded time series data (as in Figure 4.1).

160

Figure 4.1: Example of map algebra for spatiotemporal data. This diagram
illustrates calculating through grid cells (or 2D columns in a 3D array) over time to
produce an output grid (or 2D array) containing the calculated values.

Similar to Frank (2005) in concept, Mennis et al. (2005) described cubic map algebra

functions for spatiotemporal analysis, extending standard map algebra to three

dimensions. Their cubic map algebra approach was tested by summarizing

Normalized Difference Vegetation Index (NDVI) anomaly values during El

Nino/Southern Oscillation (ENSO) phases across different land covers. Later,

Mennis (2010) extended and formalized this approach as “multidimensional map

algebra” (MMA), an extension of the conventional map algebra. MMA functions

operate on multidimensional data in many forms, including 2-D in space and 1-D in

time (as represented in Figure 4.1).

161

An additional map algebra approach for processing spatiotemporal data was

proposed by Gutierrez et al. (2007), who compared raster map algebra techniques to

Online Analytical Processing (OLAP) data cubes and described their manipulation as

multi-dimensional arrays. Cordiero et al. (2009) described another map algebra

approach to extend geoalgebra and image algebra, but primarily focused on spatial

representations and manipulations related to cellular automata rather than

considering the temporal dimension.

Grid-based statistical operations have been available in GIS software packages for

many years. The ESRI ARC/INFO GRID module was added in version 6.0 of

ARC/INFO (released in 1991) and supported command-line access to raster

operations, including statistical functions. The core functionality of GRID was later

used as the basis for the ArcGIS Spatial Analyst (ArcGIS Spatial Analyst 2012)

extension, where statistical grid calculations are performed in ArcGIS today.

GRASS GIS has supported a wide range of grid-based statistical functions since the

1980s, and continues to be under active development. The open source statistical

package R (R Project 2012) provides support for spatial statistics on grids via the sp

R package (Sp R 2012), and can be called from within a GRASS environment using

the R/GRASS interface (R/GRASS 2012). Bivand et al. (2008) describe many

examples of applied spatial data analysis on grids using R. Access to R from the

Python programming language is available via the rpy2 module (Rpy2 2012),

enabling programmatic calculation of statistical functions across grids imported as

162

arrays. The NumPy (NumPy 2012) and SciPy (SciPy 2012) Python modules also

support a range of statistical functions, and NumPy supports fast operations on grids

as multidimensional arrays.

4.3.4 Server-side Grid Processing Systems

Server-side grid operations can require significant processing power, particularly for

large spatial and temporal scales, but also during periods of concurrent usage.

Having a properly-configured server dedicated to grid processing operations is one

way ensure good performance. However, increased usage, higher-resolution gridded

datasets, and larger quantities of data can all lead to increased load on the processing

server. Other possibilities exist such as distributed computing over scientific grids

(e.g., Giuliani et al. 2011), or the use of Amazon’s Elastic Compute Cloud (Amazon

EC2 2012). Siládi et al. (2012) used Amazon’s EC2 to perform parallel processing

to predict depth of snow cover, using inverse distance weighting interpolation

calculations in the cloud.

Auer (2012) describes an intriguing approach to real-time web GIS analysis using

the Web Graphics Library (WebGL) JavaScript API. WebGL is based on the

OpenGL 3D graphics library, and runs natively in the user’s browser, where it has

access to the graphics processing unit (GPU) on the graphics card. The GPU on

modern graphics cards is capable of performing fast parallel processing of

computational tasks. Auer outlines a process for performing WebGL-based parallel

163

spatial analysis of grids. Bryan (2012) also used a GPU-processing-based approach

in assessment and modeling of socio-ecological systems, running tests across a range

of processing types. Bryan realized a performance gain using parallel GPU

processing that was several orders of magnitude faster than with standard GIS

software on a computer workstation. Although parallel GPU approaches to grid

processing are promising, they may require more research before their reliable

implementation in a production environment can be realized.

4.4 The GridStats System

The GridStats system was designed to give PRISM Climate Group staff the means to

quickly analyze and compare a point (single grid cell) or a region (via a drawn

bounding box or other defined polygon boundary) over varying spatial and temporal

scales. The system was designed from the ground up, making extensive use of

existing open source software packages as well as other grid processing software

tools developed in-house (GridServer, Biltools).

4.4.1 Design Intent

The GridStats system was designed to meet user interface goals as well as particular

development goals guiding future development. The user interface was designed to

be fully interactive, offering full control over all spatial and temporal scale

selections. Results pages have clearly-indicated controls and intuitive visualizations

of the output data and analysis results.

164

In addition to developing the key functional code driving the grid processing

operations, particular attention was given to modularity of the code design. Both the

frontend and backend codebases are designed such that additional univariate and

multivariate statistical methods, polygon-based area selections, and climate

parameters can be added fairly easily, without re-engineering server-side or client-

side code.

4.4.2 System Architecture

The GridStats system features an interactive web-driven utility that allows input

selections to be defined on a settings web page, while output data can be viewed,

explored, and exported on a set of results pages. Complex JavaScript-based client-

side code manages input selection, asynchronous queries and responses, output

formatting, and output visualization. Behind the scenes, a complicated system of

custom server-side software tools manage grid logistics, input/output, processing,

and statistical analysis of climate grids across varying spatial and temporal scales.

Figure 4.2 summarizes the interconnected pieces that define the system architecture.

165

Figure 4.2: GridStats system architecture. After input parameters are submitted via
the website, the processing engine sends a request to either the GridServer or
biltools, depending on the request type. Output grids are written to the filesystem
and output data are returned in JavaScript Object Notation (JSON) format to the
processing engine and used in reporting and charting. All output is immediately
available in the results website.

4.4.3 Hardware and Software

The GridStats system requires fairly significant computational resources in order to

process n number of grids across varying spatial and temporal scales and return the

output to the user as quickly as possible. Dedicated database, web, and grid

processing servers (Table 4.1) distribute the processing load among multiple

machines.

166

Table 4.1: Dedicated servers used by the GridStats system. The servers listed here
are all connected via a 1 gigabit local network.

Specification Web Server Database Server Grid Processing
Server

Server type Dell PowerEdge
R710 Sun SF X4170 Dell PowerEdge

C2100

CPU Intel Xeon E5630
(four 4-core CPUs)

Intel Xeon X5560
(four 4-core CPUs)

Intel Xeon X5650
(four 6-core CPUs)

Memory 32 GB 32 GB 64 GB

Disk storage
type Local EMC NS-480 NAS Local

Disk quantity 8 9 (half allocated to
this server) 24

Disk capacity 320 GB 600 GB 600 GB

Disk speed 10K RPM 15K RPM 15K RPM

Disk interface SCSI Fibre channel SAS

RAID level RAID 5 RAID 5 RAID 6

RAID controller
type hardware hardware hardware

Operating
system Linux (RHEL 6) Linux (RHEL 6) Linux (RHEL 6)

The GridStats system relies upon a range of open source software packages (Table

4.2), as well as custom code written in PHP, Javascript, and HTML (about 5000 lines

of code, not including GridServer modifications written in Python). All spatial data

queries, processing, and server-side and client-side manipulations are performed

using open source software tools and custom-written software tools and utility

scripts.

167

Table 4.2: Open source software packages used by the GridStats system, and the
purpose for which they are used.

Software Package Purpose
PostgreSQL
(postgresql.org)

Relational database system – provides storage and
management of input and output data.

PostGIS
(postgis.refractions.net)

Module that provides support for spatial objects and
operations within PostgreSQL, and enables spatial queries.

GEOS
(geos.osgeo.org)

Library incorporating the OpenGIS Simple Features
operations, which are used within PostgreSQL/PostGIS.

PROJ.4
(proj.osgeo.org)

Library that handles coordinate system transformations on
spatial objects stored in the database.

GDAL
(gdal.org)

Library for manipulating, converting, and processing
raster data (grids) in multiple formats.

OGR
(gdal.org/ogr)

Library for processing vector datasets and converting
output from PostgreSQL/PostGIS to GeoJSON.

MapServer
(mapserver.org)

Server-side software that processes map layers for the
OpenLayers web mapping and visualization interface.

OpenLayers
(openlayers.org)

Client-side mapping tool – enables web mapping and
animated visualization of maps and output data.

Highcharts
(highcharts.com)

Client-side charting tool – enables interactive charting
capabilities via Javascript.

jQuery
(jquery.com)

JavaScript library for event handling, AJAX transactions,
HTML DOM changes, and cross-browser compatibility.

Python
(python.org)

Scripting language used for server-side grid processing
and associated tasks.

NumPy
(numpy.scipy.org)

Numerical Python package, used for processing grids as
multidimensional arrays and calculating statistics.

SciPy
(scipy.org)

Scientific tools for Python, used for calculating certain
statistics.

PHP
(php.net)

Server-side web programming language that drives the
GridStats website.

Pyramid
(pylonsproject.org)

WSGI web framework that provides a fast, lightweight
web server and enables HTTP requests to Python utilities.

Apache
(httpd.apache.org)

Web server used for serving website pages and handling
PHP-generated content.

168

4.4.4 Input Data Sources

The GridStats system is built around the availability of a key dataset (the PRISM 800

m climate grids) and various supporting spatial datasets used for display,

manipulation, and grid clipping operations. These input data sources are stored on

the filesystem or in the spatial database, depending upon type.

 PRISM Climate Grids 4.4.4.1

Automated PRISM modeling processes produce climate grids at both daily and

monthly time scales (annual grids are calculated from monthly data) for the CONUS.

The spatial extent of the climate grids is identical (i.e., CONUS) across all grids, as

is the grid cell resolution (800 m). Table 4.3 lists the available PRISM modeled

climate grids by parameter and time series.

All PRISM climate grids are stored in the BIL (band interleaved by line) format

(ESRI 1999, NDIIPP 2012), also described as the EHdr (ESRI .hdr labeled) format

in GDAL documentation (GDAL Raster Formats 2012). The BIL format supports

coordinate systems via a .prj file and georeferencing via the matching .hdr file. As

a widely-used, generalized binary raster data format, BIL is well-supported in GDAL

raster processing operations, as well as in commercial software products from Esri

and image processing software vendors such as ENVI and Imagine. Stored in BIL

format, each PRISM grid requires approximately 85 MB of disk space. Across all

169

parameters and time series, there are currently over 49,000 available grids occupying

nearly 5 TB of disk space on the filesystem.

Table 4.3: Climate parameters and availability of 800 m resolution time-series grids
produced by the PRISM Climate Group. Automated climate modeling is performed
on a daily basis, with the most recently-available grids typically representing
yesterday, last month, or last year, depending upon the time series of interest.

 Time Series

Parameter Daily Monthly Annual

Precipitation (ppt) 1980-01-01 to
<yesterday>

1895-01 to
<last month>

1895 to
<last year>

Minimum
Temperature (tmin)

1970-01-01 to
<yesterday>

1895-01 to
<last month>

1895 to
<last year>

Maximum
Temperature (tmax)

1970-01-01 to
<yesterday>

1895-01 to
<last month>

1895 to
<last year>

Mean
Temperature (tmean)

1970-01-01 to
<yesterday>

1895-01 to
<last month>

1895 to
<last year>

 Additional Spatial Data 4.4.4.2

In addition to the PRISM climate grids, a set of vector-based GIS spatial layers

(Table 4.4) are used by GridStats. These layers were imported into the spatial

database and are used in both the web interface and in the grid processing system.

In the web interface, the initial settings page gives the user the ability to overlay the

states, counties, watersheds, and PLSS layers as spatial reference aids when selecting

a location of interest. Additionally, the state, county, and watershed layers are

170

enabled as “active selections,” whereby a user can select a polygon of interest (e.g.,

the state of Idaho) from a menu and be zoomed directly to the highlighted polygon

on the map, while that polygon is also selected as the region of interest. When a

state, county, or watershed area-based request is submitted, the spatial extent

information for that polygon is extracted from the spatial database and used for

clipping the grid to isolate the associated grid cells for analysis.

Table 4.4: Vector-based spatial data stored in the spatial database and used in both
the web interface and the grid processing system.

Spatial Data Type Source

US state boundaries Polygon National Atlas
(nationalatlas.gov/atlasftp.html)

US county boundaries Polygon National Atlas
(nationalatlas.gov/atlasftp.html)

Watershed boundaries
(8-digit HUCs) Polygon US Geological Survey

(water.usgs.gov/huc.html)

Public Lands Survey System
(PLSS) * Polygon US DOI Bureau of Land Management

(blm.gov/wo/st/en/prog/more/gcdb.html)
* Currently used only for spatial reference on maps – not used in the grid processing
system.

4.4.5 Spatial Database

The database used by the GridStats system is stored and managed in an instance of

the open source PostgreSQL relational database management system (PostgreSQL

2012) with the open source PostGIS module (PostGIS 2012) included to support the

storage, manipulation, and querying of spatial data as database objects.

171

PostgreSQL/PostGIS allow the execution of advanced spatial queries and can be

accessed directly via web programming languages such as PHP and web mapping

tools such as MapServer (Lime 2008, MapServer 2012). The PostgreSQL database

server instance runs on a dedicated machine as described in Table 4.1.

Spatial data used in this project were converted to the geographic WGS84 coordinate

system (EPSG 4326) prior to loading into the spatial database. This conversion was

accomplished via the ogr2ogr command-line utility (packaged with the OGR

library), using this command:

 ogr2ogr –t_srs EPSG:4326 state_bnd.shp states_4326.shp

The converted data were tested and then prepared for insertion into the spatial

database via the shp2pgsql command-line utility (packaged with the PostGIS

module), using this command:

 shp2pgsql –I –s 4326 states_4326.shp gis.states | psql -d my_db

The last section of that command (psql -d my_db) takes the output from shp2pgsql

via a Unix “pipe” and imports it directly to the spatial database using the

PostgreSQL psql command-line utility. All supporting vector-based spatial datasets

were processed and inserted into the spatial database in this manner. GiST spatial

indexes were generated for all of the geometry columns in the resulting spatial

tables.

172

4.4.6 The GridServer

The GridServer is a server-side grid processing software system designed to accept a

request, process a grid or a set of grids, and return the resulting data to the requesting

entity. The GridServer was developed by NACSE specifically for PRISM

operations, although it is extensible to any set of gridded data with a regular spatial

extent, and provides core functionality to the GridStats system for quickly

performing statistical operations across multiple PRISM climate grids.

 Purpose 4.4.6.1

The purpose of the GridServer is to process requests for grid data as fast as possible

and return the output data. Requests typically originate from a web-based

application, with the possibility of a large number of concurrent users, so grid

processing must occur very quickly. The GridServer was initially designed to

receive a latitude/longitude point request, map it to a single grid cell, retrieve data

from that grid cell over time (from a single grid to potentially thousands of time-

series grids), organize the output data, and return it to the requestor. As part of the

GridStats project, functionality was added to the GridServer to support region-based

processing using a rectangular bounding box or a state, county, or watershed polygon

boundary.

173

 System Design 4.4.6.2

The GridServer is written in Python and wrapped in a multi-threaded web

application using the Pyramid (2012) framework. Pyramid is a WSGI (Web Server

Gateway Interface)-based system that utilizes Paster, a fast, lightweight web server.

Running on a dedicated server (described previously in Table 4.1), the system

handles HTTP-based requests from a web application or other client. The

GridServer makes use of a number of open source libraries such as NumPy, SciPy,

and GDAL/OGR.

The GridServer establishes a Unix system file handle to every available PRISM

climate grid during initialization. By eliminating the system overhead involved with

establishing a file handle and opening a file programmatically, the GridServer can

achieve very fast seek times to over 49,000 grids (that quantity is increasing daily).

The maximum number of file handles available to the user agent running the

GridServer process was changed from the Linux system default of 4096 to 65,536 to

accommodate the large number of file handles required by the GridServer. The

system itself can accommodate a much larger number of file handles, and the user

agent’s allocation will be increased further as larger quantities of PRISM climate

grids are produced.

NACSE performed extensive testing of grid request processing times over the

network-based NFS filesystem vs. local disk storage and found that request

174

processing was consistently 6-7 times faster using local disk storage. The primary

set of PRISM grids are stored on the internal NFS filesystem to provide network

access and ease of regular backups and need to remain there, so to maximize

GridServer performance a local copy of the grids was made on the dedicated

GridServer machine. This secondary copy is synchronized with the primary source

(1) anytime a new grid is produced, and (2) on a nightly basis via the rsync and cron

Unix system utilities. The GridServer maintains Unix system file handles on this

local, synchronized set of grids and refreshes all data file handles hourly, or

whenever a refresh is requested.

When a request is received, the GridServer builds a list of the required grids based

on the requested time series and start/end dates, reads relevant data from the grids

using the established file handles, and processes the grids according to the request.

For point-based requests, both the actual grid values and processed data are written,

along with matching metadata, to a JSON object that is passed back to the requestor.

For area-based requests, the data are first copied into a NumPy N-dimensional array

(ndarray). Once the relevant grid data are contained in an ndarray, it becomes much

easier to manipulate the data for processing than working with the grids in their

native binary format, and the NumPy package provides a wealth of numeric

processing functions that operate on the ndarray data structure. The retrieved data

are then written to a new ndarray, processed as needed according to the request, and

passed into a function that generates a new grid (or set of grids) in BIL format. This

175

is another benefit of the BIL format – the binary data structure is non-proprietary and

relatively easy to reproduce via Python. Output grids are written to a filesystem

location accessible to the web server. Metadata describing the grids are returned in a

JSON object, similar to point data requests.

 GridStats Usage 4.4.6.3

After a user makes their selections on the initial settings page and clicks the Submit

button, a request is sent to the GridServer for one of several grid processing methods.

An example area-based HTTP request looks like this:

http://<server.domain>:<port>/stats_area_years?minlon=-122.43271

&minlat=41.33694&maxlon=-121.29877&maxlat=43.56572

&start=1982&end=1988¶m=ppt&pstat=mean

This request is for annual precipitation data for the years 1982-1988, for a region

defined by a bounding box drawn on the map on the initial settings page. The

requested statistic is “mean,” which performs the mean calculation for every grid cell

across the years 1982-1988 within the requested region.

4.4.7 Server-side Processing

The GridStats system relies upon a range of server-side components, including a

range of open source packages and modules used directly or accessed via APIs, and

custom-written software tools. Hardware and software components enabling server-

side GridStats operations are listed and described in sections 4.2 and 4.3. Their

176

usage is described in this section, particularly for the components involved in

calculating grid statistics.

 Calculating Grid Statistics 4.4.7.1

Requests spanning the CONUS extent (i.e., the entire PRISM grid extent) are

handled by making a system call to bilcalc, one of the Fortran utilities included in

Biltools. The bilcalc command currently supports min, max, mean, and sample

standard deviation calculations. All other grid statistic calculations are handled by

the GridServer.

The GridServer’s initial design intent was to handle point-based requests, retrieve

data from matching grid cells across all grids as fast as possible, and return the data

to the requestor. The GridStats system leverages the GridServer’s core functionality

of quickly retrieving and processing grids, as well as the initial point-based request

processing methods. However, in developing GridStats, the GridServer’s point-

based methods were extended to calculate a set of summary statistics across all grid

cells retrieved by each point-based request, with new area-based methods developed

for this purpose.

The GridServer (in addition to other GridStats framework components, including

both the client-side and server-side code driving the website) utilizes some key open

source GIS code libraries. In particular, for this project the GDAL/OGR library

177

enables reading, reprojection, and general manipulation of raster datasets (via

GDAL), and reading, writing, reprojection, and spatial queries of vector datasets (via

OGR). All operations are handled programmatically, either by direct command-line

calls, integration of Python modules, or using the GDAL/OGR features compiled

into other open source GIS software such as MapServer.

4.4.7.1.1 Extending the GridServer

Additional functions and methods were added to the GridServer to enable area-based

requests, which are defined by either drawing a rectangular bounding box on a map

or selecting a desired state, county, or watershed polygon boundary. For rectangular

bounding box requests, the GridServer uses the bounding coordinates to clip the

rectangular region from each input grid, read the clipped regions into a NumPy

ndarray, conduct statistical calculations on the array elements, and return the

processed output data as a BIL grid, along with associated metadata.

Area requests that use irregular polygons as the bounding region require more

complicated logic and processing than rectangular regions. When the user selects a

polygon region on the settings web page, the matching spatial database table name is

recorded in the background, along with the numerical identifier representing the

selected polygon. That information is included in the GridServer request, triggering

a clip-by-polygon operation rather than a normal clip-by-bounding-box operation.

The Python code driving the GridServer imports the OGR module, which enables a

178

query to be issued to the spatial database to retrieve the encoded geometry for the

polygon of interest. The form of that query is:

SELECT AsBinary(the_geom) AS wkb_geometry FROM <spatial_table> WHERE

gid = <id>;

The GDAL module (also imported by the GridServer Python code) is then used to

rasterize the bounding polygon to a grid matching the resolution and alignment of the

input grids. This is done as an inclusive process, such that all grid cells either

contained by the polygon or intersecting its boundary are included in the rasterized

layer. Once properly retrieved and rasterized in this manner, the resulting layer can

be used as a Boolean spatial mask to process and return only the grid cells in the

polygon of interest.

Selecting a region of interest based on a polygon is an important feature that allows

the user to calculate grid statistics over space and time based on significant natural

(e.g., watershed) or administrative (e.g., state or county) boundaries. For instance, a

user could quickly calculate the minimum precipitation over the years 1990-2010 in

the Grand Canyon Watershed in Arizona (this request takes 0.86 seconds to return

the output grid and data). The GridStats system currently includes US states, US

counties, and watersheds (8-digit HUCs) as selectable polygon layers, but additional

polygon layers can easily be added to the framework.

179

For all area-based methods, the GridServer code runs extensive validity checks

against the requested bounding region to ensure that:

1. The requested region does not lie entirely outside of the PRISM grid mask

extent (e.g., the bounding box was drawn entirely in Canada).

2. Any areas of the requested region drawn partially outside of the PRISM grid

mask extent (e.g., a bounding box was drawn that includes part of California

and extends several km into the Pacific Ocean) have the grid cells properly

set to “no data” (-9999) in the output grids, and are excluded from statistical

calculations.

Table 4.5 summarizes the grid statistics available via each server-side tool and

request type. Point requests calculate a set of statistics through the set of retrieved

grid cells (i.e., the statistic is calculated through time), and the resulting output is

returned as a summary set and displayed on the website. Area requests perform

statistical operations using two different methods, and return a grid (or set of grids,

for Principal Components Analysis) along with the related data values. Requests for

processing across the entire grid extent (CONUS) are handled by Biltools, which are

a set of Fortran tools written by the PRISM Climate Group specifically for

processing statistics or basic map algebra operations across the entire CONUS. The

output from an “entire grid” operation is a single BIL grid with each grid cell

representing the calculated statistic through time.

180

Table 4.5: Currently implemented statistics listed by request type and the server-side
tools used for calculating them. The statistics listed for point-based requests are
returned as a complete set, while area-based requests process and return a single
output statistic.

 Server-side Tool and Request Type

Statistic GridServer
(point method)

GridServer
(area method)

Biltools
(entire grid)

Sum X

Range X

Min X X X

Max X X X

Mean X X X

Median X
Sample Standard
Deviation X X X

Standard Error X
Principal Components
Analysis (PCA) X

4.4.7.1.2 Area-based Methods

The GridServer’s area-based methods (example in Appendix H) calculate statistics in

two ways, with both approaches automatically calculated for every area-based

request. The first approach is “temporal first,” in which the requested statistic is

calculated through time (i.e., calculated vertically through each aligned grid cell,

with each grid representing a snapshot of values in time), ultimately producing a

spatial output grid in which each grid cell contains the output statistic value

calculated through time (Figure 4.3). This technique matches the multidimensional

181

map algebra approach described by Mennis (2010) where the data cube is 2D over

space and 1D through time, and is similar to the summary operation described by

Frank (2005).

Figure 4.3: The “temporal first” (grid as output) and “spatial first” (array of values
as output) approaches to area-based calculations implemented in the GridServer. In
the first method, an output grid is produced containing the map algebra value
calculated for each grid cell. In the second, the output array contains a single value
for each grid, representing the statistic calculated across all grid cells in that grid.

182

In the GridStats web interface, the output grid produced by the “temporal first”

method is automatically displayed as an output layer in the dynamic mapping tool.

The GridServer’s Python code uses masked NumPy arrays to perform these

calculations. The following code sample is an abbreviated version of the function

that calculates all temporal grid statistics, using mean as an example (Appendix I

contains additional Python code related to this approach):

1 def get_temporal_grid(self, data):

2 fill_val = -9999.
3 mdata = numpy.ma.masked_array(data, numpy.isnan(data))

4 grid = numpy.ma.mean(mdata, axis=0)

5 outgrid = grid.filled(fill_val)

6 return outgrid

Explanation of this code sample:

Line 1: The Python function is defined. The data argument represents a

NumPy ndarray containing the input grid range selected by the user.

Line 2: The fill_val variable is set to the value that will be used to fill any “no

data” grid cells (e.g., in the ocean) that happen to exist in the output grid. The

standard PRISM “no data” value is -9999, which is used for both masking

operations and map classification purposes.

Line 3: A masked NumPy array is created from the input grids in the data

ndarray. Masked NumPy arrays set any “no data” values designated as nan in

the input grids to a special value that the NumPy module ignores during

processing. This allows any “no data” areas to be excluded from statistical

calculations.

183

Line 4: The NumPy function numpy.ma.mean is called to calculate the mean on

the masked ndarray produced in the previous line. The important axis=0

argument causes the function to calculate the mean statistic through columns of

the ndarray (i.e., performing map algebra by calculating vertically through

aligned grid cells). This produces a 2-dimensional array containing the data

representing the output grid, which is stored in the grid variable.

Line 5: Any “no data” values in the array are filled using the fill value defined

in line 1, and stored in the outgrid variable.

Line 6: The output grid is returned to the calling function. Once returned, the

2D array is converted to the binary BIL grid format and written to disk as a

map-ready output grid.

The second area-based calculation performed by the GridServer is “spatial first,” in

which the requested statistic is calculated over space, producing a single output

statistic value for each input grid. In contrast to the “temporal first” approach of

calculating through all aligned grid cells over time, this approach calculates across

all grid cells over space, in effect calculating an overall areal statistic for each input

grid (refer to previous Figure 4.3). The resulting output statistic values are collected

and returned to the GridStats website, where they are plotted on an interactive chart,

allowing the user to visualize spatial trends in the selected region over time. As with

the “temporal first” approach, the GridServer’s Python code uses masked NumPy

arrays to perform this type of calculation. The following code sample is an

abbreviated version of the function that calculates all spatial grid statistics, using

184

mean as an example (Appendix I also contains additional Python code related to this

approach):

1 def get_spatial_values(self, data):

2 rnd = 2

3 spatial_vals = []
4 mdata = numpy.ma.masked_array(data, numpy.isnan(data))

5 spatial_vals.append(round(numpy.ma.mean(data), rnd))

6 return spatial_vals

Explanation of this code sample:

Line 1: The Python function is defined. The data argument represents a

NumPy ndarray containing the input grid range selected by the user.

Line 2: A value is assigned to a variable used for rounding the final output

values. In the full Python function this variable is set conditionally based on the

climate parameter being processed (precipitation is calculated to two decimal

places, while temperature variables are calculated to one decimal place).

Line 3: The spatial_vals list is initialized to hold the final spatial output

values, which will be indexed identically to the data ndarray holding the input

grid data.

Line 4: As previously described in the “temporal first” code explanation, a

masked NumPy array is created from the input grids in the data ndarray.

Line 5: The NumPy function numpy.ma.mean is called to calculate the mean on

the masked ndarray produced in the previous line. Note that in contrast to the

mean calculation in the “temporal first” code explanation, this function call does

not define an axis argument. By excluding the axis argument, the

numpy.ma.mean function calculates the mean across all elements in the flattened

185

array (i.e., all grid cells across a single input grid). This approach produces a

single output statistic value for each processed grid (the full Python function

loops over all input grids in the requested set, calculating the output statistic for

each grid). As each value is calculated, it is appended to the spatial_vals list.

Line 6: The spatial_vals list is returned to the calling function. The data are

packaged as part of the JSON return and dynamically plotted on the time-series

chart on the GridStats results web page.

Figures displaying the area-based output data rendered on maps and plotted in charts

are provided in section 4.8.2.

4.4.7.1.3 Calculating Univariate Statistics in Python

By making requests to the GridServer, the GridStats system can calculate a number

of univariate statistics (listed previously in Table 4.5) that are used for reporting and

charting (point-based requests), and to calculate output grids representing the statistic

of interest (area-based requests). Sums are currently calculated only for

precipitation-related point requests, and are performed manually by simply summing

the values of the individual aligned grid cells over the requested time interval. The

basic min and max statistics are calculated for point requests by passing NumPy

arrays into the Python-based functions numpy.min and numpy.max, respectively. For

area-based requests involving masked values, the numpy.ma.min and numpy.ma.max

functions are used. Range (the difference between min and max) is also calculated

186

only for point-based requests, but is available for both precipitation and temperature

climate parameters.

The mean of the input data is calculated via numpy.mean (for point requests) or

numpy.ma.mean (for area requests), using Formula 4.1.

�̅� =
∑𝑥
𝑛

 4.1

Standard deviation is also calculated using a NumPy function. All standard

deviation requests (whether point- or area-based) calculate sample standard deviation

using numpy.std (or numpy.ma.std for masked array operations). PRISM climate

grids are modeled using data obtained from irregular station networks (i.e., a sample

across the CONUS), making sample standard deviation the correct statistic vs.

population standard deviation. An example function call looks like the following

statement, where data is a masked NumPy ndarray:

output = numpy.ma.std(data, ddof=1)

The ddof=1 statement instructs numpy.ma.std to use n-1 degrees of freedom, thereby

performing the sample standard deviation calculation (Formula 4.2).

𝑠 = �∑(𝑥 − �̅�)2

𝑛 − 1
 4.2

187

For point-based requests that calculate sample standard deviation, the standard error

of the mean is also calculated. This operation uses the scipy.sem function, as

standard error is only available as a built-in function in the SciPy package, and

calculates the statistic using Formula 4.3. The function uses n-1 degrees of freedom

by default, so no explicit ddof argument must be given.

𝑆𝐸�̅� =

𝑠
√𝑛

 4.3

4.4.7.1.4 Calculating PCA in Python

Principal Components Analysis is the sole multivariate statistical technique currently

available in the GridStats system. This method was implemented for two reasons:

(1) to identify and produce the principal components (as output grids) that explain

the preponderance of variance in a set of input grids meaningful to the user based on

climate parameter and spatial and temporal scales, and (2) to serve as a test method

for implementing multivariate techniques in the GridServer and the GridStats output

visualization tools.

The heavily-commented Python function developed for calculating PCA is included

in full in Appendix J, with key steps described here:

1. As described in prior sections, a NumPy ndarray holds the input grids and is

converted to a masked array for processing.

188

2. The initial ndarray is 3D (each grid’s cells are stored as subarrays of rows

and columns). It is flattened to 2D (each grid’s cells are then all stored in a

single array, indexed to retain proper ordering) to prepare for further

processing.

3. The data are mean-centered (i.e., normalized by the mean). This occurs

across arrays and through columns.

4. The data are scaled by standard deviation across arrays, through columns.

5. The diagonalized covariance matrix of the mean-centered, scaled data is

calculated across all subarrays. This is possible since the arrays were

flattened in step 2.

6. Using the NumPy linear algebra module, the eigenvalues and eigenvectors of

the covariance matrix are calculated.

7. The eigenvalue and eigenvector arrays are index-matched to ensure they

remain in the correct ordering associated to one another. The eigenvalue

array is sorted in decreasing order, and the eigenvector array is then sorted to

match.

8. The eigenvalues are converted to percentages of explained variance and are

stored in a list.

9. The principal components corresponding to each eigenvector are calculated

using the formula described in Appendix J. In short, the eigenvectors from

the first column of the eigenvector array are calculated against the first set of

input grids. This is repeated across the columns of the eigenvector array.

This formula is identical to the GRASS GIS approach used in the r.covar and

r.pca modules (Neteler and Mitasova 2002, GRASS 2012).

10. The 2D output array containing the component arrays is returned to the

calling function, along with the indexed list of eigenvalues expressed as

percentages. The component arrays are processed into binary BIL grids, with

one grid representing each component. The eigenvalue percentages are used

to list the variance explained by each component grid.

189

After processing is complete, the set of component grids is immediately available in

the GridStats output web page, implemented as a selectable list that automatically

loads a grid into the dynamic output mapping tool. Visualization of the principal

components as grids is of questionable benefit, although grid cell values do have

meaning relative to one another. Each grid cell within a component grid contains a

principal component score, which can be useful in interpreting the relative within-

component contribution of each grid cell to the variance of the input grid set

explained by that component. Grid cell values can be queried in the output mapping

tool. The set of component grids can also be exported as a .zip file and used as

inputs in further analysis.

 Data Output Products 4.4.7.2

Point-based (i.e., single grid cell) and area-based requests are handled by the

GridServer, while requests spanning the entire CONUS grid extent are handled by

the Biltools toolkit. Table 4.6 lists the request types and related output products.

190

Table 4.6: GridStats spatial scale request types and the possible data output products
generated by each request type.

 Data Output Product

Spatial Scale Request Type BIL grid
(full extent)

BIL grid
(partial extent)

Data values as
text (JSON)

Point (single grid cell) X

Rectangular bounding box X X*
Area clipped by polygon
boundary X X*

Full grid extent (CONUS) X
* Data are returned as the univariate statistic output value calculated across all grid
cells in the requested region (one data value per input grid).

Each BIL output grid (for both full and partial extents) consists of a set of five files:

A binary .bil file plus matching .hdr, .prj, .stx, and .aux.xml files. PRISM BIL

grids all use the following standard .hdr format (the example below represents a

clipped region):

BYTEORDER I

LAYOUT BIL

NROWS 269
NCOLS 137

NBANDS 1

NBITS 32

BANDROWBYTES 548
TOTALROWBYTES 548

PIXELTYPE FLOAT

ULXMAP -122.433333334365

ULYMAP 43.566666658865
XDIM 0.00833333333

YDIM 0.00833333333

NODATA -9999

Point (single grid cell) and area methods return data values as text (JSON format).

In the point method, two data arrays are embedded in the JSON return: (1) the set of

191

actual values for the selected climate parameter, extracted from the matching grid

cell across all requested time-series grids, and (2) a set of summary statistic values

(sum [precipitation only], range, min, max, mean, median, standard deviation,

standard error) calculated across the set of data values in (1).

The GridServer area methods embed one data array in the JSON return – the set of

univariate statistic output values calculated across all grid cells in the requested

region. The statistic is calculated for each input grid by processing all grid cells in

the requested region, such that one data value per input grid is returned. The JSON

return also includes a filesystem pointer to the output BIL grid produced via the

“temporal first” calculation where the requested statistic was calculated through each

grid cell, producing an output grid representing the statistic calculated over the

requested time series.

4.4.8 Website Design, Client-side Tools, and User Interaction

The GridStats website uses a range of JavaScript-based client-side software tools that

perform a number of functions, including:

• enhance user interaction with the website

• validate menu selections and notify user of any issues prior to submission

• dynamically load menu options based on a selection in another menu

• communicate with the server to query data and update the user’s view

• constrain selection options based on time series limitations and spatial scale

192

• set key variables sent to the server on submission

• provide dynamic, interactive mapping and charting tools on results pages

 Input Settings 4.4.8.1

The settings page of the GridStats website (Figure 4.4) gives the user control over all

spatial and temporal scale settings, location of interest, and selection of the desired

climate parameter and statistic of interest. Selections are made primarily via a series

of radio buttons and dropdown menus (Figure 4.5), although point coordinates may

be entered directly into text entry boxes. The values (and in some cases, availability)

of the selectors depend upon selections made in other areas of the web page (i.e.,

Summary Stats are only available for point-based requests). That logic is controlled

on the client-side using JavaScript-based code. All parameter settings are saved on

the user’s computer using cookies and reloaded the next time they visit the website

(or even when they simply click the browser’s Back button). This makes it easy for

the user to switch to a different data time series, for example, while keeping all other

parameter settings constant.

4.4.8.1.1 Menu Selections and Validation

The available climate parameters are largely an independent set of selections, with

the exception that mean temperature data are only available on monthly and annual

time scales. When a user clicks the radio button next to “Mean Temp (tmean),” the

193

Figure 4.4: The GridStats settings page, ready for request submission. A (yellow)
point has been selected at the center of the image, in Glacier National Park. The
selected climate parameter is precipitation, and the selected temporal scale is all
months in the range January 2001 to December 2010. “Summary Stats” is selected
as the default statistic of interest, since this is a point-based request. A larger version
of the settings section is included in Figure 4.5.

194

Figure 4.5: Settings section of the main GridStats web page. Spatial scale menus are dynamic, and zoom the map directly to
the selected polygon when a selection is made. Extensive client-side validation code checks selected values prior to
submission. In this example, the area-based statistic selections are currently disabled since the “Point” method is selected (in
that case, Summary Stats is selected by default).

195

“All days in range” row in the Temporal Scale section is automatically disabled.

Clicking any of the other climate parameter radio buttons causes the daily data

selectors to be automatically re-enabled. Although it is possible to achieve this

functionality by writing the controls directly in low-level JavaScript, it can be

handled in a much more logical and straightforward manner using the jQuery library

(jQuery 2012). Every selector on the settings page contains a unique identifier (ID)

– jQuery allows the manipulation of any object’s properties and attributes by

obtaining a handle on the object’s ID and manipulating the document object model

(DOM) to make the necessary change in the user’s browser. This approach is used

throughout the GridStats website. jQuery statements to disable and enable a selector

look like these examples, taken from the JavaScript code for the settings page:

$('#days_in_rng').attr('disabled', 'disabled');

$('#days_in_rng').removeAttr('disabled');

Additional JavaScript and jQuery code samples are included in Appendix K.

In the Temporal Scale section, all of the dropdown menus are filled with years,

months, and days by PHP functions when the page loads. The menu-filling functions

determine any date limits based on internal settings read from a configuration file

where those limits are defined. For example, daily precipitation data are currently

available from 1980 onward, while daily temperature data are available from 1970

onward. When the user selects “Precip” as the climate parameter, the start year and

end year dropdown menus in the “All days in range” row are automatically modified

196

to disable the years 1970-1979 as selections. This is handled via custom jQuery

code, using the .change() handler that fires events (e.g., a function call to the code

that disables years 1970-1979) whenever a user makes a selection on the menu of

interest.

Date handling and validation in the settings page is extensive and complicated, since

many possible cases must be accounted for in the logic. Some of the cases that are

addressed using jQuery and custom date comparison functions include:

• If the current year is selected in a monthly-related temporal scale, the current

month and any future months in the current year must be disabled.

• If the current month is August and the user has already selected “Nov” as the

month of interest, and the user then selects the current year, the month must

snap to the last available month, which would be “Jul” in this case.

• The “day” menus range 1-31 and must disable any day options that do not

exist in the currently selected month (e.g., if “Jun” is selected, the day “31”

must be disabled).

• If the currently selected year is a leap year, and the currently selected month

is “Feb,” then day 29 must be made available as a selection, while it is

disabled for Feb in non-leap years.

• If the selected start year (or year/month, or year/month/day) is later than the

end year (or year/month, or year/month/day), the user must be alerted so that

they can fix the mistake prior to submission.

An example of a date validation alert is displayed in Figure 4.6. The website code

handles known date limitations (e.g., no day 31 in June) by disabling relevant

197

options using jQuery. Otherwise, the user has full control over menu selections, and

any mistakes (e.g., start year = 2010, end year = 2002) are caught by the validation

framework code. This level of structured client-side validation captures any request

configuration issues on the client-side prior to submission, greatly limiting errors on

the server-side, which can cause problems that are more difficult to report to the user

and potentially resource-intensive for the processing server.

Figure 4.6: Example of a date validation alert where, for “All days in range,” the
user has selected a start date that is later than the selected end date. The validation
code will catch any such error and continue to alert the user until a valid selection is
made.

4.4.8.1.2 Map-based Selection

The interactive mapping tool on the input settings page is driven by custom code

based around the open source OpenLayers JavaScript API. The map includes the

four standard Google Maps base layers (set to Terrain by default), and allows the

user to navigate to any location in the CONUS. A location of interest smaller than

198

the full CONUS extent can be selected by (1) clicking on the map to identify a point

(previously shown in Figure 4.4), (2) entering longitude and latitude coordinates

directly, or (3) selecting a region of interest using one of four available methods:

• Drawing a box on the map to denote a rectangular region of interest.

• Selecting a state from the CONUS.

• Selecting a county within a CONUS state.

• Selecting a watershed (8-digit USGS HUC) within a CONUS state.

The OpenLayers-based map interprets a mouse click-drag event as a panning

movement (e.g., panning the current view from east to west). If the “Draw box on

map” radio button is selected, the user can select a bounding box while holding down

the Shift key and performing a click-drag event (Figure 4.7). The drawn box

remains on the map and dynamically calculates the estimated area of the box in km2,

which is printed inside the box. A different box can be drawn anywhere, erasing the

previously-drawn box, and clicking to any other spatial scale selection method

automatically erases the box from the map view (as well as from the behind-the-

scenes code setting the bounding box coordinates).

199

Figure 4.7: Example of a bounding box selection drawn on the input settings page
mapping tool. The box remains on the map after it is drawn (until erased by another
selection), and contains the calculated area for the bounded region (64,812 km2 in
this example).

The code that enables the selection of a region based on a polygon is more complex

than for other selection types. When a selection is made in the “State” menu, for

instance, the map zooms directly to the selected state, displays it as an outlined and

shaded polygon, and sets information in the background to prepare the related

GridServer request. This is accomplished using a series of client-side and server-

side requests (the latter performed asynchronously via an AJAX approach):

1. Selection information is sent to a JavaScript function that processes the

request and uses the jQuery $.getJSON() function to make a server-side

request to a PHP script.

200

2. The PHP script determines the request type, calls the proper database query

function, queries the database to retrieve the geometry for the requested

polygon, and converts the geometry to a JSON-encoded text string.

3. The $.getJSON() function on the client-side receives the JSON-encoded data,

sets layer visibility on the map, zooms the map to the extent of the polygon,

and renders the polygon on the map.

4. Client-side code also assigns the table name and unique feature ID to a set of

inputs used to prepare the GridServer request.

The County and Watershed menus require an extra layer of asynchronous queries.

When a state is selected in the first menu, the adjacent menu is updated dynamically

via an AJAX database query (i.e., when Georgia is selected, only the counties that

exist in Georgia are displayed in the second menu). The same approach is used for

the Watershed menu, with the added complexity that the watershed name and HUC

code menus are linked – when a selection is made in one of them, the other menu

updates to match. This allows the user to select a watershed either by name or by

HUC code. Figure 4.8 displays two examples of selected polygons. Any watershed

polygon that intersects with the selected state boundary is included in the

dynamically-built menu list, using a spatial database query to determine the

intersecting polygons ($state is passed in to the query as a variable):

SELECT DISTINCT h.gid, h.huc_name, h.huc_code FROM gis.huc250k h,
gis.states s WHERE s.state_name = '$state' AND

ST_Intersects(s.the_geom, h.the_geom) ORDER BY h.huc_name,

h.huc_code;

201

Figure 4.8: Examples of polygon selection on the input settings page mapping tool.
Top: Deschutes County, Oregon is selected via the “County” menu set. Bottom:
The Pine Watershed (HUC #04080202) in Michigan is selected via the “Watershed”
menu set. The bottom image also displays the layer switcher, in which the
nationwide 8-digit HUC layer is toggled for display as a spatial reference aid, and the
rest of the available feature layers and Google Maps base layers are visible.

202

 Results Pages 4.4.8.2

After submitting a request on the settings page, the GridServer (or Biltools) returns

the output data to a single results page. Depending on the request type, different sets

of PHP code are dynamically included in the results page to render four different

result page types: (1) point, (2) univariate area, (3) multivariate (PCA) area, (4)

entire grid. Point results include a statistics and input settings report, plus a

dynamically-generated interactive chart. Area results include split, synchronized

dynamic maps containing rendered, classified input and output grids, as well as an

interactive chart. Entire grid results include split maps as in the area results, but do

not include an interactive chart.

4.4.8.2.1 Dynamic Charting

The point-based and area-based results pages include a dynamically-generated

interactive chart. The charts are built from server-side result data passed to client-

side code, using the open source Highcharts JavaScript library (Highcharts 2012).

Highcharts is highly configurable and flexible and supports a wide range of chart

types, many of which can be combined as needed into a single chart. In the

GridStats system, a mix of line, spline, and column chart types are used, depending

upon the climate parameter and data series type.

In addition to the data points, basic statistics are plotted on each chart as aids in

understanding the data. The standard deviation of the plotted data is drawn as a solid

203

line, while dashed lines representing ±1 standard deviation (SD) are plotted above

and below the mean line. Figure 4.9 displays an example chart generated for a point

in Glacier National Park, MT. The chart contains minimum temperature time-series

data points plotted as a spline for the months January 2001 to December 2010. The

chart is fully zoomable along the x-axis, giving the user the ability to view a section

of a dense chart in more detail. Data values for each point can be viewed by

hovering over the chart with the mouse cursor. The legend is interactive, allowing

the user to toggle line visibility on a per-data-series basis, and collapsible, giving the

user the ability to view the entire chart area if any data points happen to be obscured

by the legend. When toggling a data series off, the Highcharts code automatically

rescales the y-axis to maximize the vertical spread of data in the chart area. This can

also be helpful for gaining a better sense of the shape of a data line (i.e., by turning

off all data series except for one, more detail can often be viewed in that remaining

series). Figure 4.10 displays a zoomed-in view, with the mean and mean ±1 SD lines

toggled off.

Centered moving averages are also plotted on the chart, allowing the user to view a

smoothed representation of the data signal over various moving average time

windows. Each time series includes two lines representing different centered

moving average windows: 10 and 30 for daily data, 5 and 12 for monthly data, and 5

and 10 for annual data.

204

Figure 4.9: Monthly minimum temperature for the inclusive months from January 2001 to December 2010, for a point in
Glacier National Park, MT. The user can zoom into any section of the chart, and any data series can be hidden or shown by
clicking on the legend item to toggle visibility. The legend is also collapsible to allow the user to view the full chart area.

205

Figure 4.10: A zoomed-in view of the full chart in Figure 4.9. The mean and mean ±1 SD lines have been toggled off in this
view. The Reset Zoom button appears any time the chart does not display the full data range. The mouse cursor is hovered
over the July 2006 data point, displaying the data value. Hovering over either of the centered moving average lines displays
their calculated values at each point.

206

The centered moving averages are calculated by different methods depending upon

the moving average window parity. The simplest case (when the moving average

window is an odd number) currently applies only to the size 5 window used for

monthly and annual data. The case is relatively simple because the calculation sums

the current windowed data value with the two adjacent data values on each side of

the data value, and then divides by 5 to calculate the moving average at that point.

Formula 4.4 displays the approach used for this particular case.

𝑓(𝑡) =
(𝑦𝑡−2 + 𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1 + 𝑦𝑡+2)

5
 4.4

Cases where the moving average window is an even number require a more complex

method to ensure a centered average for each data point. For example, using a size 4

window, two data points could be used on the trailing side of the window, and one

on the other (or vice-versa). Using this approach, the moving average will never be

centered over the current windowed data value. To calculate a true centered moving

average for an even numbered window, a more efficacious approach involves

determining the moving average by calculating both cases; that is, for a size 4

window, use two data points on the trailing side for case one, then two data points on

the leading side for case two.

207

After performing those calculations, the two resulting values are then averaged to

produce a centered value at time t, as displayed in Formula 4.5 (after Hyndman

2010).

𝑓(𝑡) =
1
2
�
𝑦𝑡−2 + 𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1

4
� +

1
2
�
𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1 + 𝑦𝑡+2

4
� 4.5

For the example of a size 4 window, Formula 4.5 reduces to:

𝑓(𝑡) =
1
8
𝑦𝑡−2 +

1
4
𝑦𝑡−1 +

1
4
𝑦𝑡 +

1
4
𝑦𝑡+1 +

1
8
𝑦𝑡+2 4.6

The coefficients in Formula 4.6 vary depending upon the requested window size –

for a size 10 window, the inner and endpoint coefficients would become 0.1 and

0.05, respectively, with 11 data values included in the centered moving average

calculation. In both even and odd window cases, the moving average is not

calculated for the initial and final number of values in the data range equal to half the

input window size (i.e., for a size 5 window, moving average values are not

calculated for the first two and last two data points in the series, due to a lack of

trailing and leading data for the moving window to capture at each end of the series).

For odd window cases, a standard floor() function is used to determine the number of

unusable values at each end of the data series (e.g., floor(win/2) where win=5 gives a

value of 2).

208

Formulas 4.4 and 4.6 are implemented in the PHP code developed for preparing

chart data (included in Appendix L). Once time-series data are returned from a

GridServer request, the code processing the output web page sends the data array and

requested window size to the centeredMovingAverage() function, which calculates

the centered moving average across the temporal chart range. The function handles

both even- and odd-window cases, and is therefore called twice to prepare the data

used for plotting the two centered moving average lines included in each chart. Once

the data are prepared, the arrays are converted to text strings using the PHP

implode() function, and passed to JavaScript for Highcharts to render as chart

splines.

4.4.8.2.2 Point Results

 After the user submits a point-based request and the GridServer returns data from

the stack of matching grid cells, GridStats takes the user to the point results page

(Figure 4.11). The top area of the page displays the input settings used for

submitting the request, as well as information about the data series and selected

climate parameter. Returned grid cell values populate a table, which is horizontally-

scrollable to accommodate large data returns. The GridServer returns output statistic

values for min, max, mean, median, sample standard deviation, and standard error,

all of which are included in a summary statistics report below the grid cell values

table. The website code sums the number of data values and calculates the data

range from the min and max values, also included in the summary statistics report.

209

The bottom area of the point results page includes the dynamic chart, described in

detail in the previous section (4.8.2.1). The returned grid cell values are also used to

draw the spline for the main data series on the chart.

Figure 4.11: Example results page for a point-based request. Input settings, data
series, grid cell values across the requested time series, and a table of summary
statistics for those values are all included, in addition to the interactive chart.

210

The GridServer processes and returns point data requests very quickly – it can

calculate point-based summary statistics through 1000 time-series grids and return

the data values in less than a second (Table 4.7). For the tests summarized in Table

4.7 the GridServer was restarted between each request, forcing it to drop and

reallocate grid file handles to eliminate any possible performance bias due to

caching. Random point locations and non-overlapping date ranges were also used

(except for the largest request of 10,000 grids, for which a random point was used

but overlapping dates were unavoidable). GridServer requests for these tests were

issued in this form (with new randomly-selected point coordinates inserted for each

request), using the time and wget command-line utilities to measure query response

time:

time wget -qO test.txt "http://<server.domain>:<port>/

stats_point_days?lon=-104.48871&lat=38.76029&start=19800101
&end=19800102¶m=ppt"

4.4.8.2.3 Area Results

After an area-based request is processed, GridStats takes the user to the area results

page (Figure 4.12), which includes different content depending upon the request type

(PCA and “entire grid” returns are handled differently than other area-based results).

All area result pages contain a report summarizing the input settings and some output

information, including the centroid of the selected area (calculated in the spatial

database) and the number of cells processed per grid.

211

Table 4.7: Sample GridServer response times for varying temporal scales and
number of grids. Each processed request was point-based (i.e., requesting summary
statistics), with precipitation as the selected climate parameter on a daily time scale.

Requested date range
(daily ppt data)

Number of
grids in
request

Initial
response
time (s)

Average subsequent
response time (10 at

same location) (s)

1980-01-01 – 1980-01-02 2 0.08 0.06

1980-02-01 – 1980-02-10 10 0.13 0.06

1980-03-01 – 1980-06-08 100 0.19 0.08

1980-07-01 – 1983-03-27 1,000 0.97 0.21

1983-04-01 – 1988-09-20 2,000 1.50 0.38

1988-10-01 – 2002-06-09 5,000 3.84 0.77

1980-01-01 – 2007-05-18 10,000 8.12 1.46

All area result pages also contain a pair of interactive maps, with input grids on the

left side and output grids on the right (Figures 4.12, 4.13). When a user is taken to

the results page, the grid representing the processed output polygon area is loaded in

the Output Grid map window and both maps are automatically zoomed to the extent

of that polygon. Each interactive map is a distinct OpenLayers-based map window

containing Google Maps base layers, the feature layer set also available in the input

settings map, and all other standard controls. However, the maps are synchronized

so that all pan, zoom, and query operations that occur in one map window also occur

in the other.

212

Figure 4.12: Example results page for an area-based request (Linn County, Oregon).
Mean precipitation for every February in the year range 1960-1990 was calculated as
an output grid (i.e., over time – as viewed in the map), and the mean across each
monthly grid was calculated, with the means charted below.

213

Figure 4.13: Map section of the results page for an area-based request. The paired maps are synchronized for zooming,
panning, and queries. Base layers and overlays can be toggled independently, and the Input Grids map allows loading of
grids used in the analysis. In this example a point in Linn County, Oregon was clicked, returning the mean precipitation
across all Februaries from 1960-1990 for that grid cell, with the actual Feb. 1982 value returned on the input map.

214

This simplifies the process of comparing the output grid with any of the input grids;

above the Input Grids map window is a dropdown menu containing a list of all input

grids, and clicking any of those grid names loads the selected grid in the Input Grids

map window. By navigating around the maps and clicking any point, the underlying

input and output grid values of the matching grid cell are displayed in map popups

(Figure 4.13) that also contain the longitude, latitude, and elevation of that grid cell.

An underlying digital elevation model (DEM) grid of the same spatial extent and 800

m resolution is queried to obtain the elevation. Additionally, opacity slider controls

were added to each map as a visual aid for adjusting how much of the underlying

base layer can be viewed through the rendered data grid.

For these maps, point based queries are handled using an AJAX approach to avoid

reloading the page for each query. The grid files are queried directly by making a

system call to the GDAL gdallocationinfo command-line utility, a raster query tool

that retrieves a single grid cell value based on a longitude and latitude coordinate

pair. This utility is able to quickly index into a BIL grid and return a single cell

value. The same utility is used to query the underlying DEM grid.

215

The output grid calculated from an area-based request represents the “temporal first”

calculation, in which each output grid cell represents the statistic calculated through

all stacked input grid cells. The GridServer also performs the “spatial first”

calculation, whereby the output statistic is calculated across all cells for each input

grid. That output is available in an interactive chart (Figure 4.14), configured

similarly to the other GridStats charts. PCA results are displayed similarly to other

area results, except that the chart is a histogram containing the percentage of

variance explained by each principal component, and a dropdown menu is added

above the Output Grid map, containing a selectable list of component grids arranged

in descending order of variance explained (Figure 4.15).

216

Figure 4.14: Chart section of the results page for an area-based request. The data series on this chart represents the “spatial
first” calculation, in which for each grid, the mean is calculated across all grid cells to produce a single value. That set of
values is plotted as the data series on this chart. Spatial trends in February mean precipitation across the selected area (Linn
County, Oregon) for 1960-1990 can be viewed in this chart. As with all other GridStats charts, the mean line, ±1 standard
deviation, and centered moving averages are included.

217

Figure 4.15: Map section of the results page for a PCA area-based request, displaying the result of a PCA run on monthly
precipitation for the months January 1999 to February 2000, for the Lower Yuba Watershed, California. The principal
components are generated as output grids, with each component explaining a percentage of the variance included in the input
grid set. All component grids are made available in a dropdown menu for easy inclusion in the Output Grid map, with the
percentage variance explained included in the list.

218

The GridServer processes and returns area request data remarkably fast, considering

how many grid cells it is often tasked with processing in a single request. It can

calculate a statistic across a one-degree block (one degree of latitude and longitude,

which includes 14,641 grid cells), processing this region across 100 time-series

grids, and return the resulting output grid and “spatial first” data values in 2.2

seconds (Table 4.8). For the tests summarized in Table 4.8 the GridServer was again

restarted between each request, forcing it to drop and reallocate grid file handles to

eliminate any possible performance bias due to caching. Disparate bounding box

and polygon locations and non-overlapping date ranges were also used. GridServer

requests for these tests were issued in this form (with new randomly-selected

bounding boxes or polygons selected for each request):

Bounding box request:

time wget –qO test.txt “http://<server.domain>:<port>/

stats_area_months?minlon=-122.43271&minlat=41.33694&maxlon=
-121.29877&maxlat=43.56572&start=19820101&end=19880101&

param=ppt&pstat=mean”

Polygon request:

time wget –qO test.txt “http://<server.domain>:<port>/
stats_area_months?start=19820101&end=19880101&

param=ppt&pstat=mean&stname=gis.counties&stid=782”

219

Table 4.8: Sample GridServer response times for varying temporal and spatial scales. Each request was area-based (using
mean as the statistic), with precipitation as the selected climate parameter on a monthly time scale. The response tasks
include calculating an output grid and writing it to the filesystem, and calculating and returning the “spatial first” data values.

Requested date range
(monthly ppt data)

Number of
grids in
request

Spatial extent
Number of

cells processed
per grid

Initial
response
time (s)

Average subsequent
response time (10 at

same location) (s)

Jan 1920 – Feb 1920 2 1-degree box
(-120,43 to -119,44) 14,641 0.16 0.10

Jan 1922 – Oct 1922 10 1-degree box
(-81,37 to -80,38) 14,641 0.46 0.19

Jan 1930 – Apr 1938 100 1-degree box
(-94,41 to -93,42) 14,641 2.22 1.24

Jan 1940 – Apr 1948 100 3-degree box
(-100,40 to -97,43) 130,321 6.78 5.72

Jan 1950 – Dec 1951 24 Aucilla Watershed,
Georgia (03110103) 8,505 0.67 0.33

Jan 1960 – Dec 1961 24 Otter Watershed,
Vermont (02010002) 10,032 0.71 0.41

Jan 1970 – Dec 1971 24 Wallowa County,
Oregon 20,384 1.13 0.43

Jan1980 – Dec 1981 24 Elko County,
Nevada 81,266 1.37 0.96

Jan 1990 – Dec 1992 36 Pennsylvania 214,900 2.97 2.69

Jan 2000 – Dec 2002 36 California 1,405,430 19.50 16.32

220

4.4.8.2.4 Data Export

The statistical output and data products resulting from GridStats requests can be used

for reports, publications, or further analysis. The GridStats system is a useful toolkit

for generating grids representing an output statistic for either a defined region or the

entire CONUS, as well as for generating statistical summaries for a particular point.

When a grid (or set of grids, in the case of PCA) is produced as output, either by an

area or entire grid request, the grids are stored in a temporary filesystem location

made accessible to the web mapping tools. To download output grids, the user can

simply click the “Save a local copy” button, which triggers a function that collects

the related files and delivers them to the user as a downloadable compressed .zip file.

Data values used for generating the interactive charts are also available for

download. Every time a chart is created, the data are fed into a function that

generates a comma-separated value (.csv) text file. When the user clicks the

“Download chart data” button, the file is delivered to their browser. After saving the

file on their computer, the user can simply open it in a spreadsheet program such as

Microsoft Excel, which will automatically import data in .csv format. Data values

and moving average values are included in the .csv file. Moving averages are not

particularly easy to calculate in Microsoft Excel; exporting them from GridStats

provides an easy way to import them to a spreadsheet for further exploration.

221

4.5 Discussion

The system developed in this study integrates a wide range of components for the

purpose of performing fast statistical processing and visualization of PRISM climate

grids in a web-based environment, and is designed in a manner that gives the user

simple yet effective controls for defining a request, plus helpful, interactive tools for

interpreting and exploring the output. As system usage and scope expands,

additional consideration must be given to system features, optimization, and

scalability. This section discusses those issues and mentions some ideas for possible

system expansion.

4.5.1 Grid Statistical Calculations

The intent for the initial phase of GridStats development was to design a working

system that included a few basic statistical processing functions, as well as one more

complicated multivariate technique (PCA) as a proof-of-concept. Those

development goals were met and have been successfully tested across a range of

spatial and temporal scales, using a variety of processing methods. The

implementation of those statistical methods in the grid processing framework lays

the groundwork for adding additional univariate and multivariate statistical

techniques.

Advanced statistical techniques under consideration for inclusion in the GridStats

system include linear regression and k-means clustering. Both techniques have

222

established Python methods in NumPy and SciPy, and could therefore be integrated

into the current system framework. Another possible feature addition is

inhomogeneity testing of climate data. An example of a temporal climate

inhomogeneity is urban areas acting as heat sources, where changes in land use (i.e.,

rural to urban) over time have caused local warming that is potentially not

representative of the surrounding rural region. Changes in weather station locations

or instrumentation are examples of inhomogeneities commonly encountered in the

climate record. The goal of testing would be to determine whether any non-climatic

inhomogeneities exist in a data series defined by particular temporal or spatial scales,

and to quantify the magnitude of such an inhomogeneity.

4.5.2 Optimization

Extensive testing of data formats for containing the PRISM climate grids was

performed prior to this project, resulting in the acceptance of BIL as the standard

PRISM grid format and conversion of all existing climate grids from ASCII Grid

format to BIL (a procedure made very efficient by the gdal_translate command-line

utility). The BIL format offers the best performance for fast grid access via both

locally-installed GIS software and server-based grid processing services. The

PRISM Climate Group and NACSE have developed Python-based grid processing

utilities for the GridServer and other tools that utilize NumPy ndarrays for fast

programmatic processing of PRISM climate grids. This method is already highly

optimized and will likely remain in place as a core technique going forward.

223

However, it should be noted that the PostGIS Raster project (PostGIS Raster 2012) is

under active development and may offer unique possibilities for storing PRISM

climate grids in the database and querying subsets of data from them. Although it is

unlikely that this would be a faster approach than reading BIL grids directly into

NumPy arrays, it merits attention going forward.

The web server machine is optimized for fast operation and multithreaded processing

of requests. Performance gains might be achieved by recompiling the MapServer

CGI executable, stripping out any features unnecessary for GridStats operations.

The database server is optimized for fast reads, with testing performed on key

parameter adjustments in the postgresql.conf file depending upon available system

memory and other specifications, and the best-performing values assigned to those

parameters. Spatial queries and operations in the database can be resource-intensive,

but all spatial tables used in the GridStats system contain spatial GiST indexes on the

geometry columns, as well as standard B-tree indexes on any regularly-queried non-

spatial fields (gid, huc_code, etc.). Again, the next step for database optimization

would be hardware upgrades, which are planned in the coming months.

The grid processing server is dedicated to processing requests for climate grids and is

already optimized for fast performance for that purpose. Further optimization of the

grid processing server would entail hardware upgrades (faster CPU, more CPU

cores, and additional memory). However, optimization of the existing

224

Python/Pyramid/paster framework running the GridServer may be possible. In

particular, performance gains are likely possible by implementing the nginx HTTP

server (Nginx 2012), a fast server with support for FastCGI and uwsgi that uses an

event-driven architecture and a very small memory footprint. Nginx also supports

simple load balancing and fault tolerance, potentially enabling multiple GridServer

instances to be running simultaneously on the same server, with the load balancer

shuttling requests to GridServer instances as needed. Initial testing of nginx in the

GridServer system realized twofold gains in requests processed per second vs. the

paster server. As usage of the GridStats system expands, the framework will likely

be upgraded to use nginx as the underlying HTTP server on the grid processing

machine(s).

4.5.3 Scalability

The PRISM climate grid set currently contains over 49,000 files. The dedicated grid

processing server has a file handle limit of 65,536 set in the /etc/security/limits.conf

file. The server has a maximum open file limit of 6,515,139 so there is plenty of

headroom available for increasing the GridServer allocation; the limit will indeed be

increased as more grids are added to the filesystem. However, each instance of the

GridServer ties up the number of file handles in the limit (65,536). If 20 instances of

the GridServer are running in an nginx configuration, and the file limit has been

changed to 131,072 (for instance), then 2,621,440 file handles will be claimed by

GridServer instances alone. While this still provides adequate headroom for multiple

225

instances of the GridServer running simultaneously, it is a potential consideration as

the collection of PRISM climate grids continues to expand, along with increased

demand for statistical processing.

The bulk of the processing load takes place on the grid processing server. With their

current hardware specifications and software configurations, the web server and

database server can handle a significantly higher level of GridStats requests. If

additional grid processing capability is needed due to increased demand, or the

necessity arises for running very computationally intensive statistical calculations

over large spatial and/or temporal scales, additional grid processing machines may

be added to the system architecture. In this scenario, a load balancer would be

placed in front of the grid processing servers to manage requests among them based

on current processing load and queued requests. One of two disk configurations

would be utilized: (1) mirror a full local copy of the PRISM climate grids on each

grid processing server, or (2) divide the grids among the grid processing servers,

using the load balancer to route requests to the proper server based on the temporal

or spatial parameters used to divide them among servers.

As demand for services increases, another solution is Amazon’s EC2 (Amazon EC2

2012). Amazon’s EC2 supports unlimited amounts of distributed processing at a

reasonable cost, although implementation and management of the system would

require significant retooling of the current framework. Grid-based processing

226

represents another possibility for scaling; that is, processing tasks using a scientific

grid to perform distributed computing (e.g., Giuliani et al. 2011). However, PRISM

currently has access to a computational cluster that could be expanded to handle

additional load, which would likely be considered before a distributed solution,

including the development of a parallel processing approach to handle multiple grid

calculations.

4.6 Conclusion

The GridStats system represents a unique web-based approach for calculating

PRISM climate grid statistics over varying spatial and temporal scales. It calculates

statistics across the highest resolution PRISM climate grids available (800 m), at the

highest temporal scale available (daily). Successful design, implementation, and

testing of the GridStats system have demonstrated the effectiveness of:

• Using a web-based interface as a front-end to powerful grid processing

software components.

• Accessing the GridServer as a fast and reliable system for performing

statistical calculations across multiple grids, and extending the GridServer

codebase to perform additional methods such as area-based calculations.

• Creating custom tools using open source software such as Python, NumPy,

and GDAL to perform fast processing of large multidimensional gridded

datasets.

• Using custom map-based tools and a menu validation system for simplifying

the user experience of defining temporal and spatial scales for analysis.

227

• Dynamically building map- and chart-based interactive visualization aids for

further exploration of output data.

The GridStats system and the GridServer will scale effectively as additional time-

series grids are added to existing PRISM climate parameters grid sets and as new

climate parameter grid types are added in the future. Dedicated hardware, a fast

network, hardware and software optimization, and continued development will

ensure the reliability of the system and keep it up-to-date as data products and

software packages are added and improved.

The GridServer is designed in a modular fashion, making it relatively easy to add

statistical methods. Additional methods and visualization techniques will be added

as tool usage increases and user feedback is incorporated.

4.7 Acknowledgments

Matt Doggett (PRISM Climate Group) developed the “biltools” Fortran utilities used

for calculating grid statistics across the entire PRISM grid extent. Ben Steinberg

(NACSE) provided helpful comments and suggestions regarding server-side

implementation.

228

4.8 References

Amazon EC2. 2012. Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2 (last accessed 20 September 2012).

ArcGIS. 2012. Esri ArcGIS – Mapping & analysis for understanding our world,

http://www.esri.com/software/arcgis (last accessed 20 September 2012).

ArcGIS Resource Center. 2012. Server-side processing with raster functions,

http://resources.arcgis.com/en/help/main/10.1/index.html#/Server_side_processin
g_with_raster_functions/0155000003w0000000 (last accessed 20 September
2012).

ArcGIS Spatial Analyst. 2012. ArcGIS Spatial Analyst extension,

http://www.esri.com/software/arcgis/extensions/spatialanalyst (last accessed 20
September 2012).

Baumann, P. 2001. Web-enabled raster GIS services for large image and map

databases. Pages 870-874 in A. Min Tjoa and R. Wagner (eds.), 12th International
Workshop on Database and Expert Systems Applications (DEXA 2001), Munich,
Germany, 3-7 September. IEEE Computer Society.

Bernard, L. and N. Ostländer. 2008. Assessing climate change vulnerability in the

arctic using geographic information services in spatial data infrastructures.
Climatic Change 87: 263-281.

Bivand, R.S., E.J. Pebesma, and V. Gómez-Rubio. 2008. Applied spatial data

analysis with R. Springer, New York.

Bryan, B.A. 2012. High-performance computing tools for the integrated assessment

and modelling of socialeecological systems. Environmental Modelling &
Software. Available online at http://dx.doi.org/10.1016/j.envsoft.2012.02.006.

ClimateWizard. 2012. ClimateWizard, http://www.climatewizard.org (last accessed

20 September 2012).

ClimateWizard Custom. 2012. Climate Wizard Custom,

http://www.climatewizardcustom.org (last accessed 20 September 2012).

229

Comrie, A.C., K. Redmond, M.F. Glueck, and H. Reinbold. 2006. Interactive web-
based access and analysis tools for the Western Climate Mapping Initiative
(WestMap). EOS, Transactions, American Geophysical Union 87(52), Fall
Meeting Supplement, Abstract IN13A-1161.

Cordiero, J.P.C., G. Câmara, U.M. de Freitas, and F. Almeida. 2009. Yet another

map algebra. Geoinformatica 13: 183-202.

Daly, C., R.P. Neilson, and D.L. Phillips. 1994. A statistical-topographic model for

mapping climatological precipitation over mountainous terrain. Journal of
Applied Meteorology 33: 140-158.

Daly, C., G. Taylor, and W. Gibson. 1997. The PRISM approach to mapping

precipitation and temperature. Pages 10-12 in Proceedings of the 10th AMS
Conference on Applied Climatology, Reno, NV, October 20-23.

Daly, C., W.P. Gibson, G.H. Taylor, G.L. Johnson, and P. Pasteris. 2002. A

knowledge-based approach to the statistical mapping of climate. Climate
Research 22: 99-113.

Daly, C., M. Halbleib, J.I. Smith, W.P. Gibson, M.K. Doggett, G.H. Taylor, J.

Curtis, and P.P. Pasteris. 2008. Physiographically sensitive mapping of
climatological temperature and precipitation across the conterminous United
States. International Journal of Climatology 28(15): 2031-2064.

ESRI. 1999. Extendable image formats for ArcView GIS 3.1 and 3.2. ESRI White

Paper J-8018, July 1999.

Foerster, T., B. Schäffer, B. Baranski, and J. Brauner. 2011. Geospatial web services

for distributed processing – Applications and scenarios. Pages 245-286 in P. Zhao
and L. Di (eds.), Geospatial web services: Advances in information
interoperability. Information Science Reference, Hershey, PA.

Frank, A.U. 2005. Map algebra extended with functors for temporal data. Pages 194-

207 in J. Akoka et al. (eds.), Lecture Notes in Computer Science 3770. Springer-
Verlag, Berlin.

230

GDAL. 2012. Geospatial Data Abstraction Library,
http://www.gdal.org/frmt_various.html (last accessed 05 September 2012).

GDAL Raster Formats. 2012. Various supported GDAL raster formats,

http://www.gdal.org/frmt_various.html (last accessed 05 September 2012).

Girvetz, E.H., C. Zganjar, G.T. Raber, E.P. Maurer, P. Kareiva, and J.J. Lawler.

2009. Applied climate-change analysis: The Climate Wizard tool. PLoS ONE
4(12): e8320. doi:10.1371/journal.pone.0008320.

Giuliani, G., N. Ray, and A. Lehmann. 2011. Grid-enabled spatial data infrastructure

for environmental sciences: Challenges and opportunities. Future Generation
Computer Systems 27: 292-303.

Glueck, M.F., A.C. Comrie, K. Redmond, H.J. Reinbold, J.T. Abatzoglou, and C.

Daly. 2008. The WestMap stakeholder-driven interactive data access and analysis
interface for fine-scale climate data. American Meteorological Society 88th
Annual Meeting, January 20-24, New Orleans. Available online at
https://ams.confex.com/ams/88Annual/techprogram/paper_130602.htm (last
accessed 20 September 2012).

GRASS. 2012. GRASS GIS: r.covar,

http://grass.fbk.eu/gdp/html_grass62/r.covar.html (last accessed 07 September
2012).

Gutierrez, A.G. and P. Baumann. 2007. Modeling fundamental geo-raster operations

with array algebra. Pages 607-612 in Proceedings of the Seventh IEEE
International Conference on Data Mining, October 28-31, Omaha, NE.

Highcharts. 2012. Highcharts JS: Interactive JavaScript charts for your web projects,

http://www.highcharts.com (last accessed 13 September 2012).

Hyndman, R.J. 2010. Moving averages. Pages 866-869 in M. Lovirc (ed.),

International encyclopedia of statistical science. Springer, New York.

Idrisi. 2012. Idrisi – geospatial software for monitoring and modeling the Earth

system, http://www.clarklabs.org (last accessed 20 September 2012).

231

jQuery. 2012. jQuery JavaScript library, http://www.jquery.com (last accessed 13
September 2012).

Lime, S. 2008. MapServer. Pages 65-85 in G.B. Hall and M.G. Leahy (eds.), Open

source approaches in spatial data handling. Advances in geographic information
science 2. Springer-Verlag, Berlin.

MapServer. 2012. MapServer – Open source web mapping,

http://www.mapserver.org (last accessed 20 September 2012).

Mennis, J., R. Viger, and C.D. Tomlin. 2005. Cubic map algebra functions for

spatio-temporal analysis. Cartography and Geographic Information Science 32:
17-32.

NDIIPP. 2012. Sustainability of digital formats: Band interleaved by line (BIL)

image file, http://www.digitalpreservation.gov/formats/fdd/fdd000283.shtml (last
accessed 06 September 2012).

Neteler, M. and H. Mitasova. 2002. Open source GIS: A GRASS GIS approach. 3rd

edition. Springer, New York.

Nginx. 2012. Nginx – a free, open-source, high-performance HTTP server,

http://www.nginx.org (last accessed 20 September 2012).

NumPy. 2012. NumPy – the fundamental package for scientific computing with

Python, http://numpy.scipy.org (last accessed 20 September 2012).

OGC WCS. 2010. OGC® WCS 2.0 Interface Standard – Core. Open Geospatial

Consortium document reference #OGC 09-111r3.
http://portal.opengeospatial.org/files/?artifact_id=41437 (last accessed 20
September 2012).

OGR. 2012. OGR Simple Features Library, http://www.gdal.org/ogr (last accessed

20 September 2012).

OpenLayers. 2012. OpenLayers: Free maps for the web, http://www.openlayers.org

(last accessed 20 September 2012).

232

PostGIS. 2012. PostGIS – A spatial extension to PostgreSQL,
http://postgis.refractions.net (last accessed 20 September 2012).

PostGIS Raster. 2012. PostGIS Raster – An ongoing project aiming at developing

raster support in PostGIS, http://trac.osgeo.org/postgis/wiki/WKTRaster (last
accessed 20 September 2012).

PostgreSQL. 2012. PostgreSQL relational database management system,

http://www.postgresql.org (last accessed 20 September 2012).

PRISM Data Explorer. 2012. PRISM Data Explorer,

http://prismmap.nacse.org/nn/index.phtml (last accessed 20 September 2012).

Pyramid. 2012. Pyramid open source web application framework,

http://www.pylonsproject.org/projects/pyramid (last accessed 18 August 2012).

QGIS. 2012. Quantum GIS – A user-friendly open source geographic information

system, http://www.qgis.org (last accessed 20 September 2012).

R Project. 2012. The R project for statistical computing, http://www.r-project.org

(last accessed 20 September 2012).

R/GRASS. 2012. Short introduction to geostatistical and spatial data analysis with

GRASS and R statistical data language,
http://grass.fbk.eu/statsgrass/grass_geostats.html (last accessed 20 September
2012).

SciPy. 2012. SciPy – Scientific tools for Python, http://www.scipy.org (last accessed

20 September 2012).

Siládi, V., L. Huraj, N. Polčák, and E. Vesel. 2012. A parallel processing of spatial

data interpolation on computing cloud. Pages 193-198 in Proceedings of the Fifth
Balkan Conference in Informatics (BCI '12). ACM, New York.

Sp R. 2012. Spatial data in R, http://r-spatial.sourceforge.net (last accessed 20

September 2012).

233

Tomlin, C.D. 1990. Geographic information systems and cartographic modeling.
Prentice Hall, New York.

Tomlin, C.D. 1994. Map algebra: One perspective. Landscape and Urban Planning

30(1-2): 3-12.

USGS National Elevation Dataset. 2012. USGS National Elevation Dataset (NED),

http://ned.usgs.gov (last accessed 20 September 2012).

WestMap. 2012. WestMap – Climate analysis & mapping toolbox,

http://www.cefa.dri.edu/Westmap (last accessed 20 September 2012).

234

Chapter 5: Conclusion

This dissertation explored project-based methods of handling spatiotemporal data

and examined them within a web-based context, considering five related aspects:

Storage, representation, processing, analysis, and visualization. By their nature,

spatiotemporal data are multidimensional (i.e., the “space-time cube”), requiring

specialized approaches in their manipulation and display. Challenges posed by the

handling of spatiotemporal data in this context are not insurmountable, but it is

difficult to generalize solutions to any of the five aspects given the relative

heterogeneity of the data and their inherent complexity. However, this dissertation

found that it is possible to develop methods for handling spatiotemporal data using

targeted solutions, and generalize the resulting methods within the category of data

under consideration (e.g., the PRISM climate grids). For instance, the grid

processing system described in Chapter 4 was written in a generalized manner that

could extend to any set of input grids with a regular extent. With additional

development, the grid processing system could likely be modified to work with sets

of input grids that vary in spatial extent. The web-based data exploration and

visualization framework described in Chapter 4 is already developed in a generalized

manner that would likely need no further modification to work with additional

datasets.

The web browser is a viable application platform for accepting user input and

enabling the exploration and visualization of output, particularly when augmented by

235

client-side libraries and toolkits that enable the development of rich internet

applications (RIA). As a common user interface that is able to broker client/server

communication, the web browser facilitates the automated processing of

spatiotemporal data based on user input, calling any set of server-side functions

necessary to process the data according to the user’s request. This paradigm is

extensible – new server-side methods can be added and called with minimal changes

to the client-side codebase.

5.1 Web-based Approaches and New Technology

At the outset it was unclear whether the proposed projects could be fully developed

and implemented within a web-based platform. Standard web pages did not provide

enough client-side flexibility and support for asynchronous client/server interaction

to support the complexity required by the user interfaces, and many of the now-

popular JavaScript libraries enabling advanced functionality were under

development and not yet well-known. The advancement of web technology moves

at a fast pace; project development plans were altered several times as client-side

software technology advanced during the course of the dissertation. Although low-

level JavaScript code could be written to perform many of the functions enabled by

client-side software tools and methods used in this project, their availability made the

development of RIA much more practical and feasible. Chapters 3 and 4

demonstrate RIA that use rich client-side JavaScript libraries such as OpenLayers

236

(2012), jQuery (2012), and Highcharts (2012) for data retrieval, processing, and

visualization.

A number of next-generation web technologies are currently under development.

The nascent but quickly-growing category of rich JavaScript application platforms

such as Backbone (2012) and Meteor (2012) will enable next-generation

development of RIA. These platforms support the development of entire

applications in JavaScript, with the same APIs available on both the client and

server, which enables tight communication and synchronization between the client

and the server. Also central to the advancement of RIA is HTML5 (2012), the fifth

revision of the HyperText Markup Language standard, which includes new syntactic

features such as <video> elements, integrates scalable vector graphics (SVG)

support, and obviates the need for a server-side web software framework such as

Adobe Flash or Microsoft Silverlight.

Although initial development of RIA can be more complex than for standard internet

applications (Toffetti et al. 2011), the benefits of asynchronous client/server

interaction, minimized bandwidth usage, sophisticated user interfaces, and flexibility

and extensibility for future upgrades makes the RIA approach an attractive option. A

great deal of custom client-side code was developed for the projects described in this

dissertation. Although new client-side and RIA technologies may supplant some of

237

the software packages used in these projects, the core codebase should remain

adaptable and endure as changes are made to the underlying frameworks.

5.2 Automated Data Processing

Automated data processing is an important element in the group of procedures that

enable real-time web-based analysis and visualization of spatiotemporal data, but

generalization of server-side data processing code poses a challenge. In the projects

described in Chapters 2-4, specialized server-side code was developed to perform

automated data processing tasks. It is not unusual to develop specialized code for

handling particular processing tasks; however, the challenge lies in designing the

code in an extensible fashion, so that additional methods can be added without

extensive code rewrites. The GridServer, described in Chapter 4, is developed in this

fashion – additional methods for processing PRISM climate grids over varying

spatial and temporal scales can be developed and “plugged in” to the system.

In some cases making direct system calls to server-side functions makes sense;

Chapter 2 demonstrates an example of this approach, which works well for snapping

a selected data window to an existing bathymetry grid, for example, as the user

moves through the interface one tab at a time. However, a typically more robust

approach leverages the client/server architecture by using a server-side web server

gateway interface (WSGI) framework such as the Python-based Pyramid (2012).

This type of framework facilitates the direct execution of specialized server-side

238

Python processing code and can be designed to return the output as a JavaScript

object notation (JSON) object via a hypertext transfer protocol (HTTP) call for

further analysis and visualization. This approach is used in Chapter 3, where, using

an asynchronous JavaScript and XML (AJAX) approach, a map click creates a call

to a server-side function that retrieves water depths in a single grid cell across all

time steps and returns a JSON object that is processed on the client-side to

automatically update the interactive chart. Chapter 4 describes an approach where

HTTP-based requests are sent to the server to process point- or area-based requests

for statistical analysis of climate grid data over time. The resulting data are returned

to the client as a JSON object, which is used to update interactive map-based and

chart-based visualizations.

5.3 Spatiotemporal Data Representation and Visualization

Chapter 2 describes the time-series output data format produced by the Tsunami

Computational Portal (TCP) modeling process – the output data are written to a

binary file containing water depth values at each time step. In essence, the

spatiotemporal data stored in this two-dimensional (2D) file are arranged in the

“temporal snapshot” representation. Similarly, the PRISM climate grids described in

Chapter 4 each represent a temporal snapshot on daily, monthly, or annual scales. In

Chapter 3, the simulation framework generates time-series data representing the

movement of each simulated individual across all time steps. Those data are written

239

to a spatial database, with each record representing an individual’s status and

location at that time step.

The binary time-series files described in Chapters 2 and 4 represent temporal

snapshots by default. Although the project described in Chapter 3 could possibly

store temporal information using an object-oriented identity-based change approach

such as Hornsby and Egenhofer (2000), or a more general atomic representation such

as the one described by Goodchild et al. (2007), the temporal snapshot approach is a

straightforward and efficacious representation that satisfies the database query and

web interface requirements. The snapshot data are properly indexed in the spatial

database (both B-tree and spatial generalized search tree indices are automatically

created on the necessary columns), resulting in the very fast execution of temporal

queries to display data in real-time animations and other visualizations in the web

interface.

One of the primary study goals was to automatically generate web-based

visualizations from output data products. The projects described in Chapters 2-4

each generate different types of visualizations, from non-interactive tsunami

propagation animations (Chapter 2), to interactive animations overlaid on a map-

based tool with a linked chart (Chapter 3), to synchronized, map-based visualization

of statistical output combined with an interactive chart (Chapter 4). The animations

produced in Chapter 2 occur as an automated server-side process. All visualization

240

tools in Chapters 3 and 4 were built using JavaScript-based code developed as part of

the overarching rich internet applications (RIA) approach, and enhanced by dynamic

server-side processing of spatiotemporal data.

5.4 Summary

Rich internet applications, such as the web-based interfaces described in Chapters 2-

4, represent a viable alternative to traditional locally-installed software applications

for specific tasks. While RIA will likely never replace full-featured software

applications such as ArcGIS (2012), they can (i.e., Chapter 4) provide specific

processing functionality that takes advantage of real-time client/server architecture to

quickly produce and display output in an interactive tool. In this sense, the web

browser is an equalizing application that provides a common user interface platform

and is available to anyone with a computer and an internet connection.

Spatiotemporal data, which are inherently multidimensional, are well-suited for

targeted server-side processing and analysis tools. Their complexity and typically

large storage size on disk can be prohibitive to manage in a local setting. Server-side

processing of the data leverages fast data access and high-performance hardware to

perform the operation remotely and deliver just the output product to the client.

With careful planning, server-side processing of spatiotemporal data can be

automated, with the automation developed in a manner generalizable to other data

types or disciplines.

241

5.5 References

ArcGIS. 2012. Esri ArcGIS – Mapping & analysis for understanding our world,
http://www.esri.com/software/arcgis (last accessed 20 September 2012).

Backbone. 2012. Backbone.js JavaScript application. http://www.backbonejs.org

(last accessed 28 September 2012).

Goodchild, M., M. Yuan, and T. Cova. 2007. Towards a general theory of

geographic representation in GIS. International Journal of Geographic
Information Science 21(3): 239-260.

Highcharts. 2012. Highcharts JS – Interactive JavaScript charts for your web

projects, http://www.highcharts.com (last accessed 13 September 2012).

Hornsby, K. and M.J. Egenhofer. 2000. Identity-based change: A foundation for

spatio-temporal knowledge representation. International Journal of Geographical
Information Science 14(3): 207-224.

HTML5. 2012. HTML5 – the new HTML standard,

http://www.w3schools.com/html/html5_intro.asp (last accessed 28 September
2012).

jQuery. 2012. jQuery JavaScript library, http://www.jquery.com (last accessed 13

September 2012).

Meteor. 2012. Meteor JavaScript application, http://www.meteor.com (last accessed

28 September 2012).

OpenLayers. 2012. OpenLayers – free maps for the web, http://www.openlayers.org

(last accessed 20 September 2012).

Pyramid. 2012. Pyramid open source web application framework,

http://www.pylonsproject.org/projects/pyramid (last accessed 18 August 2012).

Toffetti, G., S. Comai, J.C. Preciado, and M. Linaje. 2011. State-of-the-art and trends

in the systematic development of rich internet applications. Journal of Web
Engineering 10(1): 70-86.

242

Chapter 6: Bibliography

ADCIRC. 2012. A (Parallel) Advanced Circulation Model for Oceanic, Coastal and
Estuarine Waters, http://www.adcirc.org (last accessed 10 February 2012).

Adobe. 2012. Adobe Flex framework, http://www.adobe.com/products/flex.html

(last accessed 17 May 2012).

Allan, J.C., P.D. Komar, P. Ruggiero, and R. Witter. 2012. The March 2011 Tōhoku

tsunami and its impacts along the U.S. West Coast. Journal of Coastal Research
28(5): 1142-1153.

Amante, C. and B.W. Eakins. 2009. ETOPO1 1 arc-minute global relief model:

Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS
NGDC-24, 19 pp, March.

Amazon EC2. 2012. Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2 (last accessed 20 September 2012).

American Time Use Survey. 2012. Bureau of Labor Statistics – American Time Use

Survey, http://www.bls.gov/tus (last accessed 2 August 2012).

Anderson, J.C., M. Davis, K. Fujiwara, T. Fang, J. Andres, and M. Nedbal. 2011.

Web-based scientific visualization software for geospatial displays and
collaborative applications. In Proceedings of the OCEANS ’11 Conference. Kona,
Hawaii.

Andrienko, G., N. Andrienko, and S. Wrobel. 2007. Visual analytics tools for

analysis of movement data. SIGKDD Explorations 9(2): 38-46.

Andrienko, G., N. Andrienko, P. Bak, D. Keim, S. Kisilevich, and S. Wrobel. 2011a.

A conceptual framework and taxonomy of techniques for analyzing movement.
Journal of Visual Languages and Computing 22(3): 213-232.

Andrienko, G., N. Andrienko, and M. Heurich. 2011b. An event-based conceptual

model for context-aware movement analysis. International Journal of
Geographical Information Science 25(9): 1347-1370.

243

ArcGIS. 2012. Esri ArcGIS – Mapping & analysis for understanding our world,
http://www.esri.com/software/arcgis (last accessed 20 September 2012).

ArcGIS Help. 2012. What’s new for temporal data in ArcGIS 10,

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00qp00000018000
000.htm (last accessed 20 April 2012).

ArcGIS Resource Center. 2012a. How time is supported in spatial data,

http://resources.arcgis.com/en/help/main/10.1/index.html#//005z00000004000000
(last accessed 27 September 2012).

ArcGIS Resource Center. 2012b. Server-side processing with raster functions,

http://resources.arcgis.com/en/help/main/10.1/index.html#/Server_side_processin
g_with_raster_functions/0155000003w0000000 (last accessed 20 September
2012).

ArcGIS Spatial Analyst. 2012. ArcGIS Spatial Analyst extension,

http://www.esri.com/software/arcgis/extensions/spatialanalyst (last accessed 20
September 2012).

Armstrong, M.P. 1988. Temporality in spatial databases. Proceedings: GIS/LIS '88

2: 880-889.

Atkins, D.E., K.K. Droegemeier, S. Feldman, H. Garcia-Molina, M.L. Klein, D.G.

Messerschmitt, P. Messina, J.P. Ostriker, and M.H. Wright. 2003.
Revolutionizing science and engineering through cyberinfrastructure: Report of
the National Science Foundation blue-ribbon advisory panel on
cyberinfrastructure, http://www.nsf.gov/cise/sci/reports/atkins.pdf (last accessed
24 February 2012).

Backbone. 2012. Backbone.js JavaScript application. http://www.backbonejs.org

(last accessed 28 September 2012).

Barkan, R., U.S. ten Brink, and J. Lin. 2008. Trans-Atlantic tsunamis: Simulations of

the 1755 Lisbon and of hypothetical Puerto Rico trench earthquake tsunamis.
American Geophysical Union (AGU) Fall Meeting, San Francisco, CA,
December 15-19.

244

Barkan, R., U.S. ten Brink, and J. Lin. 2009. Far field simulations of the 1755 Lisbon
earthquake: Implications for tsunami hazard to the U.S. East Coast and the
Caribbean. Marine Geology 264(1-2): 109-122.

Barkan, R. and U. ten Brink. 2010. Tsunami simulations of the 1867 Virgin Island

earthquake: Constraints on epicenter location and fault parameters. Bulletin of the
Seismological Society of America 100(3): 995-1009.

Bashar, M.A., M. Islam, M.A. Chowdhury, M.P. Sajjad, and M.T. Ahmed. 2012.

Concept for a web map implementation with faster query response. Journal of
Information Engineering and Applications 2(1): 30-37.

Baumann, P. 2001. Web-enabled raster GIS services for large image and map

databases. Pages 870-874 in A. Min Tjoa and R. Wagner (eds.), 12th International
Workshop on Database and Expert Systems Applications (DEXA 2001), Munich,
Germany, 3-7 September. IEEE Computer Society.

Beller, A., T. Giblin, K.V. Le, S. Litz, T. Kittel, and D. Schimel. 1991. A temporal

GIS prototype for global change research. Proceedings: GIS/LIS '91 2: 752-765.

Bernard, E.N. 2005. The U.S. National Tsunami Hazard Mitigation Program: A

successful state-federal partnership. Natural Hazards 35(1): 5-24.

Bernard, E.N., H.O. Mofjeld, V. Titov, C.E. Synolakis, and F.I. González. 2006.

Tsunami: Scientific frontiers, mitigation, forecasting and policy implications.
Philosophical Transactions of the Royal Society 364: 1989-2007.

Bernard, L. and N. Ostländer. 2008. Assessing climate change vulnerability in the

arctic using geographic information services in spatial data infrastructures.
Climatic Change 87: 263-281.

Betrancourt, M. 2005. The animation and interactivity principles in multimedia

learning. Pages 287-296 in R.E. Mayer (ed.), Cambridge handbook of multimedia
learning. Cambridge University Press, New York.

Bivand, R.S., E.J. Pebesma, and V. Gómez-Rubio. 2008. Applied spatial data

analysis with R. Springer, New York.

245

Blain, C.A. and K. Kelly. 2001. Software design description for the Advanced
Circulation Model (ADCIRC). NRL Memorandum Report, NRL/MR/7320-01-
8271, Naval Research Laboratory, Department of the Navy, 12/2001.

Brassel, K.E. and R. Weibel. 1988. A review and conceptual framework of

automated map generalization. International Journal of Geographical
Information Science 2(3): 229-244.

Brown, B., M. Chui, and J. Manyika. 2011. Are you ready for the era of ‘big data?’

McKinsey Quarterly, October,
https://www.mckinseyquarterly.com/Are_you_ready_for_the_era_of_big_data_28
64 (last accessed 20 September 2012).

Bryan, B.A. 2012. High-performance computing tools for the integrated assessment

and modelling of socialeecological systems. Environmental Modelling &
Software. Available online at http://dx.doi.org/10.1016/j.envsoft.2012.02.006.

Buckley, A.R., M. Gahegan, and K. Clarke. 2005. Geographic visualization. Pages

313-333 in R. B. McMaster and E. L. Usery (eds.), A research agenda for
geographic information science. CRC Press, Boca Raton, FL.

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A.F. DeRose, and R. Buyya. 2010.

CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience 41(1): 23-50.

Chen, X. and F.B. Zhan. 2008. Agent-based modelling and simulation of urban

evacuation: Relative effectiveness of simultaneous and staged evacuation
strategies. Journal of the Operational Research Society 59(1): 25-33.

Clerveaux, V., T. Katada, and K. Hosoi. 2008. Tsunami scenario simulator: A tool

for ensuring effective disaster management and coastal evacuation in a
multilanguage society. Science of Tsunami Hazards 27(3): 48-71.

ClimateWizard. 2012. ClimateWizard, http://www.climatewizard.org (last accessed

20 September 2012).

246

ClimateWizard Custom. 2012. Climate Wizard Custom,
http://www.climatewizardcustom.org (last accessed 20 September 2012).

Comrie, A.C., K. Redmond, M.F. Glueck, and H. Reinbold. 2006. Interactive web-

based access and analysis tools for the Western Climate Mapping Initiative
(WestMap). EOS, Transactions, American Geophysical Union 87(52), Fall
Meeting Supplement, Abstract IN13A-1161.

Cordiero, J.P.C., G. Câmara, U.M. de Freitas, and F. Almeida. 2009. Yet another

map algebra. Geoinformatica 13: 183-202.

Cova, T.J. and J.P. Johnson. 2003. A network flow model for lane-based evacuation

routing. Transportation Research Part A 37(7): 579-604.

Dall’Osso, F., M. Gonella, G. Gabbianelli, G. Withycombe, and D. Dominey-Howes.

2009. A revised (PTVA) model for assessing the vulnerability of buildings to
tsunami damage. Natural Hazards and Earth System Sciences 9: 1557-1565.

Dall’Osso, F., A. Maramai, L. Graziani, B. Brizuela, A. Cavalletti, M. Gonella, and

S. Tinti. 2010. Applying and validating the PTVA-3 Model at the Aeolian Islands,
Italy: Assessment of the vulnerability of buildings to tsunamis. Natural Hazards
and Earth System Sciences 10: 1547-1562.

Dalquen, D.A., M. Anisimova, G.H. Gonnet, and C. Dessimoz. 2012. ALF – A

simulation framework for genome evolution. Molecular Biology and Evolution
29(4): 1115-1123.

Daly, C., R.P. Neilson, and D.L. Phillips. 1994. A statistical-topographic model for

mapping climatological precipitation over mountainous terrain. Journal of
Applied Meteorology 33: 140-158.

Daly, C., G. Taylor, and W. Gibson. 1997. The PRISM approach to mapping

precipitation and temperature. Pages 10-12 in Proceedings of the 10th AMS
Conference on Applied Climatology, Reno, NV, October 20-23.

Daly, C., W.P. Gibson, G.H. Taylor, G.L. Johnson, and P. Pasteris. 2002. A

knowledge-based approach to the statistical mapping of climate. Climate
Research 22: 99-113.

247

Daly, C., M. Halbleib, J.I. Smith, W.P. Gibson, M.K. Doggett, G.H. Taylor, J.
Curtis, and P.P. Pasteris. 2008. Physiographically sensitive mapping of
climatological temperature and precipitation across the conterminous United
States. International Journal of Climatology 28(15): 2031-2064.

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische

Mathematik 1(1): 269-271.

DOGAMI. 2005. Tsunami evacuation map: Seaside. Oregon Department of Geology

and Mineral Industries publication DOGAMI-TS-EB-SEA-01 (11/05),
http://www.oregongeology.org/pubs/tsubrochures/SeasideEvac.pdf (last accessed
2 May 2012).

Dominey-Howes, D., P. Dunbar, J. Varner, and M. Papathoma-Köhle. 2010.

Estimating probable maximum loss from a Cascadia tsunami. Natural Hazards
53: 43-61.

Dunbar, P. and H. McCullough. 2011. Global tsunami deposits database. Natural

Hazards 63(1): 267-278.

Dunbar, P., H. McCullough, and G. Mungov. 2011. 2011 Tohoku earthquake and

tsunami data available from the National Oceanic and Atmospheric
Administration/National Geophysical Data Center. Geomatics, Natural Hazards
and Risk 2(4): 305-323.

Eckert, S., R. Jelinek, G. Zeug, and E. Krausmann. 2012. Remote sensing-based

assessment of tsunami vulnerability and risk in Alexandria, Egypt. Applied
Geography 32(2): 714-723.

ESRI. 1999. Extendable image formats for ArcView GIS 3.1 and 3.2. ESRI White

Paper J-8018, July 1999.

Esri CityEngine. 2012. Esri CityEngine: Smart 3D city models,

http://www.esri.com/software/cityengine (last accessed 12 October 2012).

Eubanks, J. 1994. Pedestrian accident reconstruction. Lawyers and Judges, Tucson,

AZ.

248

Foerster, T., B. Schäffer, B. Baranski, and J. Brauner. 2011. Geospatial web services
for distributed processing – Applications and scenarios. Pages 245-286 in P. Zhao
and L. Di (eds.), Geospatial web services: Advances in information
interoperability. Information Science Reference, Hershey, PA.

Frank, A.U. 2005. Map algebra extended with functors for temporal data. Pages 194-

207 in J. Akoka et al. (eds.), Lecture Notes in Computer Science 3770. Springer-
Verlag, Berlin.

Gahegan, M., M. Wachowicz, M. Harrower, and T-M. Rhyne. 2001. The integration

of geographic visualization with knowledge discovery in databases and
geocomputation. Cartography and Geographic Information Science 28(1): 29-44.

Garbin, D.A. and J.L. Fisher. 2010. Open source for enterprise geographic

information systems. IT Professional 12(6): 38-45.

Garrett, J.J. 2005. Ajax: A new approach to web applications,

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications (last
accessed 28 September 2012).

GDAL. 2012. Geospatial Data Abstraction Library,

http://www.gdal.org/frmt_various.html (last accessed 05 September 2012).

GDAL Raster Formats. 2012. Various supported GDAL raster formats,

http://www.gdal.org/frmt_various.html (last accessed 05 September 2012).

GEBCO. 2010. General bathymetric chart of the oceans: The GEBCO_08 grid,

http://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/ge
bco_08.pdf (last accessed 11 February 2012).

Geist, E.L. and T. Parsons. 2006. Probabilistic analysis of tsunami hazards. Natural

Hazards 37: 277-314.

Geist, E.L., V.V. Titov, and C.E. Synolakis. 2006. Tsunami: Wave of change.

Scientific American 294(1): 56-63.

249

George, D.L. and R.J. LeVeque. 2006. Finite volume methods and adaptive
refinement for global tsunami propagation and local inundation. Science of
Tsunami Hazards 24(5): 319-328.

GeoServer. 2012. GeoServer – a Java-based software server that allows users to view

and edit geospatial data, http://www.geoserver.org (last accessed 28 September
2012).

Girvetz, E.H., C. Zganjar, G.T. Raber, E.P. Maurer, P. Kareiva, and J.J. Lawler.

2009. Applied climate-change analysis: The Climate Wizard tool. PLoS ONE
4(12): e8320. doi:10.1371/journal.pone.0008320.

Gisler, G.R. 2008. Tsunami simulations. Annual Review of Fluid Mechanics 40: 71-

90.

Giuliani, G., N. Ray, and A. Lehmann. 2011. Grid-enabled spatial data infrastructure

for environmental sciences: Challenges and opportunities. Future Generation
Computer Systems 27: 292-303.

Glueck, M.F., A.C. Comrie, K. Redmond, H.J. Reinbold, J.T. Abatzoglou, and C.

Daly. 2008. The WestMap stakeholder-driven interactive data access and analysis
interface for fine-scale climate data. American Meteorological Society 88th
Annual Meeting, January 20-24, New Orleans. Available online at
https://ams.confex.com/ams/88Annual/techprogram/paper_130602.htm (last
accessed 20 September 2012).

GMT. 2012. Generic Mapping Tools, http://gmt.soest.hawaii.edu (last accessed 24

January 2012).

Goff, J.R., S.L. Nichol, and D. Kennedy. 2010. Development of a palaeotsunami

database for New Zealand. Natural Hazards 54(2): 193-208.

Goff, J., C. Chagué-Goff, D. Dominey-Howes, B. McAdoo, S. Cronin, M. Bonté-

Grapetin, S. Nichol, M. Horrocks, M. Cisternas, G. Lamarche, B. Pelletier, B.
Jaffe, and W. Dudley. 2011. Palaeotsunamis in the Pacific Islands. Earth-Science
Reviews 107: 141-146.

250

Goff, J.R., C. Chagué-Goff, and J.P. Terry. 2012. The value of a Pacific-wide
tsunami database to risk reduction: Putting theory into practice. Geological
Society, London, Special Publications 361: 209-220.

Goodchild, M.F., R.P. Haining, S. Wise, et al. 1992. Integrating GIS and spatial

analysis – Problems and possibilities. International Journal of Geographic
Information Science 6(5): 407-423.

Goodchild, M.F., M.J. Egenhofer, K.K. Kemp, D.M. Mark, and E. Sheppard. 1999.

Introduction to the Varenius project. International Journal of Geographical
Information Science 13(8): 731-745.

Goodchild, M., M. Yuan, and T. Cova. 2007. Towards a general theory of

geographic representation in GIS. International Journal of Geographic
Information Science 21(3): 239-260.

Google Earth. 2012. Google Earth, http://earth.google.com (last accessed 20

September 2012).

Google Maps. 2012. Google Maps, http://maps.google.com (last accessed 20

September 2012).

Google Visualization API. 2012. Google Visualization API Reference,

https://developers.google.com/chart/interactive/docs/reference (last accessed 21
July 2012).

Goth, G. 2012. The science of better science. Communications of the Association for

Computing Machinery 55(2): 13-15.

Goto, Y., Y. Ogawa, and T. Komura. 2010. Tsunami disaster reduction education

using town watching and moving tsunami evacuation animation – trial in Banda
Aceh. Journal of Earthquake and Tsunami 4(2): 115-126.

Goto, Y., M. Affan, Agussabti, Y. Nurdin, D.K. Yuliana, and Ardiansyah. 2012.

Tsunami evacuation simulation for disaster education and city planning. Journal
of Disaster Research 7(1): 92-101.

251

GRASS. 2012. GRASS GIS: r.covar,
http://grass.fbk.eu/gdp/html_grass62/r.covar.html (last accessed 07 September
2012).

Gupta, A.K. 2011. Recent Tohoku tsunami and earthquake: A natural consequence

of the movement of the Pacific plate along the trench, east of the Japanese island
arc. Science and Culture 77(5-6): 175-185.

Gutierrez, A.G. and P. Baumann. 2007. Modeling fundamental geo-raster operations

with array algebra. Pages 607-612 in Proceedings of the Seventh IEEE
International Conference on Data Mining, October 28-31, Omaha, NE.

Hägerstrand, T. 1970. What about people in regional science? Papers of the Regional

Science Association 24: 7-21.

Hegarty, M., S. Kriz, and C. Cate. 2003. The roles of mental animations and external

animations in understanding mechanical systems. Cognition and Instruction
21(4): 209-249.

Highcharts. 2012. Highcharts JS: Interactive JavaScript charts for your web projects,

http://www.highcharts.com (last accessed 13 September 2012).

Hornsby, K. and M.J. Egenhofer. 2000. Identity-based change: A foundation for

spatio-temporal knowledge representation. International Journal of Geographical
Information Science 14(3): 207-224.

Hornsby, K. and M.J. Egenhofer. 2002. Modeling moving objects over multiple

granularities. Annals of Mathematics and Artificial Intelligence 36(1-2): 177-194.

HTML5. 2012. HTML5 – the new HTML standard.

http://www.w3schools.com/html/html5_intro.asp (last accessed 28 September
2012).

Huang, W., C.-L. Huang, and C.-H. Wu. 2006. The development of a computational

grid portal. In Proceedings of the sixth IEEE international symposium on cluster
computing and the grid, Singapore, May 16-19.

252

Hyndman, R.J. 2010. Moving averages. Pages 866-869 in M. Lovirc (ed.),
International encyclopedia of statistical science. Springer, New York.

Idrisi. 2012. Idrisi – geospatial software for monitoring and modeling the Earth

system, http://www.clarklabs.org (last accessed 20 September 2012).

Imamura, F., A.C. Yalciner, and G. Ozyurt. 2006. Tsunami modeling manual

(TUNAMI model),
http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf
(last accessed 10 February 2012).

Janik, C., M. Bailey, D. Keon, C. Pancake, and H. Yeh. 2007. Web-based tsunami

visualization. 9th International Conference on Fluid Control, Measurements, and
Visualization (FLUCOME), Tallahassee, FL, September 16-19.

jQuery. 2012. jQuery JavaScript library, http://www.jquery.com (last accessed 13

September 2012).

Jonkman, S.N., J.K. Vrijling, and A.C.W.M. Vrouwenvelder. 2008. Methods for the

estimation of loss of life due to floods: A literature review and a proposal for a
new method. Natural Hazards 46: 353-389.

Johnston, D., D. Paton, G.L. Crawford, K. Ronan, B. Houghton, and P. Bürgelt.

2004. Measuring tsunami preparedness in coastal Washington, United States.
Natural Hazards 35(1): 173-184.

Kapler, T. and W. Wright. 2005. GeoTime information visualization. Information

Visualization 4(2): 136-146.

Karon, J. and H. Yeh. 2011. Comprehensive tsunami simulator for Cannon Beach,

Oregon. Final Report submitted to the City of Cannon Beach, May 2011,
http://www.tappister.com/assets/content/2011/05/Cannon-Beach-Tsunami-Final-
Report-May-2011.pdf (last accessed 22 April 2012).

Katada, T., J. Asada, N. Kuwasawa, and Y. Oikawa. 2000. Development of practical

scenario simulator for dissemination of disaster information. Journal of Civil
Engineering Information Processing System 9: 129-136.

253

Katada, T. 2003. A preliminary integrated tsunami scenario simulation. Workshop
for Integrated Tsunami Scenario Simulation, Oregon State University,
http://tsunami.orst.edu/workshop/2003/pdf/Katada.pdf (last accessed 20 April
2012).

Katada, T., N. Kuwasawa, and H. Yeh. 2004. Tsunami scenario simulator. 2nd

Workshop for Integrated Tsunami Scenario Simulation, Oregon State University,
http://tsunami.orst.edu/workshop/2004/doc/Katada.pdf (last accessed 20 April
2012).

Katada, T., N. Kuwasawa, H. Yeh, and C. Pancake. 2006. Integrated simulation of

tsunami hazards. EERI's 8th U.S. National Conference on Earthquake
Engineering (8NCEE), San Francisco, CA. Paper No. 1727.

Keon, D., C. Pancake, H. Yeh, and T. Logan. 2009. The Tsunami Computational

Portal: Distributed infrastructure for executing and comparing multiple
computational models. Association of American Geographers (AAG) Annual
Meeting, Cyberinfrastructure Specialty Group, Las Vegas, NV, 22-27 March.

Keon, D. 2010. Database management systems. Pages 671-675 in B. Warf (ed.),

Encyclopedia of geography. SAGE Publications, Thousand Oaks, CA.

Kim, S., M. Yoon, S.-M. Whang, B. Tversky, and J.B. Morrison. 2007. The effect of

animation on comprehension and interest. Journal of Computer Assisted Learning
23(3): 260-270.

Kobayashi, K. T. Katada, N. Kuwasara, A. Narita, M. Hirano, and I. Kase. 2007.

Collaborative interface for disaster simulation. In Proceedings of the 2nd
International Conference on Urban Disaster Reduction, Taipei, Taiwan.

Koshimura, S. and M. Takashima. 2005. Remote sensing, GIS, and modeling

technologies enhance the synergic capability to comprehend the impact of great
tsunami disaster. In Proceedings of the 3rd International Workshop on Remote
Sensing for Post Disaster Response, Chiba, Japan.

Koshimura, S., T. Katada, H.O. Mofjeld, and Y. Kawata. 2006. A method for

estimating casualties due to the tsunami inundation flow. Natural Hazards 39(2):
265-274.

254

Koshimura, S., Y. Namegaya, and H. Yanagisawa. 2009a. Tsunami fragility – A new
measure to identify tsunami damage. Journal of Disaster Research 4(6): 479-488.

Koshimura, S., T. Oie, H. Yanagisawa, and F. Imamura. 2009b. Developing fragility

functions for tsunami damage estimation using numerical model and post-tsunami
data from Banda Aceh, Indonesia. Coastal Engineering Journal 51(3): 243-273.

Kowalik, Z. and T.S. Murty. 1993. Numerical simulation of two-dimensional

tsunami runup. Marine Geodesy 16: 87-100.

Kraak, M. 2003. The space-time cube revisited from a geovisualization perspective.

Pages 1988-1996 in Proceedings of the 21st International Cartographic
Conference (ICC), Durban, South Africa.

Kraak, M.-J. 2008. Geovisualization and time – New opportunities for the space-time

cube. Pages 293-318 in M. Dodge, M. McDerby, and M. Turner (eds.),
Geographic visualization: Concepts, tools, and applications. Wiley, West Sussex,
England.

Kroemer, K.H.E., H.J. Kroemer, and K.E. Kroemer-Elbert, 1997. Engineering

physiology: Bases of human factors/ergonomics, 3rd Ed. Van Nostrand Reinhold,
New York.

Lakshmanan, V. 2012. Automated analysis of spatial grids: Motivation and

challenges. Geotechnologies and the Environment 6: 1-18.

Langran, G. and N.R. Chrisman. 1988. A framework for temporal geographic

information. Cartographica 25(3): 1-14.

Langran, G. 1992. Time in geographic information systems. Taylor & Francis,

Bristol, PA.

Le, Y. 2012. Challenges in data integration for spatiotemporal analysis. Journal of

Map & Geography Libraries: Advances in Geospatial Information, Collections &
Archives 8(1): 58-67.

255

Leone, F., F. Lavigne, R. Paris, J-C. Denain, and F. Vinet. 2011. A spatial analysis of
the December 26th, 2004 tsunami-induced damages: Lessons learned for a better
risk assessment integrating buildings vulnerability. Applied Geography 31(1):
363-375.

Li, X. and M.-J. Kraak. 2012. Explore multivariable spatio-temporal data with the

time wave: Case study on meteorological data. Pages 79-92 in Advances in spatial
data handling and GIS. Lecture notes in geoinformation and cartography, part 3.
Springer, Berlin.

Lime, S. 2008. MapServer. Pages 65-85 in G.B. Hall and M.G. Leahy (eds.), Open

source approaches in spatial data handling. Advances in geographic information
science 2. Springer-Verlag, Berlin.

Lindell, M.K. and C.S. Prater. 2010. Tsunami preparedness on the Oregon and

Washington coast: Recommendations for research. Natural Hazards Review 11:
69-81.

Liu, P.L.-F., Y-S. Cho, M.J. Briggs, C.E. Synolakis, and U. Kanoglu. 1995. Run-up

of solitary waves on a circular island. Journal of Fluid Mechanics 302: 259-285.

Liu, P.L.-F., S.-B. Woo, and Y.-S. Cho. 1998. Computer programs for tsunami

propagation and inundation, http://ceeserver.cee.cornell.edu/pll-
group/doc/comcot_technical_manual.pdf (last accessed 14 February 2012).

Liu, Y., Y. Takeuchi, and N. Okada. 2007. Multi-agent based collaborative modeling

for flood evacuation planning – Case study of Nagata, Kobe. Annals of Disaster
Prevention Research Institute 50(B): 241-249.

Liu, Y., N. Okada, and Y. Takeuchi. 2008. Dynamic route decision model-based

multi-agent evacuation simulation – Case study of Nagata Ward, Kobe. Journal of
Natural Disaster Science 28(2): 91-98.

Lohr, S. 2012. The age of big data. The New York Times, February 11,

http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-
world.html (last accessed 20 September 2012).

256

Lynett, P.J. 2011. Tsunami inundation, modeling of. Pages 1008-1021 in R.A.
Meyers (ed.), Extreme environmental events: Complexity in forecasting and early
warning. Springer, New York.

Lynett, P.J. and P.L.F. Liu. 2011. Numerical simulation of complex tsunami

behavior. Computing in Science & Engineering 13(4): 50-57.

Maantay, J., A. Maroko, and G. Culp. 2010. Using geographic information science to

estimate vulnerable urban populations for flood hazard and risk assessment in
New York City. Pages 71-97 in P.S. Showalter and Y. Lu (eds.), Geospatial
techniques in urban hazard and disaster analysis. Springer, Netherlands.

MacEachren, A., M. Wachowicz, R. Edsall, D. Haug, and R. Masters. 1999.

Constructing knowledge from multivariate spatiotemporal data: Integrating
geographical visualization with knowledge discovery in database methods.
International Journal of Geographical Information Science 13(4): 311-334.

MapServer. 2012. MapServer – Open source web mapping,

http://www.mapserver.org (last accessed 20 September 2012).

Mark, D. 1998. Geospatial lifelines [abstract]. Page 12 in O. Günther, T. Sellis, and

B. Theodoulidis (eds.), Integrating spatial and temporal databases. Dagstuhl
Seminar Report No. 228.

Marks, K. and W. Smith. 2006. An evaluation of publicly available global

bathymetry grids. Marine Geophysical Research 27(1): 19-34.

Mas, E., F. Imamura, and S. Koshimura. 2011. Modeling the decision of evacuation

from tsunami based on human risk perception. Tohoku Branch Annual Meeting.
Sendai: Japan Society of Civil Engineering (JSCE),
http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/shibu/22/erick_11.pdf (last
accessed 3 May 2012).

Mas, E., F. Imamura, and S. Koshimura. 2012. An agent based model for the tsunami

evacuation simulation. A case study of the 2011 great East Japan tsunami in
Arahama Town. In Joint Conference Proceedings: 9th International Conference
on Urban Earthquake Engineering & 4th Asia Conference on Earthquake
Engineering, Tokyo.

257

Mayer, R.E., M. Hegarty, S. Mayer, and J. Campbell. 2005. When static media
promote active learning: Annotated illustrations versus narrated animations in
multimedia instructions. Journal of Experimental Psychology: Applied 11(4):
256-265.

McCarthy, A.C., N.H. Hancock, and S.R. Raine. 2010. VARIwise: A general-

purpose adaptive control simulation framework for spatially and temporally
varied irrigation at sub-field scale. Computers and Electronics in Agriculture
70(1): 117-128.

McLachlan, J., D. Foster, S. Clayden, and S. Barry. 2005. Long-term forest and

landscape dynamics. Pages 125-141 in D.R. Foster and J.D. Aber (eds.), Forests
in time: The environmental consequences of 1,000 years of change in New
England. Yale University Press, New Haven, CT.

Mennis, J., R. Viger, and C.D. Tomlin. 2005. Cubic map algebra functions for

spatio-temporal analysis. Cartography and Geographic Information Science 32:
17-32.

Merati, N., E. Gica, and C. Chamberlin. 2007. Building tsunami analysis tools into a

GIS workspace. In ESRI International User Conference Proceedings (UC1889),
San Diego.

Merati, N., C. Chamberlin, C. Moore, V. Titov, and T.C. Vance. 2010. Integration of

tsunami analysis tools into a GIS workspace – Research, modeling, and hazard
mitigation efforts within NOAA’s Center for Tsunami Research. Pages 273-294
in P.S. Showalter and Y. Lu (eds.), Geospatial techniques in urban hazard and
disaster analysis. Springer, Netherlands.

Meteor. 2012. Meteor JavaScript application. http://www.meteor.com (last accessed

28 September 2012).

Microsoft LayerScape. 2012. Microsoft LayerScape,

http://research.microsoft.com/en-us/projects/layerscape (last accessed 12 October
2012).

258

Miller, H. 1991. Modelling accessibility using space-time prism concepts within
geographical information systems. International Journal of Geographical
Information Systems 5(3): 287-301.

Miller, H. and Y. Wu. 2000. GIS software for measuring space-time accessibility in

transportation planning and analysis. GeoInformatica 4(2): 141-159.

Miller, H. and S.A. Bridwell. 2008. A field-based theory for time geography. Annals

of the Association of American Geographers 99(1): 49-75.

Misra, I., S.M. Moorthi, R.K. Gambhir, and R. Ramakrishnan. 2011. Evolutionary

rapid development using open source framework for geospatial data processing.
Trends in Information Management 7(1): 31-40.

Mountain, D. 2005. Visualizing, querying, and summarizing individual spatio-

temporal behavior. Pages 181-200 in J. Dykes, A.M. MacEachren, M-J. Kraak
(eds.), Exploring geovisualization. Elsevier, London.

Murphy, K. 2012. Tsunami debris: Huge dock washes up on Oregon coast. Los

Angeles Times, 6 Jun 2012, http://articles.latimes.com/2012/jun/06/nation/la-na-
nn-huge-dock-tsunami-20120606 (last accessed 20 July 2012).

Nagarajan, M., D. Shaw, and P. Albores. 2012. Disseminating a warning message to

evacuate: A simulation study of the behaviour of neighbours. European Journal
of Operational Research 220(3): 810-819.

NANOOS. 2012. NANOOS Visualization System (NVS),

http://www.nanoos.org/nvs/nvs.php?section=NVS-Products-Tsunamis-
Evacuation (last accessed 12 July 2012).

National Research Council. 2011. Tsunami warning and preparedness: An

assessment of the U.S. tsunami program and the nation’s preparedness efforts.
The National Academies Press, Washington, D.C. 284 pp.

NDIIPP. 2012. Sustainability of digital formats: Band interleaved by line (BIL)

image file, http://www.digitalpreservation.gov/formats/fdd/fdd000283.shtml (last
accessed 06 September 2012).

259

Neteler, M. and H. Mitasova. 2002. Open source GIS: A GRASS GIS approach. 3rd
edition. Springer, New York.

Nginx. 2012. Nginx – a free, open-source, high-performance HTTP server,

http://www.nginx.org (last accessed 20 September 2012).

Nguyen, T.T. 2009. Indexing PostGIS databases and spatial query performance

evaluations. International Journal of Geoinformatics 5(3): 1-9.

Niazi, M.A. and A. Hussain. 2011. A novel agent-based simulation framework for

sensing in complex adaptive environments. IEEE Sensors Journal 11(2): 404-412.

NOAA. 2012. Japan tsunami marine debris. NOAA Marine Debris Program,

http://marinedebris.noaa.gov/info/pdf/japanfaq.pdf (last accessed 10 February
2012).

NOAA Center for Tsunami Research. 2012. NOAA Center for Tsunami Research:

Tsunami Modeling and Research, http://nctr.pmel.noaa.gov/model.html (last
accessed 14 February 2012).

NumPy. 2012. NumPy – the fundamental package for scientific computing with

Python, http://numpy.scipy.org (last accessed 20 September 2012).

OGC WCS. 2010. OGC® WCS 2.0 Interface Standard – Core. Open Geospatial

Consortium document reference #OGC 09-111r3.
http://portal.opengeospatial.org/files/?artifact_id=41437 (last accessed 20
September 2012).

OGR. 2012. OGR Simple Features Library, http://www.gdal.org/ogr (last accessed

20 September 2012).

Oikawa, Y. and T. Katada. 1999. A study on the effect of flood experience on the

evacuation activity. Journal of Japan Society for Natural Disaster Science 18(1):
103-116.

Omira, R., M.A. Baptista, J.M. Miranda, E. Toto, C. Catita, and J. Catalão. 2010.

Tsunami vulnerability assessment of Casablanca-Morocco using numerical
modelling and GIS tools. Natural Hazards 54: 75-95.

260

Open Geospatial Consortium, Inc. 2010. OpenGIS® implementation standard for
geographic information - simple feature access - part 2: SQL option. Reference
number OGC 06-104r4, http://portal.opengeospatial.org/files/?artifact_id=25354
(last accessed 8 February 2012).

OpenLayers. 2012. OpenLayers: Free maps for the web, http://www.openlayers.org

(last accessed 20 September 2012).

Openshaw, S. 1987. An automated geographical information system. Environment

and Planning A 19: 431-436.

Openshaw, S., M. Charlton, C. Wymer, and A. Craft. 1987. A Mark 1 geographical

analysis machine for the automated analysis of point data sets. International
Journal of Geographical Information Systems 1(4): 335-358.

Oregon.gov. 2012. Department of Geology and Mineral Industries – Tsunami

Evacuation Route Maps,
http://www.oregon.gov/DOGAMI/earthquakes/Coastal/CoastalHazardsMain.shtm
l (last accessed 15 May 2012).

OWASE. 2012. Owase Dynamic Tsunami Hazard Map. Disaster Social Engineering

Laboratory, Gunma University, Japan, http://dsel.ce.gunma-
u.ac.jp/simulator/owase/en (last accessed 20 April 2012).

Papathoma, M. and D. Dominey-Howes. 2003. Tsunami vulnerability assessment

and its implications for coastal hazard analysis and disaster management
planning, Gulf of Corinth, Greece. Natural Hazards and Earth System Sciences 3:
733-747.

Papathoma, M., D. Dominey-Howes, Y. Zong, and D. Smith. 2003. Assessing

tsunami vulnerability, an example from Herakleio, Crete. Natural Hazards and
Earth System Sciences 3: 377-389.

Perl. 2012. Perl: Practical Extraction and Report Language, http://www.perl.org (last

accessed 13 February 2012).

Peuquet, D.J. 1984. A conceptual framework and comparison of spatial data models.

Cartographica 21(4): 66-113.

261

Peuquet, D.J. 1994. It's about time: A conceptual framework for the representation of
temporal dynamics in geographic information systems. Annals of the Association
of American Geographers 84(3): 441-461.

Peuquet, D.J. and N. Duan. 1995. An event-based spatiotemporal data model

(ESTDM) for temporal analysis of geographical data. International Journal of
Geographical Information Systems 9(1): 7-24.

Peuquet, D.J. 2001. Making space for time: Issues in space-time data representation.

GeoInformatica 5(1): 11-32.

Peuquet, D.J. 2002. Representations of space and time. The Guilford Press, New

York.

PostGIS. 2012. PostGIS – A spatial extension to PostgreSQL,

http://postgis.refractions.net (last accessed 20 September 2012).

PostGIS Raster. 2012. PostGIS Raster – An ongoing project aiming at developing

raster support in PostGIS, http://trac.osgeo.org/postgis/wiki/WKTRaster (last
accessed 20 September 2012).

PostgreSQL. 2012. PostgreSQL relational database management system,

http://www.postgresql.org (last accessed 20 September 2012).

Priest, G.R., C. Goldfinger, K. Wang, R.C. Witter, Y. Zhang, and A.M. Baptista.

2010. Confidence levels for tsunami-inundation limits in northern Oregon inferred
from a 10,000-year history of great earthquakes at the Cascadia subduction zone.
Natural Hazards 54: 27-73.

PRISM Data Explorer. 2012. PRISM Data Explorer,

http://prismmap.nacse.org/nn/index.phtml (last accessed 20 September 2012).

PROJ.4. 2012. PROJ.4 Cartographic Projections Library, http://proj.osgeo.org (last

accessed 21 January 2012).

Pyramid. 2012. Pyramid open source web application framework,

http://www.pylonsproject.org/projects/pyramid (last accessed 18 August 2012).

262

QGIS. 2012. Quantum GIS – A user-friendly open source geographic information
system, http://www.qgis.org (last accessed 20 September 2012).

R Project. 2012. The R project for statistical computing, http://www.r-project.org

(last accessed 20 September 2012).

R/GRASS. 2012. Short introduction to geostatistical and spatial data analysis with

GRASS and R statistical data language,
http://grass.fbk.eu/statsgrass/grass_geostats.html (last accessed 20 September
2012).

Raubal, M., S. Winter, S. Teβmann, and C. Gaisbauer. 2007. Time geography for ad-

hoc shared-ride trip planning in mobile geosensor networks. ISPRS Journal of
Photogrammetry and Remote Sensing 62(5): 366-381.

Reese, S., B.A. Bradley, J. Bind, G. Smart, W. Power, and J. Sturman. 2011.

Empirical building fragilities from observed damage in the 2009 South Pacific
tsunami. Earth-Science Reviews 107(1-2): 156-173.

Schmidt, J., C. Piret, N. Zhang, B.J. Kadlec, D.A. Yuen, Y. Liu, G.B. Wright, and

E.O.D. Sevre. 2010. Modeling of tsunami waves and atmospheric swirling flows
with graphics processing unit (GPU) and radial bias functions (RBF).
Concurrency and Computation: Practice and Experience 22: 1813-1835.

Schneider, P. 2011. Tsunami modeling for Seaside, Oregon. Pages 408-416 in

Proceedings of the 2011 Solutions to Coastal Disasters Conference. American
Society of Civil Engineers, Reston, VA.

Schultz, N. and M. Bailey. 2012. Using extruded volumes to visualize time-series

datasets. Pages 127-148 in J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P.C.
Wong (eds.), Expanding the frontiers of visual analytics and visualization.
Springer, London.

SciPy. 2012. SciPy – Scientific tools for Python, http://www.scipy.org (last accessed

20 September 2012).

263

Sharma, S, U.S. Tim, and S. Gadia. 2012. AutoConViz: Automating the conversion
and visualization of spatio-temporal query results in GIS. Geo-spatial Information
Science (in press). Available online first at
http://dx.doi.org/10.1080/10095020.2012.714099 (last accessed 27 September
2012).

Shaw, S-L., H. Yu, and L.S. Bombom. 2008. A space-time GIS approach to

exploring large individual-based spatiotemporal datasets. Transactions in GIS
12(4): 425-441.

Showstack, R. 2011. Oceanographer tracks marine debris from the Japan tsunami

and other incidents. Eos Transactions American Geophysical Union 92(37): 306.

Siládi, V., L. Huraj, N. Polčák, and E. Vesel. 2012. A parallel processing of spatial

data interpolation on computing cloud. Pages 193-198 in Proceedings of the Fifth
Balkan Conference in Informatics (BCI '12). ACM, New York.

Simonovic, S.P. and S. Ahmad. 2005. Computer-based model for flood evacuation

emergency planning. Natural Hazards 34: 25-51.

Snodgrass, R.T. 2000. Developing time-oriented database applications in SQL.

Morgan Kauffman, San Francisco.

Sp R. 2012. Spatial data in R, http://r-spatial.sourceforge.net (last accessed 20

September 2012).

Suleimani, E. 2004. UAF Tsunami Code,

http://tsunamiportal.nacse.org/documentation/UAF_TsunamiCode.pdf (last
accessed 14 February 2012).

Suppasri, A., E. Mas, S. Koshimura, and K. Imai. 2012. Developing tsunami fragility

curves from the surveyed data of the 2011 great East Japan tsunami in Sendai and
Ishinomaki plains. Coastal Engineering Journal 54(1): 1250008(1-16).

Synolakis, C.E. and E.N. Bernard. 2006. Tsunami science before and beyond Boxing

Day 2004. Philosophical Transactions of the Royal Society 364: 2231-2265.

264

Tang, Z., M.K. Lindell, C.S. Prater, and S.D. Brody. 2008. Measuring tsunami
planning capacity on U.S. Pacific Coast. Natural Hazards Review 9(2): 91-100.

Tappister. 2012. Cannon Beach tsunami inundation and evacuation study 2010-2011,

http://www.tappister.com/cannon-beach (last accessed 29 April 2012).

Tarbotton, C., D. Dominey-Howes, J.R. Goff, M. Papathoma-Kohle, F. Dall’Osso,

and I.L. Turner. 2012. GIS-based techniques for assessing the vulnerability of
buildings to tsunami: Current approaches and future steps. Geological Society,
London, Special Publications 361: 115-125.

TCP. 2012. Tsunami Computational Portal, http://tsunamiportal.nacse.org (last

accessed 28 April 2012).

TimeDB. 2012. TimeDB bitemporal relational DBMS,

http://www.timeconsult.com/Software/Software.html (last accessed 24 July
2012).

Titov, V. and F.I. González. 1997. Implementation and testing of the Method of

Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-
122773), NOAA/Pacific Marine Environmental Laboratory, Seattle. 11 pp.

Titov, V., A.B. Rabinovich, H.O. Mofjeld, R.E. Thomson, and F.I. Gonzalez. 2005.

The global reach of the 26 December 2004 Sumatra tsunami. Science 309: 2045-
2048.

Toffetti, G., S. Comai, J.C. Preciado, and M. Linaje. 2011. State-of-the-art and trends

in the systematic development of rich internet applications. Journal of Web
Engineering 10(1): 70-86.

Tomlin, C.D. 1990. Geographic information systems and cartographic modeling.

Prentice Hall, New York.

Tomlin, C.D. 1994. Map algebra: One perspective. Landscape and Urban Planning

30(1-2): 3-12.

Tøssebro, E. and M. Nygård. 2011. Representing topological relationships for

spatiotemporal objects. Geoinformatica 15: 633-661.

265

Tufte, E.L. 1983. The visual display of quantitative information. Graphics Press,
Cheshire, CT.

Tversky, B., J.B. Morrison, and M. Betrancourt. 2002. Animation: Can it facilitate?

International Journal of Human-Computer Studies 57: 247-262.

Uno, K. and K. Kashiyama. 2008. Development of a simulation system for the

disaster evacuation based on multi-agent model using GIS. Tsinghua Science and
Technology 13(S1): 348-353.

Usery, E.L., J. Choi, and M.P. Finn. 2010. Modeling sea-level rise and surge in low-

lying urban areas using spatial data, geographic information systems, and
animation methods. Pages 11-30 in P.S. Showalter and Y. Lu (eds.), Geospatial
techniques in urban hazard and disaster analysis. Springer, Netherlands.

USGS National Elevation Dataset. 2012. USGS National Elevation Dataset (NED),

http://ned.usgs.gov (last accessed 20 September 2012).

Van Hemert, J., J. Koetsier, L. Torterolo, I. Porro, M. Melato, and R. Barbera. 2011.

Generating web-based user interfaces for computational science. Concurrency
and Computation: Practice and Experience 23: 256-268.

Van Ho, Q., P. Lundblad, T. Åström, and M. Jern. 2011. A web-enabled

visualization toolkit for geovisual analytics. Information Visualization 11(1): 22-
42.

Vance, T.C., N. Merati, S.M. Mesick, C.W. Moore, and D.J. Wright. 2007.

GeoModeler: Tightly linking spatially-explicit models and data with a GIS for
analysis and geovisualization. In Proceedings of the 15th ACM International
Symposium on Advances in Geographic Information Systems (ACM GIS 2007),
Seattle, WA, 7-9 November.

Wang, S. and Y. Liu. 2009. TeraGrid GIScience gateway: Bridging

cyberinfrastructure and GIScience. International Journal of Geographical
Information Science 23(5): 631–656.

266

Wen, T.-H., M.-H. Lin, and C.-T. Fang. 2012. Population movement and vector-
borne disease transmission: Differentiating spatial-temporal diffusion patterns of
commuting and noncommuting dengue cases. Annals of the Association of
American Geographers 102(5): 1026-1037.

WestMap. 2012. WestMap – Climate analysis & mapping toolbox,

http://www.cefa.dri.edu/Westmap (last accessed 20 September 2012).

Wolman, D. 2005. Reaching safe ground. Technology Review, 26 July 2005,

http://www.technologyreview.com/business/14626 (last accessed 21 April 2012).

Wood, N.J. and J.W. Good. 2004. Vulnerability of port and harbor communities to

earthquake and tsunami hazards: The use of GIS in community hazard planning.
Coastal Management 32(3): 243-269.

Worboys, M.F. 1992. A model for spatio-temporal information. Proceedings: The

5th International Symposium on Spatial Data Handling 2: 602-611.

Yeh, H.H. 1991. Tsunami bore runup. Natural Hazards 4(2): 209-220.

Yeh, H. 2010. Gender and age factors in tsunami casualties. Natural Hazards Review

11: 29-34.

Yu, H. 2006. Spatial-temporal GIS design for exploring interactions of human

activities. Cartography and Geographic Information Systems 33(1): 3-19.

Yu, H. 2008. Visualizing and analyzing activities in an integrated space-time

environment: Temporal geographic information system design and
implementation. Transportation Research Record 2024: 54-62.

Yu, H. and S.-L. Shaw. 2007. Revisiting Hägerstrand’s time-geographic framework

for individual activities in the age of instant access. Pages 103-118 in H.J. Miller
(ed.), Societies and cities in the age of instant access. Springer, Netherlands.

Yu, H. and S.-L. Shaw. 2008. Exploring potential human activities in physical and

virtual spaces: A spatio-temporal GIS approach. International Journal of
Geographical Information Science 22(4): 409-430.

267

Yuan, M. 1996. Modeling semantics, temporal, and spatial information in geographic
information systems. Pages 334-347 in M. Craglia and E.L. Usery (eds.),
Geographic information research: Bridging the Atlantic. Taylor & Francis,
London.

Yuan, M. 1999. Use of a three-domain representation to enhance GIS support for

complex spatiotemporal queries. Transactions in GIS 3(2): 137-159.

Yuan, M. 2001. Representing complex geographic phenomena in GIS. Cartography

and Geographic Information Science 28(2): 83-96.

Yuan, M., D.M. Mark, M.J. Egenhofer, and D.J. Peuquet. 2005. Extensions to

geographic representations. Pages 129-156 in R.B. McMaster and E.L. Usery
(eds). A research agenda for geographic information science. CRC Press, Boca
Raton, FL.

Zerger, A. and S. Wealands. 2004. Beyond modelling: Linking models with GIS for

flood risk management. Natural Hazards 33: 191-208.

Zhang, L. and J. Yi. 2010. Management methods of spatial data based on PostGIS.

Pages 410-413 in Proceedings of the Second Pacific-Asia Conference on Circuits,
Communications and System (PACCS), August 1-2.

Zhong, C., T. Wang, W. Zeng, and S.M. Arisona. 2012. Spatiotemporal

visualization: A survey and outlook. Pages 299-317 in S.M. Arisona, G.
Aschwanden, J. Halatsch, and P. Wonka (eds.), Communications in computer and
information science, vol 242: Digital urban modeling and simulation. Springer,
New York.

268

APPENDICES

269

Appendix A: Conversion of Gridded Bathymetry ASCII (xyz) Datasets to
Spatial Database Tables

Gridded bathymetry and coastal topography datasets used in the Tsunami

Computational Portal were typically obtained as ASCII text files in “xyz” (or

similar) format. These text files contain space-delimited values of longitude,

latitude, and seafloor depth in m. The ASCII text must be parsed into a format that

can be ingested into the spatial database (with added information of a numeric ID

value and Cartesian x and y grid values). The Perl script below reads xyz text files

and converts them to a series of input statements that are written to a file, which can

be ingested directly by the spatial database. The script also generates a GiST index

to help maximize efficiency of spatial queries, and performs other table indexing and

cleaning operations.

A modified version of this script that writes records directly to the database was also

developed, but runs more slowly than the script below. The PostgreSQL COPY

command was also explored as an alternative to INPUT statements, but COPY

simply streams data and cannot process function calls (e.g., GeometryFromText() to

create point objects). Many scripting options exist, but the script below sufficed for

all grid loading operations.

#!/usr/bin/perl

xyz2sql.pl

This script parses space-delimited text files in xyz or yxz

format, such as bathymetry data. The text file will be parsed

270

into an SQL file that can be ingested into a PostGIS-enabled

PostgreSQL database by running a command such as:

psql –h <host> -d <your_database> -f <sql_output_file>

as long as you have write permission on that database.

This script also adds grid-based x and y values (0 0, 0 1, 0 2,

etc). It requires a "unit" value to define how many rows in the

text file constitute a unit (row or column) of the grid. This is

dependent upon your data, so you will need to manually take a
look at your text file to determine this value. In my case I was

dealing with text files where a block of 500 text rows had a +/-

constant latitude, with longitude increasing. At the end of 500

rows, the latitude changed to a more-or-less fixed value, and the
longitude started over at the lowest value. So, my "unit" value

was 500.

The script takes a number of command line arguments, which can be
reviewed by running the script with no arguments. The script

creates the necessary table and geometry column, as well as a

GiST index and indexes on the grid x & y columns. It also does a

VACUUM ANALYZE on the table.

use strict;

use warnings;

disable command buffering, so that 'Processing....done' works

$| = 1;

if(scalar(@ARGV) != 8) {
die "

 Usage: xyz2sql.pl <input file> <input format> <unit> <db> <table> <geom>

<srid> <output file>\n

 <input file> Name of input text file (with path if outside current
directory)

 <input format> Must choose one of [xyz|yxz|zyx|xyzxy|xyzyx]

 Note: xyzxy and xyzyx refer to data like 311 0 580 128.34445

34.28819
 where x and y refer to grid coordinates.

 Grid coordinates MUST be the first xy pair, lat/lon the

last xy pair

 <unit> Number of rows that make up a discrete unit (usually defined by
latitude)

 <db> Name of PostgreSQL database, which must be spatially enabled with

PostGIS

 <table> Name of new table (cannot contain a decimal point)
 <geom> Name of geometry column in the new table

 <srid> Desired SRID for geometry (-1 == undefined)\n

 <output file> Name of output sql file (with full path if outside current

directory)\n
 Example:

271

 ./xyz2sql.pl bathy_500.xyz xyz 776 tsunami bathy_500 geom -1

bathy_500.sql

";
}

if($ARGV[1] !~ /xyz|yxz|zyx|xyzxy|xyzyx/) { die " WARNING: <format> must

be one of [xyz|yxz|zyx|xyzxy|xyzyx]!\n Script did not run!\n"; }
if($ARGV[4] =~ /\./) { die " WARNING: <table> cannot contain a decimal

point!\n Script did not run!\n"; }

my $infile = $ARGV[0]; #input file
my $format = $ARGV[1]; #whether data is xyz, yxz, etc

my $unit = $ARGV[2]; #how many rows make up a 'unit'

my $db = $ARGV[3]; #db name

my $table = $ARGV[4]; #table name
my $geom = $ARGV[5]; #geometry column

my $srid = $ARGV[6]; #srid number (-1 == undefined)

my $outfile = $ARGV[7]; #output file

my @depth;

my @lat;

my @lon;

my @x;
my @y;

my $x;

my $y;

my $z;

open(IN, $infile) || die "Could not open '$infile' - $!";

my $inCount = 1;
print "\n => Parsing $infile";

parse and suck the text file into arrays

while(<IN>) {

 #my $line = $_ unless $_ =~ /^#/;
 my $line = $_;

 chomp($line);

 $_ =~ /^\s*([+-]?\d+\.?\d*[eE]?[+-]?\d*)\s+([+-]?\d+\.?\d*[eE]?[+-

]?\d*)\s+([+-]?\d+\.?\d*[eE]?[+-]?\d*)/;
 my $a = sprintf("%.10g", $1);

 my $b = sprintf("%.9g", $2);

 my $c = sprintf("%.6g", $3);

 # NOTE - these are just the formats I've seen so far...
 # more may need to be added

 if($format eq 'xyz') {

 push @lon, $a;

 push @lat, $b;
 push @depth, $c;

 } elsif($format eq 'yxz') {

 push @lon, $b;

 push @lat, $a;
 push @depth, $c;

 } elsif($format eq 'zyx') {

272

 push @lon, $c;

 push @lat, $b;

 push @depth, $a;
 } elsif($format eq 'xyzyx') {

 $line =~ /^(\d+)\s(\d+)\s(-?\d+\.?\d+?)\s(-?\d+\.\d+)\s(-

?\d+\.\d+)/;

 push @x, $1;
 push @y, $2;

 push @lon, $5;

 push @lat, $4;

 push @depth, $3;
 } elsif($format eq 'xyzxy') {

 $line =~ /^(\d+)\s(\d+)\s(-?\d+\.?\d+?)\s(-?\d+\.\d+)\s(-

?\d+\.\d+)/;

 push @x, $1;
 push @y, $2;

 push @lon, $4;

 push @lat, $5;

 push @depth, $3;
 }

 if($inCount % 100000 == 0) {print ".";}

 if($inCount % 1000000 == 0) {print $inCount;}

 $inCount++;
}

print "...done\n";

close(IN);

count latitude values to get a total row count

my $count = scalar(@lat);

open(OUT, "> $outfile") || die "Could not open '$outfile' - $!";

create table - currently creates x and y cols no matter what -

we add x & y values below if they don't exist
my $sql1;

#if($format !~ /xyzxy|xyzyx/) {

$sql1 = "CREATE TABLE $table (id int, depth int);";

#} else {
 $sql1 = "CREATE TABLE $table (id int, x smallint, y smallint, depth

numeric);";

#}

print OUT "$sql1\n";

create geometry column

#print " => Adding geometry column ...";

print OUT "SELECT AddGeometryColumn('$table', '$geom', $srid, 'POINT',
2);\n";

insert data

print " => Printing $count rows to $outfile";
x,y needs to start at 1,1 to work with ARSC's Fortran code

my $xpos = 0; #initialize at 0, will go to 1 at next increment

273

my $ypos = 1; #initialize at 1

for(my $i = 0; $i < $count; $i++) {

 if($i != 0 && $i % 100000 == 0) {print ".";}
 if($i != 0 && $i % 1000000 == 0) {print $i;}

 my $id = $i + 1; #so that id column begins at 1

 my $sql2;

 if($i != 0 && $i % $unit == 0) {

 $xpos = 0; #reset at each $unit rows - will go to 1 at next

increment

 $ypos++; #increment 1 for each $unit rows
 }

 $xpos++; #increment 1 for every row

 if($format !~ /xyzxy|xyzyx/) {
 $sql2 = "INSERT INTO $table (id, x, y, depth, $geom) VALUES

($i, $xpos, $ypos, $depth[$i], GeometryFromText('POINT($lon[$i] $lat[$i])',

$srid));";

 } else {
 $sql2 = "INSERT INTO $table (id, x, y, depth, $geom) VALUES

($i, $depth[$i], $x[$i], $y[$i], GeometryFromText('POINT($lon[$i]

$lat[$i])', $srid));";

 }
 print OUT "$sql2\n";

}

print OUT "COMMIT;\n";

print "...done\n";

create GiST index

#print " => Creating GiST index $table_index ...";

print OUT "CREATE INDEX $table_gist_index ON $table USING gist ($geom
gist_geometry_ops);\n";

print OUT "CREATE INDEX $table_x_index ON $table (x);\n";

print OUT "CREATE INDEX $table_y_index ON $table (y);\n";

vacuum analyze to update table stats

#print " => Performing VACUUM ANALYZE on table ...";

print OUT "VACUUM ANALYZE $table;\n";

close(OUT);

print "\n Job finished\n\n";

274

Appendix B: PostgreSQL Database Functions for Calculating Parameters of
Gridded Bathymetry Datasets

Two database functions were written in the PL/pgSQL procedural language to

perform calculations that must be executed on each gridded bathymetry or

topography dataset added to the spatial database. Because the calculations each

require a large number of successive queries on the gridded datasets, the most

efficient solution was to write them as database functions and run them using the

database engine.

Maximum Allowable Time Step

In the TCP parameterization system, the maximum allowable time step for each

gridded dataset must be known prior to job configuration, and prior to the dataset

being used in model runs. The PL/pgSQL database function below calculates the

maximum allowable time step based on a standard formula that can be summarized

thusly:

(spacing in m) / (wave velocity) = time to move wave

Spacing in m is dependent upon latitude and is calculated based on the maximum

latitude represented by the bathymetry dataset. Wave velocity is dependent upon

ocean depth and is calculated based on the maximum ocean depth value contained

within the bathymetry dataset. Both max_lat and max_depth are queried

dynamically within the database function and included in the calculations. Once

275

complete, the calculated max_time_step values are written to a database table that

contains metadata describing each gridded dataset.

--

-- This function calculates maximum allowable time step for
-- each gridded dataset.

-- It is called via max_time_step()

--

-- * delta T = (1855 * cos(radians(max_lat))*spacing/60) / sqrt(2 * g *
abs(max_depth))

-- * g = gravitational constant (9.8)

-- * use abs(max_depth) because our depths might be stored as negative

values whereas most modelers store depths as positive values
-- * need to use radians() with cos()

CREATE OR REPLACE FUNCTION max_time_step()

RETURNS VOID AS '

DECLARE
 max_lat NUMERIC;

 max_depth NUMERIC;

 spc NUMERIC;

 g CONSTANT FLOAT := 9.8;
 m CONSTANT INTEGER := 1855;

 result NUMERIC;

 curs1 refcursor;

 row RECORD;
BEGIN

 FOR row in SELECT db_table FROM input_grids WHERE max_allowable_time_step

IS NULL LOOP

 RAISE NOTICE ''processing %'', row.db_table;

 OPEN curs1 FOR EXECUTE ''SELECT max(y(geom)) FROM '' ||

quote_ident(row.db_table);
 FETCH curs1 into max_lat;

 CLOSE curs1;

 OPEN curs1 FOR EXECUTE ''SELECT min(depth) FROM '' ||
quote_ident(row.db_table) || '' where depth > -30000 '';

 FETCH curs1 into max_depth;

 CLOSE curs1;

 OPEN curs1 FOR EXECUTE ''SELECT spacing FROM input_grids WHERE db_table

= '''''' || quote_ident(row.db_table) || '''''''';

 FETCH curs1 into spc;

 CLOSE curs1;

 result := (m * cos(radians(max_lat))*(spc/60)) / sqrt(2 * g *

abs(max_depth));

276

 EXECUTE ''UPDATE input_grids SET max_allowable_time_step = '' ||

quote_literal(result) || '' WHERE db_table = '''''' ||

quote_ident(row.db_table) || '''''''';

 END LOOP;

 RETURN;

END;
' LANGUAGE 'plpgsql';

Number of Time Steps Required to Cross Grid Extent

In addition to the maximum allowable time step, the number of time steps required

for a wave to cross the maximum grid extent dimension must also be calculated

before a gridded dataset can be used in the TCP parameterization system. The

parameter max_dist (i.e., the maximum grid extent dimension in m) is determined as

the maximum of either the latitude or longitude extent across the grid, which are

queried dynamically within the function. The max_dist value is divided by wave

velocity to determine the total time required to cross the maximum grid extent. The

resulting num_time_steps value is stored in a database table that contains metadata

describing each gridded dataset and is used to limit model run parameterization to

allowable values, so that a TCP user won’t accidentally enter unacceptable values.

--

-- This function calculates the number of time steps required to
-- cross the max grid extent, for each gridded dataset.

-- It is called via num_time_steps()

--

-- * following gives us distance in meters:
-- y_dist = (maxy - miny) * 60 * 1861

-- x_dist = (maxx - minx) * 60 * 1855 * cos(radians(miny))

-- * total_time = max_dist/sqrt(g * abs(avg_depth))

-- * use abs(avg_depth) because our depths might be stored as negative
values whereas most modelers store depths as positive values

-- * need to use radians() with cos()

CREATE OR REPLACE FUNCTION num_time_steps()

277

RETURNS VOID AS '

DECLARE

 minx NUMERIC;
 miny NUMERIC;

 maxx NUMERIC;

 maxy NUMERIC;

 max_dist NUMERIC;
 avg_depth NUMERIC;

 result NUMERIC;

 y_dist NUMERIC;

 x_dist NUMERIC;
 ym CONSTANT INTEGER := 1861;

 xm CONSTANT INTEGER := 1855;

 g CONSTANT FLOAT := 9.8;

 row RECORD;
 curs1 REFCURSOR;

BEGIN

 FOR row in SELECT db_table FROM input_grids WHERE

time_to_cross_max_domain IS NULL LOOP

 RAISE NOTICE ''PROCESSING %'', row.db_table;

 OPEN curs1 FOR EXECUTE ''SELECT min(x(geom)) FROM '' ||
quote_ident(row.db_table);

 FETCH curs1 into minx;

 CLOSE curs1;

 --RAISE NOTICE ''minx = %'', minx;

 OPEN curs1 FOR EXECUTE ''SELECT min(y(geom)) FROM '' ||

quote_ident(row.db_table);

 FETCH curs1 into miny;
 CLOSE curs1;

 --RAISE NOTICE ''miny = %'', miny;

 OPEN curs1 FOR EXECUTE ''SELECT max(x(geom)) FROM '' ||
quote_ident(row.db_table);

 FETCH curs1 into maxx;

 CLOSE curs1;

 --RAISE NOTICE ''maxx = %'', maxx;

 OPEN curs1 FOR EXECUTE ''SELECT max(y(geom)) FROM '' ||

quote_ident(row.db_table);

 FETCH curs1 into maxy;
 CLOSE curs1;

 --RAISE NOTICE ''maxy = %'', maxy;

 OPEN curs1 FOR EXECUTE ''SELECT avg(depth) FROM '' ||
quote_ident(row.db_table) || '' where depth > -30000 '';

 FETCH curs1 into avg_depth;

 CLOSE curs1;

 --RAISE NOTICE ''avg_depth = %'', avg_depth;

 y_dist = (maxy - miny) * 60 * ym;

278

 x_dist = (maxx - minx) * 60 * xm * cos(radians(miny));

 --RAISE NOTICE ''y_dist = %'', y_dist;

 --RAISE NOTICE ''x_dist = %'', x_dist;

 IF y_dist > x_dist

 THEN

 result := y_dist/sqrt(g * abs(avg_depth));
 ELSE

 result := x_dist/sqrt(g * abs(avg_depth));

 END IF;

 result := round(result,0);
 RAISE NOTICE '' result = %'', result;

 EXECUTE ''UPDATE input_grids SET time_to_cross_max_domain = '' ||

quote_literal(result) || '' WHERE db_table = '''''' ||
quote_ident(row.db_table) || '''''''';

 END LOOP;

 RETURN;
END;

' LANGUAGE 'plpgsql';

279

Appendix C: Selected PHP Functions and JavaScript Code Related to Spatial
Data Handling in the Portal Interface

Subgrid Selection

When a relatively coarse-resolution grid is selected in the portal interface, any grids

of finer resolution are made available for selection as subgrids; however, they are

only made available if they meet the 5:1 or 3:1 grid spacing ratio requirement. The

two functions below inspect metadata stored for each grid in the database, determine

which grids of finer resolution can be made available for selection as aligned

subgrids, and present the subgrid options to the user.

function getPossibleChildGrids($parent_grid, $level, $indent = 1)

{

 global $GRID_NAME_LIST;
 $grids = '';

 $query = 'SELECT * FROM input_grids ' .

 'WHERE enabled = true AND (region_id = ' . $parent_grid['region_id'] .
" OR region_id = 0) " .

 'AND (spacing = ' . round(($parent_grid['spacing'] / 3),10) . ' OR

spacing = ' . round(($parent_grid['spacing'] / 5),10) . ') ' .

 'AND (max_x > ' . $parent_grid['min_x'] . ' AND min_x < ' .
$parent_grid['max_x'] . ' AND ' .

 'max_y > ' . $parent_grid['min_y'] . ' AND min_y < ' .

$parent_grid['max_y'] . ') ' .

 'ORDER BY db_table';

 $child_results = queryDB($query);

 while($grid = pg_fetch_array($child_results, null, PGSQL_ASSOC))
 {

 $grids .= '<tr>';

 for($i = 0; $i < $indent * 2; $i++)
 {

 $grids .= '<td width="3%" rowspan="2"> </td>';

 }

 $num = $grid['input_grids_id'];

 $grids .= "<td width=\"5%\" align=\"right\"><input type=\"radio\"

name=\"master_grid_id\" id=\"master_grid_id_$num\" value=\"$num\"/></td>\n"

.

280

 "<td colspan=\"" . (9 - $indent) . "\">" .

 "<label for=\"master_grid_id_$num\">" .

$grid['db_table'] . '</label> <a
href="http://tsunamiportal.nacse.org/metadata/' . $grid['metadata_file'] .

 '" target="_blank" style="font-size : 80%">Metadata
';

 $grids .= "</td></tr><tr><td></td><td colspan=\"" . (9 - $indent) .

"\">X-Range: " . $grid['min_x'] . ' to ' .
$grid['max_x'] . "
\n" .

 "Y-Range: " . $grid['min_y'] . ' to ' . $grid['max_y'] . "
\n"

.

 "Spacing: " . $grid['spacing'] . ' ' . $grid['units'] .
"</br>\n";

 $grids .= "</td></tr>\n";

 $GRID_NAME_LIST[] = $grid['db_table'];

 if(--$level > 0)

 $grids .= getPossibleChildGrids($grid, $level, $indent + 1);

 }
 return $grids;

}

// getAddSubgrid($curr_grid)

//

// Returns a string containing an 'Add Sub Grid' button and a list

// of possible sub grid spacings to choose from.
//

// $curr_grid - The Grid Object to display possible sub grid spacings for

function getAddSubgrid($curr_grid)
{

 $output = '';

 // Obtain a reference to the array of possible spacings for the current
grid

 $spacings = $curr_grid->possible_spacings;

 // Get the tree depth of this grid node

 $node_depth = $curr_grid->getNodeDepth();

 // If there are any possible spacings

 if(count($spacings) > 0)

 {
 // If this grid meets the sub grid nesting constraints:

 // - The master grid can contain up to 4 sub grids

 // - Sub grids of the master grid can contain only one sub grid

 // - Sub grids of sub grids of the master grid cannot contain any
further sub grids

 if(($node_depth == 1 && count($curr_grid->child_grids) < 4) ||

 ($node_depth == 2 && count($curr_grid->child_grids) < 1))

 {
 // Setup a table to contain the button and spacing options

281

 $output = "<table width=\"100%\"><tr><td align=\"left\"

width=\"30%\">\n";

 // Setup the 'Add Sub Grid' button
 $output .= "<input type=\"submit\" name=\"add_new_grid[" .

$curr_grid->grid_id . "]\" value=\"Add Sub Grid\"

class=\"submit_small\"/>\n";

 $output .= "</td><td align=\"left\">\n";

 $spacing_checked = false;

 // Loop over each possible sub grid spacing
 foreach($spacings as $spacing)

 {

 // Create a spacing id to be decoded by the GridController

 $spacing_id = $spacing['spacing'] . '=' . $spacing['units'] . '=' .
$spacing['db_table'];

 if(!$spacing_checked)

 {

 $checked = 'checked="checked"';
 $spacing_checked = true;

 }

 else

 {
 $checked = '';

 }

 // Create a radio button and label for this spacing
 $output .= "<input type=\"radio\" name=\"grid_spacing_" .

$curr_grid->grid_id . "\" id=\"grid_spacing_" . $curr_grid->grid_id .

$spacing['db_table'] . "\" value=\"$spacing_id\" $checked/>\n";

 $output .= "<label for=\"grid_spacing_" . $curr_grid->grid_id .
$spacing['db_table'] . "\">" . $spacing['db_table'] . "</label>\n";

 }

 $output .= "</td></tr></table>\n";

 }
 else

 {

 // This grid cannot contain any more sub grids. Disallowed by the

nesting constraints.
 $output .= "No more sub grids allowed for this grid
\n";

 }

 }

Dynamically Calculating Estimated Simulation Time

As the portal user parameterizes a model run, they define the number of seconds

simulated by each time step as well as the total number of time steps to calculate.

With this information, the portal uses a mix of PHP and JavaScript to calculate the

282

estimated amount of time that will be simulated by the model run. This number

changes dynamically as the user adjusts their desired parameters.

function displayTotalSize()

{
 var total_points = <?php echo $m_grid->getTotalDataPoints(); ?>;

 var len_time_step = (document.getElementById('Len_Time_Step')).value;

 var num_time_steps = (document.getElementById('Num_Time_Steps')).value;

 var output_freq = (document.getElementById('Output_Frequency')).value;

 var hours_elapsed = (((len_time_step * num_time_steps) / 60) /

60).toFixed(3);

 if(parseFloat(len_time_step) > 0.0 && parseInt(num_time_steps) > 0 &&

parseInt(output_freq) > 0)

 {

 var size = (num_time_steps / output_freq) * total_points * 4;
 var out = '<b class="size_estimator">Estimated total output ≈ ' +

getNiceSize(size) + '
' +

 'Equivalent

of simulating ' + hours_elapsed +
 ' hrs
';

 if(out != last_out)

 {

 (document.getElementById('size_estimator')).innerHTML = out;
 last_out = out;

 }

 }

 else
 {

 if(last_out != '')

 {

 (document.getElementById('size_estimator')).innerHTML = '
<span
style="font-size : 80%;">
';

 last_out = '';

 }

 }
}

Calculating and Drawing Grid Extents on Selection Map

Each user-defined grid extent is displayed on the selection map after the user clicks

“Update Display” or proceeds to the next step in the interface. Latitude and

longitude values are mapped to pixel coordinates, and the functions below draw the

283

necessary lines to form the extent of each grid and apply a transparent shaded

overlay to the extent box.

function drawGrid($img)

{
 global $SEL_GRID;

 global $bg_color, $text_color, $range_color;

 $grid = $this->grid_info;

 $color = $text_color;

 $bg_color = $bg_color;

 if(isset($grid['overlapping']) && $grid['overlapping'] == true)
 {

 $color = colorallocate($img, 204, 0, 0);

 }

 if(!is_null($this->grid_bound) && !isset($grid['sibling_grid'])) {

 $this->grid_bound->drawGrid($img);

 }

 if(!is_null($grid['min_x'])) {

 if((isset($grid['overlapping']) and $grid['overlapping'] != true) or

(!isset($grid['overlapping']))){
 imagefilledrectangle($img, $grid['left'], $grid['top'],

$grid['left'] + $grid['x_length_scaled'], $grid['top'] +

$grid['y_length_scaled'], $bg_color);

 }
 imagerectangle($img, $grid['left'], $grid['top'], $grid['left'] +

 $grid['x_length_scaled'],

 $grid['top'] + $grid['y_length_scaled'],

 $color);
 $grid['caption'] = $grid['grid_id'] . ': ' . $grid['name'];

 $caption_width = $this->font_width * strlen($grid['caption']);

 if($caption_width > $grid['x_length_scaled'])

 {
 $grid['caption'] = substr($grid['caption'], 0,

 intval($grid['x_length_scaled'] / $this->font_width) - 2) . '..';

 }

 imagestring($img, $this->font_size, $grid['left'] + 3, $grid['top'] +

2, $grid['caption'], $color);

 $table_name_parts = explode('_', $grid['db_table']);
 $caption2 = '(' . $table_name_parts[count($table_name_parts) - 1] .

')';

 $caption_width = $this->font_width * strlen($caption2);

 if($caption_width > $grid['x_length_scaled'])
 {

284

 $caption2 = substr($caption2, 0, intval($grid['x_length_scaled'] /

$this->font_width) - 3) . '..)';

 }

 if($grid['y_length_scaled'] > (($this->font_height * 2) + 3))

 {

 imagestring($img, $this->font_size, $grid['left'] + 3, ($grid['top']

+ 2) + $this->font_height + 1 ,

 $caption2, $color);

 }

 }

 $this->drawChildGrids($img);

}

function drawChildGrids($img)

{

 $child_grids = $this->child_grids;
 foreach($child_grids as $idx => $child_grid)

 {

 $child_grid = $child_grids[$idx];

 $child_grid->drawGrid($img);
 }

}

285

Appendix D: Exporting and Packaging Selected Grid Extent

After a model run is configured and submitted for processing, an automated system

prepares the input configuration parameters and the associated gridded data. The

gridded data must be exported in the binary format required by the model codes that

will use the data on the computational system at ARSC.

Extracting Gridded Data as Binary Files

PostgreSQL supports the development of database functions via the libpq library, a

C-based application programming interface. In the TCP system, where xyz point

data must be converted to a specific binary format, a C-based program provided the

most efficient means of exporting the data and performing the proper conversion.

This code generates the output_bin_dfile() database

function, which is used to export gridded TCP data
in the binary format required by ARSC.

#include <stdio.h>

#include <stdlib.h>
#include <stdbool.h>

#include <sys/stat.h>

#include <unistd.h>

#include "executor/spi.h"

typedef unsigned char byte;

extern int output_bin_dfile(text *tbl_name, text *out_file, int x_min, int
y_min, int x_max, int y_max, int flip_signs)

{

 FILE *fpout;

 char *tablename;
 char *outfilename;

 char outfilepath[256];

 char tmpPath[256] = "";

 bool flipSigns = (flip_signs == 0 ? false : true);
 char query[512];

286

 unsigned int i, rows;

 int result;

 bool nullDepth = false;

 Datum datumDepth;

 float4 floatDepth;

 float bigendDepth;
 byte *lEnd = ((byte *) &floatDepth);

 byte *bEnd = ((byte *) &bigendDepth);

 byte cnt = 0;

 // Prepare tablename

 tablename = DatumGetCString(DirectFunctionCall1(textout,

PointerGetDatum(tbl_name)));

 // Prepare outfilename

 outfilename = DatumGetCString(DirectFunctionCall1(textout,

PointerGetDatum(out_file)));

 // Build the query statement

 sprintf(query, "SELECT depth::float4 FROM %s WHERE x >= %i AND x <= %i

AND y >= %i AND y <= %i ORDER BY y ASC, x ASC;", tablename, x_min, x_max,

y_min, y_max);

 // Open the output file for binary write access

 fpout = fopen(outfilename,"wb");

 if (fpout==NULL)

 {

 elog(ERROR, "Unable to open output file: '%s'", outfilename);

 }

 // Output file is open and ready, query is ready

 SPI_connect();

 // Execute the query

 result = SPI_exec(query, 0);

 rows = SPI_processed;

 // If the SELECT statement worked, and returned more than zero rows

 if (result == SPI_OK_SELECT && rows > 0)

 {
 // Get the tuple (row) description for the rows

 TupleDesc tupdesc = SPI_tuptable->tupdesc;

 // Get pointer to the tuple table containing the result tuples

 SPITupleTable *tuptable = SPI_tuptable;

 // Loop over each row in the result set (tuple set)

 for(i = 0; i < rows; i++)

 {
 // Get tuple (row) number i

 HeapTuple tuple = tuptable->vals[i];

287

 // Store a pointer to the depth value Datum on this row

 datumDepth = SPI_getbinval(tuple, tupdesc, 1, &nullDepth);
 floatDepth = DatumGetFloat4(datumDepth);

 if(nullDepth)

 elog (ERROR, "NULL depth value on row %i", i);

 if(flipSigns)

 floatDepth *= -1.0;

 // Write the little-endian floatDepth into bigendDepth
 bEnd += 3;

 for(cnt = 0; cnt < 4; cnt++)

 {

 *bEnd = *lEnd;
 if(cnt < 3) {

 lEnd++;

 bEnd--;

 }
 }

 lEnd -= 3;

 // Write the floating point depth value out to the file
 fwrite(&bigendDepth,sizeof(float),1,fpout);

 }

 }

 // Done using the result set

 SPI_finish();

 // Close the output file
 fclose(fpout);

 // CHMOD the file for access by group tportal

 int mode = (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH);
 chmod(outfilename, mode);

 // Free up memory

 pfree(tablename);
 pfree(outfilename);

 return 0;

}

Database Export Function

The PL/pgSQL code below imports the grid export C code as a PostgreSQL database

function. This function is called whenever a model run is configured and submitted,

288

and is used for exporting gridded spatial data into the binary format required by the

model codes at ARSC.

CREATE OR REPLACE FUNCTION output_bin_dfile(text, text, int4, int4, int4,

int4, boolean)
RETURNS int4

AS '/private/share/tcp/bin/libpgoutdfile.so'

LANGUAGE 'c';

289

Appendix E: Casualty Calculation Code for the Simulation Model

The casualty calculation code exists as part of a larger codebase that drives the

simulation framework. This code is written in C++ and, once compiled, produces

the command-line program that is called to determine casualty conditions for every

living member of the simulated population at each time step. The casualty

calculation takes measured anthropometric values into account, along with the

simulated water height, velocity, and direction. The status of each evaluated

individual is written to the spatial database. The code also generates a TIFF file for

each time step from the tsunami inundation modeling output data. Each TIFF file

represents the water depth at that time step of the tsunami simulation.

#include "CasualtyCalc.h"

void BuildVisuals(DataOutBlock<GByte> *inBuff, DataOutBlock<GByte>
*outBuff)

{

 int i,j,k;

 int v;
 int idx;

 GByte *buf = inBuff->GetSliceAt(0); //Both genders

 for (i=0;i<Row;i++){

 for(j=0;j<Col;j++){
 v=buf[i*Col+j];

 if (v == 0) {

 for (k=0;k<3;k++)

 outBuff->SetCellAt(j,i,k,(GByte)Zero[k]);
 }

 else {

 idx = (int)floor((float)v/10.); // color map index

 if (idx > 15) idx = 15;
 for (k=0;k<3;k++)

 outBuff->SetCellAt(j,i,k,(GByte)HSDColorMap[idx][k]);

 }

 }
 }

}

bool WriteOutFile(DataOutBlock<GByte> *DB, char *filename)

290

{

 char *finalName = new char[strlen(filename) + strlen(oPath) + 2]; // 1

for \0 and 1 for '/' just in case
 strcpy(finalName,oPath);

 if (oPath[strlen(oPath-1)]!='/')

 strcat(finalName,"/");

 strcat(finalName,filename);

 TiffByteWriter *tw = TiffWriterFactory::instanceOf(finalName,ex,DB);

 tw->setNoDataValue(0.);

 tw->WriteTiff();
 delete tw; // must do this explicitly or it won't get written

 delete finalName;

 return (true);

}

bool WriteOutFile(DataOutBlock<GInt16> *DB, char *filename)

{

 char *finalName = new char[strlen(filename) + strlen(oPath) + 2]; // 1
for \0 and 1 for '/' just in case

 strcpy(finalName,oPath);

 if (oPath[strlen(oPath-1)]!='/')

 strcat(finalName,"/");
 strcat(finalName,filename);

 TiffShortWriter *tw = TiffWriterFactory::instanceOf(finalName,ex,DB);

 tw->setNoDataValue(0.);
 tw->WriteTiff();

 delete tw; // must do this explicitly or it won't get written

 delete finalName;

 return (true);
}

bool ReadPeopleFile()

{
 FILE *fp;

 char buf[HSDMAXBUF];

 float x,y;

 float sx,sy;
 int gid;

 float t;

 int srid;

 Location *l;
 Location *srl;

 int id;

 int idx = 0;

 Location S;

 assert((fp=fopen(People_infile,"r"))!=NULL);

 fgets(buf,HSDMAXBUF,fp);
 sscanf(buf,"%d %d\n",&NumPeople,&srid);

 people = new Person[NumPeople];

291

 fgets(buf,HSDMAXBUF,fp);

 while (!feof(fp)){
 sscanf(buf,"%d\t%f\t%f\t%f\t%f\t%d\t%f\n",&id,&y,&x,&sy,&sx,&gid,&t);

 l = new Location(x,y,srid);

 srl = new Location(sx,sy,srid);

 if ((ex->World2Screen(*l,S))==true) {
 people[idx].Set_Person(id,l,pt);

 RN->RoutePerson(&people[idx],srl,gid,t);

 idx++;

 }
 fgets(buf,HSDMAXBUF,fp);

 }

 printf("Read in %d people, kept %d\n",NumPeople,idx);
 NumPeople=idx;

 return (true);

}

bool ReadStructureFile()

{

 FILE *fp;
 char buf[HSDMAXBUF];

 float x,y;

 int srid;

 Location l;
 int gid;

 int hc;

 int idx = 0;

 Location S;

 assert((fp=fopen(Structure_infile,"r"))!=NULL);

 fgets(buf,HSDMAXBUF,fp);
 sscanf(buf,"%d %d\n",&NumStructures,&srid);

 structures = new Structure[NumStructures];

 fgets(buf,HSDMAXBUF,fp);
 while (!feof(fp)){

 sscanf(buf,"%d\t%d\t%f\t%f\n",&gid,&hc,&y,&x);

 l.Set_Location(x,y,srid);

 if ((ex->World2Screen(l,S))==true)
 structures[idx++].setStructure(gid,hc,l);

 fgets(buf,HSDMAXBUF,fp);

 }

 printf("Read in %d structures, kept %d\n",NumStructures,idx);
 NumStructures=idx;

 return (true);

}

void

usage(void)

292

{

 printf("av[1] - input H Series file\n"\

 "av[2] - input U Series file name\n"\
 "av[3] - input V Series file name\n"\

 "av[4] - input Bathy-Topot file name\n"\

 "av[5] - extent file name\n"\

 "av[6] - People file name\n"\
 "av[7] - Structures file name\n"\

 "av[8] - Number of time slices to iterate across\n"\

 "av[9] - Path to directory where output products will be dumped\n"\

 "av[10] - When to start people running (i.e. which time index)\n"\
 "av[11] - Output table name\n"\

 "av[12] - Road Network name\n"\

"\n\n");

exit(0);
}

bool InitializeOutputDir(void)

{
 DIR *dirp;

 if ((dirp=opendir(oPath))!=NULL)

 closedir(dirp);
 else {

 return((mkdir(oPath,0755)==0 ? true:false));

 }

 return(true);
}

 //av[1] - input H Series file\n"\

 //av[2] - input U Series file name\n"\
 //av[3] - input V Series file name\n"\

 //av[4] - input Bathy-Topot file name"\

 //av[5] - extent file name\n"\

 //av[6] - People file name\n"\
 //av[7] - Structures file name\n"\

 //av[8] - Number of time slices to iterate across\n"\

 //av[9] - Path to directory where output products will be dumped\n"\

 //av[10] - When to start people running (i.e. which time index)\n"\

bool Initialize(int ac, char **av)

{

 if (ac < 8) usage();

 H_infile = strdup(av[1]);

 U_infile = strdup(av[2]);

 V_infile = strdup(av[3]);
 BT_infile = strdup(av[4]);

 extent_infile = strdup(av[5]);

 People_infile = strdup(av[6]);

 Structure_infile = strdup(av[7]);
 Time = atoi(av[8]);

 oPath = strdup(av[9]);

293

 whenToRun = atoi(av[10]);

 Output_Table_Name = strdup(av[11]);

 Road_infile = strdup(av[12]);
 oPrefix = strdup("");

 assert(InitializeOutputDir());

 ex = new Extent(extent_infile);

 Row = ex->get_Row();

 Col = ex->get_Col();

 pm = new PeopleMover(ex);
 RN = new RoadNetwork(Road_infile);

 dbU = new DataBlock<float>(Row,Col,Time,U_infile);

 dbV = new DataBlock<float>(Row,Col,Time,V_infile);
 dbH = new DataBlock<float>(Row,Col,Time,H_infile);

 dbBT = new DataBlock<float>(Row,Col,1,BT_infile);

 pt = new PopTable();

 ReadPeopleFile();

 dbpr = new DBPopRecorder(Output_Table_Name);

 return (true);

}

char *MakeFilename(char *base, int num)

{

 char *name = new char[strlen(base)+5+strlen(oPrefix)+1+4]; //length of

base + 5 digits + length of prefix + 4 for .tif + 1 for null
 sprintf(name,"%s%s%05d.tif",oPrefix,base,num);

 return (name);

}

void

CalcCasualty(Person *p,int sx, int sy, float *gh, float *gu, float *gv,

float *gbt, int pidx)

{
 PopRow *pr = p->get_ptr();

 float u;

 float v;
 float h;

 float speed;

 float tol=1e-6;

 if (isnan(gh[sy*Col+sx])) return; // no water...no casualty

 h = gh[sy*Col+sx]/100.-(gbt[sy*Col+sx]*-1.);

 if (h < tol) return; // water is so low it's in the noise

 if (h < p->get_height()) return; // the person is on something (bridge)
above the water

294

 if (isnan(gu[sy*Col+sx])) u = 0.; // no U speed;

 else u = gu[sy*Col+sx]/100.; // convert cm/sec to m/sec

 if (isnan(gv[sy*Col+sx])) v = 0.; // no V speed;
 else v = gv[sy*Col+sx]/100.; // convert cm/sec to m/sec

 speed = sqrt(u*u+v*v);

 if (speed < tol) return; //water speed ~= 0...no casualty

 float a = pr->get_a();

 float b = pr->get_b();
 float c = pr->get_c();

 float d = pr->get_d();

 float e = pr->get_e();

 float f = pr->get_f();
 float hb = pr->get_hb();

 float hc = pr->get_hc();

 float hg0 = pr->get_hg0();

 float x = pr->get_x();
 float w = pr->get_weight()*9.81;

 float A,Ay0,V,um,uf,minu;

 float wsv;

 if (h < hb){

 A = a*h+(b-a)*((h*h)/(2.*hb));

 Ay0 = ((a/2.)*(h*h)+((b-a)/(3*hb))*powf(h,3.));

 V = h * 3.1415926 * ((a + (b - a) * (h/hb))/2.) * ((d + (e-d) *
(h/hb))/2.0);

 } else {

 A = ((a + b)/2.)*hb+b*(h-hb)+((c-b)/(2.*(hc-hb)))*(h-hb)*(h-hb);

 Ay0 = ((a/2.)*hb*hb+((b-a)/3.)*hb*hb+(1./(6.*(hb-hc)))*(3*c*h*h*hb-
(2*b+c)*powf(hb,3.)+3*b*hb*hb*hc+h*h*(2.*(b-c)*h-3.*b*hc)));

 V = hb * 3.1415926 * ((a + (b - a) * (h/hb))/2.) * ((d + (e-d) *

(h/hb))/2.0) + (h-hb)*3.1415926 * ((b+(c-b) * ((h-hb)/(hc-hb)))/2.) *

((e+(f-e)*((h-hb)/(hc-hb)))/2.0);
 }

 if (w < (sigma*V)) {

 Location currentPersonLocation = p->get_location();
 p->set_dead(true);

 return;

 }

 wsv = w-sigma*V;

 um = sqrt((2.*wsv*x)/(Cd*Density*Ay0));

 uf = sqrt((2.*ff*wsv)/(Cd*Density*A));

 minu = HSDMIN((um),(uf));

 if ((speed/minu) < 1.) {

 return;

 } else {
 p->set_dead(true);

 }

295

 return;

}

void RunSimulation(void)

{

 int t;
 int p;

 int TotalDead=0;

 int DeadThisRound;

 Location currentPersonLocation;
 Location Screen;

 char *deadTimeSliceFileName;

 char *livingTimeSliceFileName;

 char *waterTimeSliceFileName;
 char *cummDeadFileName;

 char *visualLivingFileName;

 char *visualDeadFileName;

 int x,y;
 float *gh,*gu,*gv,*gbt;

 int i;

 gbt = dbBT->GetSliceAt(0);

 printf("Starting Simulation with %d people\n",NumPeople);

 for(t = 0;t < Time; t++){
 if (TotalDead >= NumPeople) break;

 DeadThisRound=0;

 gh = dbH->GetSliceAt(t);
 gu = dbU->GetSliceAt(t);

 gv = dbV->GetSliceAt(t);

 printf("Calculating casualties for time index %d...",t);

 for(p = 0; p < NumPeople; p++){

 if (people[p].is_dead()) {

 continue;

 }

 if (people[p].is_safe()) continue;

 currentPersonLocation = people[p].get_location();
 if((ex->World2Screen(currentPersonLocation,Screen))==false){

 people[p].set_safe(true);

 continue;

 }
 x=(int)Screen.get_x();

 y=(int)Screen.get_y();

 CalcCasualty(&people[p],x,y,gh,gu,gv,gbt,p);

 dbpr->addRow(p,&people[p],t);

296

 if (people[p].is_dead()) {

 DeadThisRound++;
 TotalDead++;

 } else {

 if (t >= whenToRun)

 pm->MovePerson(&people[p]);
 }

 }

 printf("%d %s died\n",DeadThisRound,(DeadThisRound == 1 ? "person

has":"people have"));
 }

 dbpr->Flush();

 int deadStats=0;

 int liveStats=0;

 for(p = 0; p < NumPeople; p++){
 if (people[p].is_dead()) deadStats++;

 else liveStats++;

 }

 printf("Total People: %d\n\t Dead: %d (%5.2f%%)\n\tAlive: %d

(%5.2f%%)\n\n\n",

 NumPeople,deadStats,((float)deadStats/(float)NumPeople)*100.,

 liveStats,((float)liveStats/(float)NumPeople)*100.);
}

int

main(int ac, char **av)
{

 // Load global variables from CMD line or issue usage

 assert(Initialize(ac,av));

 RunSimulation();
}

297

Appendix F: Database Function for Automatically Calculating Simulation Run
Summary Statistics

Following a simulation run, a set of summary statistics need to be calculated for use

in the results web interface. This pl/pgSQL database function calculates the

summary statistics and inserts them into a new table that is queried by the web

interface. The function is run automatically at the end of a simulation run.

/*

 This PL/pgSQL function creates a stats table containing the number of

 simulated people alive at each time step index. The table is given the

 same name as the data table, with '_stats' appended.

 Inputs:

 maintbl: name of the table containing the data for the time series run

 ts: total number of time steps simulated (1-based)

 Example usage:

 SELECT create_stats_table('job_151', 500);

*/

CREATE OR REPLACE FUNCTION create_stats_table(maintbl VARCHAR, ts INTEGER)

 RETURNS VOID

AS $$

DECLARE

 curs1 refcursor;

 max INTEGER;
 ct INTEGER;

 endct INTEGER;

 newtbl VARCHAR := ($1 || '_stats');

BEGIN

 IF EXISTS (

 SELECT *
 FROM pg_catalog.pg_tables

 WHERE schemaname = 'public'

 AND tablename = quote_ident(newtbl)

)
 THEN

 RAISE NOTICE 'ERROR: Table public.%', newtbl || ' already exists.

Exiting now.';

 EXIT;
 ELSE

298

 EXECUTE 'CREATE TABLE ' || quote_ident(newtbl) || ' (tidx int, alive

int)';

 RAISE NOTICE 'Created table %', newtbl;
 END IF;

 -- select max time step index contained in main data table (can be < ts)

 OPEN curs1 FOR EXECUTE 'SELECT max(tidx) FROM ' || quote_ident(maintbl);
 FETCH curs1 INTO max;

 CLOSE curs1;

 -- select number of people living at end of simulation (time index in
 -- main data table may end prior to full ts value, so this 'endct' var

 -- is used to fill in the count for those final values)

 OPEN curs1 FOR EXECUTE 'SELECT count(id) FROM ' || quote_ident(maintbl)

|| ' WHERE alive IS NULL';
 FETCH curs1 INTO endct;

 CLOSE curs1;

 FOR i IN 0..ts-1 LOOP
 IF max+1 <= i THEN

 EXECUTE 'INSERT INTO ' || quote_ident(newtbl) || ' VALUES (' || i ||

', ' || endct || ')';

 ELSE
 OPEN curs1 FOR EXECUTE 'SELECT count(id) FROM ' ||

quote_ident(maintbl) || ' WHERE tidx = ' || i || ' AND alive IS TRUE OR

alive IS NULL';

 FETCH curs1 INTO ct;
 CLOSE curs1;

 EXECUTE 'INSERT INTO ' || quote_ident(newtbl) || ' VALUES (' || i ||

', ' || ct || ')';

 END IF;
 END LOOP;

 RAISE NOTICE 'Finished';

END;

$$

LANGUAGE 'plpgsql';

299

Appendix G: Web Code for the Simulation Results Page, Map-based
Visualization, and Tabular Data

After configuring and running a simulation model run, the user can view a web page

that displays the animated, map-based visualization of the simulation results. The

code that creates the results page contains a combination of PHP, HTML, and

Javascript, and draws upon several open source packages (PHP, MapServer,

OpenLayers, HighCharts, and Proj.4). This Appendix includes selected code from

certain key files that construct the results page:

• db.php: Functions that connect to the spatial database to retrieve data

• rpc.php: Code that handles Javascript AJAX calls to return data to the client

• table.php: Data table popup web page

• result.js: OpenLayers mapping code and all of the related custom Javascript
that drives the animation, timekeeping, charting, and other client-side
functionality.

Selected Code from db.php

<?

 function getPersonInfo($dbh, $table, $lon, $lat, $tidx) {

 $query = "select pid, mid

 from $table
 where (tidx = $tidx OR alive = 'f')

 and ST_DWithin(ST_GeogFromText('SRID=4326;POINT($lon $lat)'),

geography(geometry), 50)

 order by ST_Distance_Sphere(ST_GeometryFromText('POINT($lon
$lat)',4326), geometry)

 limit 1";

 $result = pg_query($dbh, $query);

 if(pg_num_rows($result) == 0) {
 $out = "No person found within 100m of map click
\n";

 } else {

 $out = array();

 while($row = pg_fetch_row($result)) {
 $out[0] = $row[0];

300

 $row[1] == 1 ? $out[1] = 'Male' : $out[1] = 'Female';

 }

 }
 return $out;

 }

 // Query to populate google-viz-chart data table
 function getTimeSeries($dbh, $table, $pid) {

 $query = "SELECT id, tidx, alive, ST_X(geometry) AS lon, ST_Y(geometry)

 AS lat FROM $table WHERE pid = $pid ORDER BY tidx";

 $result = pg_query($dbh, $query);
 $rows = pg_num_rows($result);

 $col = 0;

 echo "data.addRows($rows);\n";

 while ($row = pg_fetch_array($result)) {
 $row['alive'] == 't' ? $alive = 'true' : $alive = 'false';

 echo "

data.setCell($col,0,".htmlspecialchars($row['id']).");\n";

 echo "
data.setCell($col,1,".htmlspecialchars($row['tidx']).");\n";

 echo " data.setCell($col,2,".htmlspecialchars($alive).");\n";

 echo "

data.setCell($col,3,".htmlspecialchars(round($row['lon'],6)).");\n";
 echo "

data.setCell($col,4,".htmlspecialchars(round($row['lat'],6)).");\n";

 $col++;

 }
 }

 /* This version uses ogr2ogr, which supports retrieval of attributes into

 the GeoJSON format, and not just the geometry */
 function getPathPoints($table, $pid) {

 $filename = randString(12);

 $file = '/tmp/' . $filename . '.json';

 $util = "$conf['ogr2ogrPath']";
 $cmd = $util . ' -f "GeoJSON" ' . $file . ' PG:"dbname=<<redacted>>

user=<<redacted>> password=<<redacted>>" -sql "select

ST_Transform(geometry, 900913), tidx from ' . $table . ' where pid=' . $pid

. '"';
 exec($cmd, $output, $ret);

 if ($ret == 0) {

 return $filename;

 } else {
 return 'There was an error.';

 }

 }

?>

301

Selected Code from rpc.php

<?

$proc = $_GET['proc'];

if($proc == 'get_wave_heights') {

 $x = $_GET['x'];

 $y = $_GET['y'];
 $minx = $_GET['minx'];

 $miny = $_GET['miny'];

 $maxx = $_GET['maxx'];

 $maxy = $_GET['maxy'];
 $htfile = $_GET['htfile'];

 $extent = array($minx,$miny,$maxx,$maxy);

 $numsteps = $_GET['numsteps'];

 $rows = $_GET['rows'];
 $cols = $_GET['cols'];

 $geo_xy = projectPoint($x, $y, $current_proj, true);

 $img_xy = geoToPix($geo_xy[0], $geo_xy[1], $rows, $cols, $extent);

 $cmd = 'inc/read_sample ' . $cols . ' ' . $rows . ' ' . $numsteps . ' ' .
$htfile . ' ' . $img_xy[0] . ' ' . $img_xy[1];

 $data = exec($cmd);

 $data = str_replace('nan', '0', $data);

 echo json_encode($data, JSON_NUMERIC_CHECK);
} elseif($proc == 'get_path_data') {

 $x = $_GET['x'];

 $y = $_GET['y'];

 $table = $_GET['table'];
 $tidx = $_GET['tidx'];

 $person_info = getPersonInfo($dbh, $table, $x, $y, $tidx); // returns

pid, gender

 if(is_array($person_info)) {
 $data = getPathPoints($table, $person_info[0]);

 echo json_encode($data);

 } else {

 $d = array(0);
 echo json_encode($d);

 }

} elseif($proc == 'get_count') {

 $table = $_GET['table'];
 $tidx = $_GET['tidx'];

 $data = getCount($dbh, $table, $tidx); // returns int count

 echo json_encode($data);

} else {
 error("Called non-existent procedure: ", $proc);

}

?>

302

Selected Code from table.php

<script type='text/javascript' src='https://www.google.com/jsapi'></script>

<script type='text/javascript'>
 var data, table;

 var tidx = <?echo $tidx;?>;

 google.load('visualization', '1', {packages:['table']});
 google.setOnLoadCallback(drawTable);

 function drawTable() {

 data = new google.visualization.DataTable();
 data.addColumn('number', 'Event ID');

 data.addColumn('number', 'Time Step');

 data.addColumn('boolean', 'Alive');

 data.addColumn('number', 'Longitude');
 data.addColumn('number', 'Latitude');

 <? if(is_array($person_info)) {

 getTimeSeries($dbh, $table, $person_info[0]);

 } else {
 echo "No person exists close enough to your map click. Please try

again.";

 }

 ?>
 table = new

google.visualization.Table(document.getElementById('popup_table'));

 table.draw(data, {width:500, showRowNumber:true});

 google.visualization.events.addListener(table, 'select',

selectHandler);

 function selectHandler() {
 var selection = table.getSelection();

 var item = selection[0];

 var ts = data.getFormattedValue(item.row, 1);

 var tsint = parseInt(ts);
 window.opener.jumpToTimeStep(tsint);

 window.opener.hiliteSegment(tsint);

 }

 // set initial state of table and space-time path on map

 var max = data.getNumberOfRows();

 if(tidx < max) {

 table.setSelection([{row:tidx, column:null}]);
 //window.opener.hiliteSegment(tidx);

 }

 }

</script>

303

Selected Code from result.js

<script type="text/javascript">

/** Build water depth chart **/

 $(document).ready(function() {

 chart = new Highcharts.Chart({
 chart: {

 renderTo: 'chartdiv',

 type: 'area',

 borderColor: '#bbb',
 borderWidth: 2,

 borderRadius: 5,

 zoomType: 'x',

 resetZoomButton: {
 position: {

 x: -10,

 y: 10

 },
 relativeTo: 'chart'

 },

 events: {

 click: function(event) {
 jumpToTimeStep(Math.round(parseFloat(event.xAxis[0].value)));

 }

 }

 },
 title: {

 text: 'Water Depth at Selected Point Across All Time Steps'

 },

 xAxis: {
 title: {

 text: 'Time Step'

 }

 },
 yAxis: {

 title: {

 text: 'Water Depth (m)'

 }
 },

 loading: {

 labelStyle: {

 top: '45%'
 }

 },

 tooltip: {

 shared: true,
 crosshairs: true

 },

 plotOptions: {

 series: {
 lineWidth: 1

304

 },

 area: {

 marker: {
 enabled: false,

 }

 }

 },
 credits: {

 enabled:false

 },

 series: [{
 name: 'water depth (m)',

 showInLegend: false,

 data: []

 }]
 });

 });

 /** Set up map and related init **/

 function init() {

 updateCounter(tidx);

 newURL(tidx);

 debugE = document.getElementById('debug');

 var lon = -123.929;

 var lat = 45.996;

 var zoom = 9;

 var ctr_merc = OpenLayers.Layer.SphericalMercator.forwardMercator(lon,

lat);

 ctr_merc_x = ctr_merc.lon;
 ctr_merc_y = ctr_merc.lat;

 // openlayers

 map = new OpenLayers.Map('map', {
 units: "m",

 maxResolution: 156543.0339,

 maxExtent: new OpenLayers.Bounds(-20037508.34, -20037508.34,

20037508.34, 20037508.34),
 projection: epsg900913

 //displayprojection: epsg4326

 });

 var ls = new OpenLayers.Control.LayerSwitcher();

 map.addControl(ls);

 // base layers
 gterrain = new OpenLayers.Layer.Google(

 "Google Terrain",

305

 { type: google.maps.MapTypeId.TERRAIN,

 maxZoomLevel: 15,

 minZoomLevel: 4,
 sphericalMercator: true

 });

 groadmap = new OpenLayers.Layer.Google(

 "Google Roadmap",
 { type: google.maps.MapTypeId.ROADMAP,

 minZoomLevel: 4,

 maxZoomLevel: 19,

 sphericalMercator: true
 });

 ghybrid = new OpenLayers.Layer.Google(

 "Google Hybrid",

 { type: google.maps.MapTypeId.HYBRID,
 minZoomLevel: 4,

 maxZoomLevel: 19,

 sphericalMercator: true

 });
 gsatellite = new OpenLayers.Layer.Google(

 "Google Satellite",

 { type: google.maps.MapTypeId.SATELLITE,

 minZoomLevel: 4,
 maxZoomLevel: 19,

 sphericalMercator: true

 });

 esri_ocean = new OpenLayers.Layer.ArcGIS93Rest(
 "ESRI Ocean Basemap",

"http://services.arcgisonline.com/ArcGIS/rest/services/Ocean_Basemap/MapSer

ver/export",
 { layers: "show:0",

 srs: "3857",

 format: "jpg"

 });

 // vector layers

 popl = new OpenLayers.Layer.MapServer(

 "Population",
 "http://newvole.nacse.org/cgi-bin/mapserv", {

 map: '/a1/www/mapfiles/hsd.map',

 layers: 'alive dead alldead',

 format: 'image/png',
 tidx: tidx

 },{

 singleTile: true,

 isBaseLayer: false,
 });

 runup = new OpenLayers.Layer.MapServer(

 "Wave Runup",

 "http://newvole.nacse.org/cgi-bin/mapserv", {
 map: '/a1/www/mapfiles/hsd.map',

 layers: 'runup',

306

 format: 'image/png',

 data: data

 },{
 singleTile: true,

 isBaseLayer: false,

 });

 var wavept_style = OpenLayers.Util.extend({},

OpenLayers.Feature.Vector.style['default']);

 wavept_style.fillOpacity = 1;

 wavept_style.strokeColor = "black";
 wavept_style.fillColor = "yellow";

 wavept_style.pointRadius = 4;

 wavept_style.strokeWidth = 2;

 wavept = new OpenLayers.Layer.Vector("Wave Chart Point", {

 style: wavept_style,

 isBaseLayer: false,

 displayInLayerSwitcher: true,
 numZoomLevels: gsatellite.numZoomLevels,

 resolutions: gsatellite.resolutions

 });

 runup.setOpacity(.6);

 runup.events.register("loadend", runup, runupOnload);

 popl.events.register("loadend", popl, poplOnload);

 map.addLayers([gterrain, groadmap, ghybrid, gsatellite, esri_ocean,

runup, popl]);

 map.addLayer(wavept);
 map.setBaseLayer(ghybrid);

 map.setCenter(new OpenLayers.LonLat(ctr_merc_x, ctr_merc_y), zoom);

 // Handle map click - wave chart vs. person data table
 map.events.register('click', map, function(e) {

 var xy = map.getLonLatFromViewPortPx(e.xy);

 if($("input[name='mapclick']:checked").val() == 'table') { //

display data table
 var geo = getLatLon(xy);

 var call = 'table.php?table=' + table + '&lon=' + geo.x + '&lat=' +

geo.y + '&tidx=' + tidx;

 var config =
'height=700,width=600,scrollbars=yes,toolbar=no,menubar=no,location=no,dire

ctories=no,status=no';

 popwin = window.open(call, 'tablewin', config);

 pathHandler(table, geo.x, geo.y, tidx);
 } else { // update water depth chart

 chart.showLoading();

 getWaveHeights(xy, numsteps, rows, cols, htfile, minx, miny, maxx,

maxy);
 addPoint(xy);

 }

307

 });

 // initial message above chart
 $('#chartmsg').html(chart_msg_pre + '(click

map to select point)' + chart_msg_suf);

 addPlotLine(tidx+1);

 // starting condition for counter - alive_ct comes from

result/index.php

 $('#alivenum').html(alive_ct[0]);

 $('#totalnum').html(alive_ct[0]);
 }

 function isArray(a) {

 return Object.prototype.toString.apply(a) === '[object Array]';
 }

 function forward() {

 if(tidx < img_max) {
 tidx++;

 newURL(tidx);

 updateCounter(tidx);

 $('#alivenum').html(alive_ct[tidx]);
 redrawLayers();

 if(typeof(stpath_layer) != 'undefined') {

 hiliteSegment(tidx);

 }
 }

 }

 function back() {
 if(tidx > img_min) {

 tidx--;

 newURL(tidx);

 updateCounter(tidx);
 $('#alivenum').html(alive_ct[tidx]);

 redrawLayers();

 if(typeof(stpath_layer) != 'undefined') {

 hiliteSegment(tidx);
 }

 }

 }

 function redrawLayers() {

 runup.params.data = data;

 popl.params.tidx = tidx;

 if(runup.visibility) {

 u = runup.grid[0][0].url;

 out = u.replace(/runup_\d{5}/, 'runup_'+img);

 runup.grid[0][0].imgDiv.src = out;
 }

308

 if(popl.visibility) {

 popl_loading = 1;

 popl.redraw();
 }

 removePlotLine();

 addPlotLine(tidx);
 }

 function runupOnload() {

 runup_loading = 0;
 animateMap();

 }

 function poplOnload() {
 popl_loading = 0;

 animateMap();

 }

 function animateMap() {

 // hack to prevent OpenLayers from displaying lingering pop'l layer

 // on zoom event during animation

 if(animating) {
 if(popl_loading == 0 && runup_loading == 0) {

 $('#OpenLayersDiv181').hide();

 forward();

 }
 }

 }

 function updateCounter(imageNum) {
 count = document.getElementById('count');

 // Note: the text below makes the count one-based, for user ease

 //count.innerHTML = ''+(tidx+1)+' of '+readable_max+'';

 count.innerHTML = ''+(tidx)+' of '+numsteps+'';
 }

 // this is ONLY used to toggle layer status based on user click

 function layerControl(clickedLayer) {
 if(layerStatus[clickedLayer] == true) {

 layerStatus[clickedLayer] = false;

 } else {

 layerStatus[clickedLayer] = true;
 }

 layerString()

 newURL(tidx);
 }

 // build new LAYERS string to go in mapserv CGI call

 function layerString() {
 // reset LAYERS string

 layersOn = 'LAYERS=';

309

 for(i in layerStatus)

 {
 if(layerStatus[i] == true)

 {

 layersOn = layersOn + i + " ";

 }
 }

 }

 function newURL(imageNum) {
 img = sprintf('%05d', imageNum);

 data = model+"/"+run+"/runup_"+img+".tif";

 }

 function imageJump(selectObj) {

 var idx = selectObj.selectedIndex;

 var dest = selectObj.options[idx].value;

 tidx = Math.round(parseFloat(dest));
 newURL(dest);

 updateCounter(dest);

 $('#alivenum').html(alive_ct[dest]);

 if(typeof(stpath_layer) != 'undefined') {
 hiliteSegment(idx);

 }

 redrawLayers();

 }

 function jumpToTimeStep(num) {

 tidx = num;

 newURL(num);
 updateCounter(num);

 $('#alivenum').html(alive_ct[num]);

 redrawLayers();

 }

 function addPlotLine(ts) {

 chart.xAxis[0].addPlotLine({

 value: ts,
 color: 'rgb(255, 0, 0)',

 width: 1,

 id: 'waveline'

 });
 }

 function removePlotLine() {

 chart.xAxis[0].removePlotLine('waveline');
 }

 function buttonHandler(imageID,button) {

 test = document.getElementById(imageID);
 test.src = "images/" + button;

 return true;

310

 }

 function getLatLon(xy) {
 var src = new Proj4js.Proj('EPSG:900913');

 var dst = new Proj4js.Proj('EPSG:4326');

 var pt = new Proj4js.Point(xy.lon, xy.lat);

 Proj4js.transform(src, dst, pt);
 return pt;

 }

 function addPoint(xy) {
 wavept.removeAllFeatures();

 var point = new OpenLayers.Geometry.Point(xy.lon,xy.lat);

 wavept_feature = new OpenLayers.Feature.Vector(point);

 wavept.addFeatures([wavept_feature]);
 }

 function roundNum(num, dec) {

 var newnum = Math.round(num*Math.pow(10,dec))/Math.pow(10,dec);
 return newnum;

 }

 function pathHandler(table, x, y, tidx) {
 getPathData(table, x, y, tidx);

 }

 function removeSTPath() {
 if(typeof(stpath_layer) != 'undefined') {

 map.removeLayer(stpath_layer);

 map.removeLayer(stendpt_layer);

 }
 }

 function drawSTPath(geojson) {

 var features = [];
 var data = new OpenLayers.Format.GeoJSON();

 var file = '/temp/' + geojson + '.json';

 // get geojson output file from handler ajax call to ogr2ogr
 OpenLayers.Request.GET({

 url: file,

 async: false,

 success: function(r){
 features = data.read(r.responseText);

 },

 failure: function(x){

 alert('Could not retrieve path data.');
 }

 });

 stpath_layer = new OpenLayers.Layer.PointTrack('Space-Time Path', {
 isBaseLayer: false

 // styles applied below, per segment

311

 });

 map.addLayer(stpath_layer);
 stpath_layer.addNodes(features);

 // alternate path segment colors to denote movement per time step

 var c, ct = features.length;
 for(i = 0; i < (ct-1); i++) {

 i % 2 != 0 ? c = '#ff1493' : c = '#000078';

 stpath_layer.features[i].style = OpenLayers.Util.applyDefaults({

 strokeColor: c,
 strokeWidth: 5,

 strokeOpacity: 1.

 });

 }

 stpath_layer.redraw();

 // hilite path segment for current time step
 if(tidx < stpath_layer.features.length) {

 hiliteSegment(tidx);

 }

 // create styled start/end points for path

 stendpt_layer = new OpenLayers.Layer.Vector('Path Start/End Points');

 stendpt_layer.addFeatures([
 new OpenLayers.Feature.Vector(features[0].geometry),

 new OpenLayers.Feature.Vector(features[ct-1].geometry)

]);

 stendpt_layer.features[0].style = OpenLayers.Util.applyDefaults({
 strokeColor: '#00ff00',

 strokeWidth: 3,

 pointRadius: 9

 }, stendpt_layer.styleMap.styles.default.defaultStyle);
 stendpt_layer.features[1].style = OpenLayers.Util.applyDefaults({

 strokeColor: '#ff0000',

 strokeWidth: 3,

 pointRadius: 9
 }, stendpt_layer.styleMap.styles.default.defaultStyle);

 stendpt_layer.redraw();

 map.addLayer(stendpt_layer);

 }

 // Hilite currently selected time step

 function hiliteSegment(tidx) {
 var segstyle = OpenLayers.Util.extend({},

OpenLayers.Feature.Vector.style['default']);

 segstyle.strokeColor= '#ffe303';

 segstyle.strokeWidth= 5;
 segstyle.fontColor= '#0ff';

 segstyle.fontSize= '14px';

312

 segstyle.fontWeight= 'bolder';

 segstyle.labelXOffset= 15;

 segstyle.labelYOffset= 10;
 segstyle.label= $.trim(tidx);

 if(typeof(prev_tidx) != 'undefined') { // restore color of

previously-selected segment
 stpath_layer.features[prev_tidx].style.strokeColor = prev_color;

 stpath_layer.features[prev_tidx].style.label = false;

 }

 if(typeof(stpath_layer.features[tidx]) != 'undefined') {

 prev_color = stpath_layer.features[tidx].style.strokeColor;

 prev_tidx = tidx;

 //stpath_layer.features[tidx].style.strokeColor = '#ffe303';
 stpath_layer.features[tidx].style = segstyle;

 stpath_layer.redraw();

 }

 }

/** AJAX calls **/

 function getWaveHeights(xy, numsteps, rows, cols, htfile, minx, miny,
maxx, maxy){

 $.getJSON("../rpc.php?proc=get_wave_heights&x=" + xy.lon + "&y=" +

xy.lat + "&numsteps=" +

 numsteps + "&rows=" + rows + "&cols=" + cols + "&htfile=" +
htfile + "&minx=" +

 minx + "&miny=" + miny + "&maxx=" + maxx + "&maxy=" + maxy,

 function(data) {

 var cd = $.parseJSON(data); // convert to js array object
 var cd_cm = new Array;

 $.each(cd, function(idx, val) {

 cd_cm[idx] = roundNum((val/100), 2); // convert cm to m, round to

2 decimal places, add to new array
 });

 chart.series[0].setData(cd_cm); // assign data series in chart

 var geo = getLatLon(xy);

 $('#chartmsg').html(chart_msg_pre + Math.round(geo.x * 10000)/10000
+

 ', ' + Math.round(geo.y * 10000)/10000 +

chart_msg_other +

 chart_msg_suf); // update lat/lon coords above
chart

 chart.hideLoading(); // hide loading state

 }

);
 }

 function getPathData(table, x, y, tidx){

 $.getJSON("../rpc.php?proc=get_path_data&x=" + x + "&y=" + y +
"&table=" + table + "&tidx=" + tidx,

 function(data) {

313

 var pd = data;

 isArray(pd) ? alert('Map click was not close enough to a person.')

: drawSTPath(pd);
 }

);

 }

314

Appendix H: Sample Area-based GridServer Method

The GridServer includes a number of method functions, each written to perform a

specific type of processing task. Area-based GridServer requests are more complex

than point-based (i.e., single grid cell) requests, requiring validation of the bounding

box or spatial mask, clipping, statistical calculation(s), and multiple file output (most

of those operations exist in other functions not displayed here). Both the “temporal

first” and “spatial first” calculations are performed in every area-based GridServer

method function. The Python function below processes requests for statistical

calculations a range of months for a defined region.

def _stats_area_months(self, request,

 start=None,

 end=None,
 pstat=None,

 param=None):

 """
 Statistic calculated across area over time (months).

 Returns a result grid (or grids) and data values as output.

 """

 log = request.logger

 start = start or request.start

 end = end or request.end

 param = param or request.param
 pstat = pstat or request.pstat

 ret = {param: {}}

 log.info(" _stats_area_months start:%s end:%s" % (

start.strftime("%Y/%m"), end.strftime("%Y/%m")))

 # clip bounds
 self.init_bounds(request)

 # get keys for requested monthly grids

 monthly_keys = self.get_monthly_keys(start, end)
 log.debug(" monthly_key handles: %s" % ",".join(monthly_keys))

315

 if not self.validate_keys(request, "monthlies", param, monthly_keys):

 log.error("Could not get monthly data")

 else:
 monthly_array = self.get_clipped_mdarray(request, "monthlies", param,

monthly_keys)

 if monthly_array is None:

 log.error("Could not make clipped monthly array")
 else:

 if request.spatial_mask is not None:

 monthly_array[:,request.spatial_mask] = numpy.nan

 if pstat == 'pca':

 pca_grids, pca_eigval = self.get_pca_grids(monthly_array)

 pca_outfiles = []

 for i in range(len(pca_grids)):

 if request.spatial_mask is not None:

 pca_grids[i][request.spatial_mask] = numpy.nan

 name = request.gricket + "_pca" + str(i+1)

 new_filename = name + ".bil"

 new_path = os.path.join(request.output_dir, new_filename)

 new_ds = self.array_2_dataset(pca_grids[i], request.bounds,
new_path)

 pca_outfiles.append(os.path.join(request.gricket,

new_filename))

 ret["pca_grids"] = pca_outfiles
 ret["pca_eigval"] = pca_eigval

 else:

 spatial_vals = self.get_spatial_values(param, pstat,

monthly_array)
 ret = {param: self._stats_param_output(spatial_vals, param)}

 temporal_grid = self.get_temporal_grid(pstat, monthly_array)

 if request.spatial_mask is not None:
 temporal_grid[request.spatial_mask] = numpy.nan

 name = request.gricket + "_" + pstat

 new_filename = name + ".bil"
 new_path = os.path.join(request.output_dir, new_filename)

 new_ds = self.array_2_dataset(temporal_grid, request.bounds,

new_path)

 ret["grid"] = os.path.join(request.gricket, new_filename)
 cells_used = numpy.count_nonzero(~numpy.isnan(monthly_array[0]))

 ret["extent"] = [request.bounds.leftlon, request.bounds.toplat,

 request.bounds.rightlon, request.bounds.bottomlat]

 ret["size"] = [request.bounds.cols, request.bounds.rows]
 ret["cells_used"] = cells_used

 return ret

316

Appendix I: GridServer Area-based Statistical Calculations

The GridServer calculates area-based statistics using the “temporal first” and “spatial

first” methods. In the “temporal first” method (essentially a form of

multidimensional map algebra), the output product is a grid. In the “spatial first”

method, the statistic is calculated across all cells in each grid, resulting in a single

output value per grid. The array of values produced by that process is the output

product. The two Python functions below each get called as part of an area-based

GridServer request.

def get_spatial_values(self, param, pstat, data):

 ### Computes mean across each grid area and returns the resulting set

 ### of values.
 ### AKA "spatial first"

 if param == 'ppt':

 rnda = 3
 rndb = 2

 rndc = 1

 else:

 rnda = 2
 rndb = 1

 rndc = 1

 spatial_vals = []

 # convert nan's if they exist (ie, bbox is partly over ocean)

 # this approach uses a numpy masked array to mask the nan's

 mdata = numpy.ma.masked_array(data, numpy.isnan(data))

 for i in mdata:

 if(pstat == 'mean'):
 spatial_vals.append(round(numpy.ma.mean(i), rnda))

 elif(pstat == 'min'):

 spatial_vals.append(round(numpy.ma.min(i), rndb))

 elif(pstat == 'max'):
 spatial_vals.append(round(numpy.ma.max(i), rndb))

 elif(pstat == 'median'):

 spatial_vals.append(round(numpy.ma.median(i), rndb))

 elif(pstat == 'stddev'):
 spatial_vals.append(round(numpy.ma.std(i, ddof=1), rndc))

317

 return spatial_vals

def get_temporal_grid(self, pstat, data):

 ### Computes mean thru all columns and returns a new grid (ie, map

 ### algebra).
 ### AKA "temporal first"

 ### axis=0 computes thru columns

 # convert nan's if they exist (ie, bbox is partly over ocean)
 # this approach uses a numpy masked array to mask the nan's

 fill_val = -9999.

 mdata = numpy.ma.masked_array(data, numpy.isnan(data))

 if(pstat == 'mean'):

 grid = numpy.ma.mean(mdata, axis=0)

 elif(pstat == 'min'):
 grid = numpy.ma.min(mdata, axis=0)

 elif(pstat == 'max'):

 grid = numpy.ma.max(mdata, axis=0)

 elif(pstat == 'median'):
 grid = numpy.ma.median(mdata, axis=0)

 elif(pstat == 'stddev'):

 grid = numpy.ma.std(mdata, axis=0, ddof=1)

 outgrid = grid.filled(fill_val)

 return outgrid

318

Appendix J: PCA Calculation in Python

The GridStats system allows PCA to be performed across a set of PRISM climate

grids for a defined area, resulting in an output set of grids representing the principal

components in descending order of percentage of variance explained. The NumPy

Python module contains core functionality that can be used to manipulate grids as

multidimensional arrays, as well as a set of linear algebra functions (numpy.linalg)

that enable the calculations necessary for PCA. The Python function below is called

by any GridServer area-based method when a PCA-based request is submitted.

def get_pca_grids(self, data):

 ### Computes principal components for the requested set of input grids.

 ### Returns the set of principal component arrays to be turned into
 ### grids, and an array of the matching eigenvectors expressed as

 ### percentage of variance explained.

 fill_val = -9999.
 mdata = numpy.ma.masked_array(data, numpy.isnan(data))

 # Get shape of 3D grids array and create a zero'd 2D array the same size,

 # then fill new 2D array with flattened 3D subarrays.
 # This is all to get a flattened array (one entire grid per subarray),

 # so the covariance matrix can be properly calculated across grids.

 d1,d2,d3 = mdata.shape
 mdata2 = numpy.ma.zeros([d1,d2*d3])

 for i in range(len(mdata)):

 mdata2[i] = mdata[i].flatten()

 # Mean-center the flattened array...axis=0 calculates the column mean,

 # which is subtracted from each array element in that column.

 mdata2 -= numpy.ma.mean(mdata2, axis=0)

 # Scale the mean-centered array...axis=0 calculates the column SD,

 # which is then used to divide each array element in that column.

 mdata2 /= numpy.ma.std(mdata2, axis=0, ddof=1)

 # Calculate the covariance matrix of the mean-centered, scaled array.

319

 covar = numpy.ma.cov(mdata2)

 # Use numpy.linalg.eig to calculate the eigenvalues and eigenvectors
 # of the covariance matrix. By its nature the covariance matrix is

 # always a square array, so we can properly use linalg.eig to do this.

 eval, evec = la.eig(covar)

 # Get array index for the eigenvalues, such that the largest eigenvalues

 # are first in the sort order. The index is used to sort both the

 # eigenvalues and the eigenvectors.
 # That is, the eigenvectors are properly sorted to maintain their

 # association with the matching eigenvalues.

 eval_abs = numpy.absolute(eval)
 idx = eval_abs.argsort()[::-1]

 sorted_eval = eval_abs[idx]

 sorted_evec = evec[idx]

 # Use the properly sorted (high to low) eigenvalues and associated

 # eigenvectors to calculate new arrays representing the principal

 # components. The new arrays are stored in the pc_grids numpy array

 # and returned. Matching eigenvalues are converted to percentage
 # variance explained, and placed in eigval[].

 #

 # First PC is calculated as:

 # PC1=(evec_col0_val0*mdata0)+(evec_col0_val1*mdata1)+...
 # Second PC is calculated as:

 # PC2=(evec_col1_val0*mdata0)+(evec_col1_val1*mdata1)+...

 # and so on...

 eval_sum = numpy.sum(sorted_eval)

 pc_grids = numpy.zeros([d1,d2,d3])

 eigval = []

 val = 0

 for i in pc_grids:

 i = numpy.ma.zeros([d2,d3])

 for j in range(len(mdata)):
 i += sorted_evec[j][val] * mdata[j]

 pc_grids[val] = i.filled(fill_val)

 eigval.append(round((sorted_eval[val]/eval_sum)*100, 2))

 val += 1

 return pc_grids, eigval

320

Appendix K: GridStats Client-side Code Samples

The initial settings page in the GridStats web interface incorporates hundreds of lines

of JavaScript code to perform tasks such as date checks, menu updates, and

validation of input settings prior to request submission. Most of these tasks are

handled using the jQuery JavaScript library and are executed solely on the client-

side, while others involve AJAX methods to asynchronously retrieve server-side data

to update client-side options. The code samples below are representative of the

larger set of client-side code in the system.

Sample Change Function

Each radio button group on the input settings page has dynamic client-side

functionality attached to the change event. The jQuery $.change() function was

used for this purpose rather than explicitly defining an onchange() call in the HTML

element. This approach allows any necessary logic to be processed anytime the user

makes a change to that radio button selection. In this example, the Spatial Scale

radio button group captures a change whenever the user clicks among Point, Area, or

Entire Grid selections, or the sub-selections under Area (Draw box, State, County,

Watershed). Certain commands and functions must be processed depending upon

which radio button is selected (e.g., if Area is selected, the “Summary Statistics”

choice is disabled, and if “Draw Box” is then selected by default, a function is called

to enable box drawing).

321

// for when point scale changes to area scale and vice-versa

$("input[name='spatial']").change(function(e){

 removePolyLayers();
 removeBoxLayer();

 disableBoxDraw();

 disablePoint();

 setStat();
 $('#click_map_text').removeClass('red_text');

 if($(this).val() == 'point') {

 disableArea();

 uncheckSubAreas();
 on_select_map_click();

 $('#click_map_text').addClass('red_text');

 } else if($(this).val() == 'area') {

 removePointLayer();
 enableBoxDraw();

 $('#pca').removeAttr('disabled');

 $('#pca_label').removeClass('disabled');

 $('#draw_box_text').addClass('red_text');
 if(!$("input[name='areas']:checked").val()) {

 $('#box').prop('checked', true);

 }

 } else if($(this).val() == 'full') {
 $('#draw_box_text').removeClass('red_text');

 removePointLayer();

 uncheckSubAreas();

 if($('#pca').prop('checked', true)) {
 $('#pca').attr('disabled', 'disabled');

 $('#pca_label').addClass('disabled');

 $('#mean').prop('checked', true);

 }
 }

});

Sample Menu Updater

In the date selection menus for daily data, the selectable days must be adjusted

depending upon the currently selected month (i.e., if June is selected, day 31 must be

disabled as a possible selection). This happens dynamically due to the updateDays()

function below, which indexes into the mo_days array and automatically enables or

disables days depending upon the month. The function properly handles February 29

322

in both leap years and regular years. The jQuery statements used in this function are

dynamically assembled based on input values.

var mo_days = Array(31,28,31,30,31,30,31,31,30,31,30,31);

// disables/enables days of month in <select>s based on new selection

// called when changes are made to month dropdowns

// also called from updateMonths()

function updateDays(pre, se) {

 var sy, sm, sd;

 var sy = parseInt($('#'+pre+'_'+se+'yr').val(), 10);

 var sm = parseInt($('#'+pre+'_'+se+'mo').val(), 10);
 var sd = parseInt($('#'+pre+'_'+se+'dy').val(), 10);

 var ld = mo_days[sm-1];

 // assign 29 as last day of Feb in a leap year
 if(sm == 2) {

 if(sy % 400 == 0) { // leap year

 ld = 29;

 } else if(sy % 100 == 0) { // not leap year
 ld = 28;

 } else if(sy % 4 == 0) { // leap year

 ld = 29;

 } else { // not leap year
 ld = 28;

 }

 }

 // re-enable any options that were disabled earlier

 $('#'+pre+'_'+se+'dy *').attr('disabled', false);

 // disable any days (i.e., 31) that don't exist in current month
 if(ld < 31) {

 for(var j=ld+1; j<=31; j++) {

 $('#'+pre+'_'+se+'dy option[value="'+j+'"]').attr('disabled', true);

 }
 // handle leap year - make sure 29 Feb is not disabled

 if(ld == 29) {

 $('#'+pre+'_'+se+'dy option[value="29"]').attr('disabled', false);

 }
 }

323

Sample Validator

This sample function validates the selected number of input grids for certain

statistics – certain statistics such as PCA require at least three input grids. This

function ensures that the minimum number is selected prior to submission, avoiding

any server-side errors that would result from such a request. In this function, many

of the jQuery statements are dynamically constructed based on current menu

selections.

var elm = 'border';

var sty = '1px solid red';

function validateNumGrids(pstat) {
 var resp = 'You must select at least 3 grids when calculating

'+pstat+'.';

 if($('#'+pstat).prop('checked') == true) {

 if($('#mo_in_yr').prop('checked') == true) {
 if($('#miy_endyr').val() - $('#miy_startyr').val() < 3) {

 $('#miy_startyr').css(elm,sty);

 $('#miy_endyr').css(elm,sty);

 alert(resp);
 return false;

 }

 }

 if($('#mo_in_rng').prop('checked') == true) {
 start = $('#mir_startyr').val() + '/' + $('#mir_startmo').val() + '/'

+ 01;

 end = $('#mir_endyr').val() + '/' + $('#mir_endmo').val() + '/' + 01;

 chk = calcDays(start, end);
 if(chk < 58) { // under 3 months, accounting for inclusion of Feb

 $('#mir_startyr').css(elm,sty);

 $('#mir_startmo').css(elm,sty);

 $('#mir_endyr').css(elm,sty);
 $('#mir_endmo').css(elm,sty);

 alert(resp);

 return false;

 }
 }

 if($('#days_in_rng').prop('checked') == true) {

 start = $('#dir_startyr').val() + '/' + $('#dir_startmo').val() + '/'

+ $('#dir_startdy').val();
 end = $('#dir_endyr').val() + '/' + $('#dir_endmo').val() + '/' +

$('#dir_enddy').val();

324

 chk = calcDays(start, end);

 if(chk < 3) {

 $('#dir_startyr').css(elm,sty);
 $('#dir_startmo').css(elm,sty);

 $('#dir_startdy').css(elm,sty);

 $('#dir_endyr').css(elm,sty);

 $('#dir_endmo').css(elm,sty);
 $('#dir_enddy').css(elm,sty);

 alert(resp);

 return false;

 }
 }

 }

 return true;

}

Sample AJAX Call

Dynamically-filled menus on the input settings page, such as the County menu and

HUC Name menu, must be filled immediately after the user makes a selection in the

previous “State” menu. This is done by automatically sending a request to a PHP

script on the server (rpc.php in the function below), which formulates and submits a

query to the database, receives the return, processes it in to a JSON string, and

returns it to the calling function on the client. The calling function, built using the

jQuery $.getJSON() approach, it is able to process the JSON return and dynamically

populate the HUC menus based on the State selection. In the case of the Watershed

menu, a spatial database query is performed to retrieve all HUCs that intersect with

the selected state. That set is returned to this function, which populates the HUC

Name and HUC Code menus.

function populateHucs(state_name, cookie_load_menu, cookie_zoom_poly){

 $.getJSON("rpc.php?proc=hucs&state2=" + state_name,

 function(data) {

 var ops1 = ['<option value="null">- HUC Name -</option>'];

325

 var ops2 = ['<option value="null">- HUC Code -</option>'];

 $.each(data, function(i,row) {

 // IDs are used as values so the menus can be synced
 ops1.push('<option value="' + row[0] + '">' + row[1] + '</option>')

 ops2.push('<option value="' + row[0] + '">' + row[2] + '</option>')

 });

 $("#huc_name").html(ops1.join(''));
 $("#huc_code").html(ops2.join(''));

 $('#hucs_loader').html(' ');

 // need to do from_cookie here rather than in cookie function area,

 // so that these can fire after AJAX call
 if(cookie_load_menu) {

 $('#huc_name option[value="' + $.cookie('huc_name') +

'"]').attr('selected', 'selected');

 $('#huc_code option[value="' + $.cookie('huc_name') +
'"]').attr('selected', 'selected');

 if(cookie_zoom_poly) {

 zoomToPoly('huc');

 }
 }

 }

);

}

326

Appendix L: Calculating Centered Moving Averages

The interactive charts on the GridStats result pages are built dynamically by

processing the data returned from a GridServer request and formatting the values to

work with the client-side Highcharts JavaScript library. In addition to the data

values, centered moving averages are calculated and plotted on the same chart. Each

time series includes a pair of moving average windows (e.g., monthly uses 12-month

and 5-month windows) on the chart. The centered moving averages are calculated

using a PHP function that accepts the data values array and a window size. Odd-

numbered windows are fairly easy to calculate, since two data values on either side

of the window center are used (e.g., values 1-2 and 4-5 in a size-5 window). Even-

numbered windows are more difficult to process and require essentially a double

moving average operation to calculate the centered values.

/* Creates an array of centered moving average data values */

/* for a given data array and window size. */

/* Correctly handles both even- and odd-sized windows. */

function centeredMovingAvg($data, $win) {

 // determine whether win is odd or even
 $odd = $win % 2 == 0 ? false : true;

 $param = $_POST['param'];

 $dec = $param != 'ppt' ? '%01.1f' : '%01.2f';
 $ct = count($data);

 // set proper halfwin for odd vs. even

 if($odd) {
 $halfwin = floor($win/2); //ie, win=5 gives halfwin=2

 } else {

 $halfwin = $win/2; //ie, win=10 gives halfwin=5

 }

 $end = $ct - $halfwin;

327

 // assign output nulls for unused data points at beginning of range

 for($i=0; $i<$halfwin; $i++) {
 $out[$i] = 'null';

 }

 if($odd) {
 // calculate centered moving average across odd window

 for($i=$halfwin; $i<$end; $i++) {

 $sum = 0;

 for($j=($i-$halfwin); $j<=($i+$halfwin); $j++) {
 $sum += $data[$j];

 }

 $out[$i] = sprintf($dec, $sum/$win);

 }
 } else {

 // calculate centered moving average across even window

 // this is a 2-by-X centering method, where X is the even window value

 $cf1 = 1/$win; // coeff for calculating non-endpoint vals
 $cf2 = $cf1/2; // coeff for calculating endpoint vals

 for($i=$halfwin; $i<$end; $i++) {

 $sum = 0;

 for($j=($i-$halfwin); $j<=($i+$halfwin); $j++) {
 // window of 10 will have val index range of 0-10 (11 vals)

 $coeff = $j == ($i-$halfwin) || $j == ($i+$halfwin) ? $cf2 : $cf1;

 $sum += $coeff * $data[$j];

 }
 $out[$i] = sprintf($dec, $sum);

 }

 }

 // assign output nulls for unused data points at end of range

 for($i=$end; $i<$ct; $i++) {

 $out[$i] = 'null';

 }

 // can end up with an array full of nulls with short time spans

 // this messes up chart ... so return false and don't chart it at all

 if(count(array_unique($out)) == 1 && $out[0] == 'null') {
 return false;

 } else {

 return $out;

 }
}

	Chapter 1: Introduction
	1.1 Spatiotemporal Data Representation and Software Tools
	1.2 Advancements in Web-based Technology
	1.3 Automated Data Processing
	1.4 Data Exploration and Visualization
	1.5 Spatiotemporal Data Used in This Study
	1.5.1 Tsunami Inundation Modeling Input Data
	1.5.2 Tsunami Evacuation Simulation Data
	1.5.3 PRISM Modeled Climate Data

	1.6 Research Goals
	1.6.1 Spatial Data Handling in the Tsunami Computational Portal (Chapter 2)
	1.6.2 Web-based Tsunami Scenario Simulation Framework (Chapter 3)
	1.6.3 Web-based Climate Grid Statistics (Chapter 4)

	1.7 References

	Chapter 2: Spatial data configuration, storage, and analysis for web-based tsunami computational modeling and visualization
	2
	2.1 Abstract
	2.2 Introduction
	2.3 Tsunami Modeling
	2.4 Portal Infrastructure
	2.4.1 Database Configuration

	2.5 Spatial Data Handling
	2.5.1 Input Grid Specifications
	2.5.2 Grid Alignment
	2.5.3 Grid Preparation for a Model Run

	2.6 Results
	2.6.1 Portal Usage
	2.6.2 Input Grid Availability
	2.6.3 Output Grids and Data Products
	2.6.4 Spatial Database Performance

	2.7 Discussion
	2.7.1 System Integration
	2.7.2 Portal Design and Spatial Data Handling
	2.7.3 Automation and Output Data Products

	2.8 Conclusion
	2.9 Acknowledgments
	2.10 References

	Chapter 3: Web-based simulation modeling and visualization of tsunami inundation and potential human response
	3
	3.1 Abstract
	3.2 Introduction
	3.2.1 Tsunami Evacuation
	3.2.2 Simulation Modeling
	3.2.3 Spatiotemporal Data Representation
	3.2.4 Animation of Spatiotemporal Data
	3.2.5 Evacuation Modeling
	3.2.6 Study Goals

	3.3 Related Work
	3.3.1 Simulation Frameworks
	3.3.2 Tsunami Modeling and Visualization
	3.3.3 Modeling Human Movement
	3.3.4 Tsunami Evacuation Simulation
	3.3.5 Casualty and Loss Estimation

	3.4 Simulation Framework
	3.4.1 Framework Architecture
	3.4.2 Spatial Database
	3.4.3 Input Data Sources and Data Preparation
	3.4.4 Casualty Determination
	3.4.5 Simulation Model
	3.4.6 Output Data Products
	3.4.7 Simulation Results Interface
	3.4.7.1 Mapping and Animation Tool
	3.4.7.2 Interactive Chart
	3.4.7.3 Space-Time Path Construction and Rendering
	3.4.7.4 Interactive Data Table

	3.5 Discussion
	3.5.1 Casualty Determination and Evacuation Movement
	3.5.2 Data Sources and Issues
	3.5.3 Hardware and Software Technology
	3.5.4 User Interactivity

	3.6 Conclusion
	3.7 Acknowledgments
	3.8 References

	Chapter 4: GridStats: A web-based system for calculating climate grid statistics over varying spatial and temporal scales
	4
	4.1 Abstract
	4.2 Introduction
	4.2.1 PRISM Climate Grids
	4.2.2 Real-time Grid Calculations
	4.2.3 Project Goals

	4.3 Related Work
	4.3.1 Web-based Grid Processing
	4.3.2 Web-based Climate Grid Analysis
	4.3.3 Map Algebra and Grid Statistics
	4.3.4 Server-side Grid Processing Systems

	4.4 The GridStats System
	4.4.1 Design Intent
	4.4.2 System Architecture
	4.4.3 Hardware and Software
	4.4.4 Input Data Sources
	4.4.4.1 PRISM Climate Grids
	4.4.4.2 Additional Spatial Data

	4.4.5 Spatial Database
	4.4.6 The GridServer
	4.4.6.1 Purpose
	4.4.6.2 System Design
	4.4.6.3 GridStats Usage

	4.4.7 Server-side Processing
	4.4.7.1 Calculating Grid Statistics
	4.4.7.1.1 Extending the GridServer
	4.4.7.1.2 Area-based Methods
	4.4.7.1.3 Calculating Univariate Statistics in Python
	4.4.7.1.4 Calculating PCA in Python

	4.4.7.2 Data Output Products

	4.4.8 Website Design, Client-side Tools, and User Interaction
	4.4.8.1 Input Settings
	4.4.8.1.1 Menu Selections and Validation
	4.4.8.1.2 Map-based Selection

	4.4.8.2 Results Pages
	4.4.8.2.1 Dynamic Charting
	4.4.8.2.2 Point Results
	4.4.8.2.3 Area Results
	4.4.8.2.4 Data Export

	4.5 Discussion
	4.5.1 Grid Statistical Calculations
	4.5.2 Optimization
	4.5.3 Scalability

	4.6 Conclusion
	4.7 Acknowledgments
	4.8 References

	Chapter 5: Conclusion
	5
	5.1 Web-based Approaches and New Technology
	5.2 Automated Data Processing
	5.3 Spatiotemporal Data Representation and Visualization
	5.4 Summary
	5.5 References

	Chapter 6: Bibliography
	APPENDICES
	Appendix A: Conversion of Gridded Bathymetry ASCII (xyz) Datasets to Spatial Database Tables
	Appendix B: PostgreSQL Database Functions for Calculating Parameters of Gridded Bathymetry Datasets
	Maximum Allowable Time Step
	Number of Time Steps Required to Cross Grid Extent

	Appendix C: Selected PHP Functions and JavaScript Code Related to Spatial Data Handling in the Portal Interface
	Subgrid Selection
	Dynamically Calculating Estimated Simulation Time
	Calculating and Drawing Grid Extents on Selection Map

	Appendix D: Exporting and Packaging Selected Grid Extent
	Extracting Gridded Data as Binary Files
	Database Export Function

	Appendix E: Casualty Calculation Code for the Simulation Model
	Appendix F: Database Function for Automatically Calculating Simulation Run Summary Statistics
	Appendix G: Web Code for the Simulation Results Page, Map-based Visualization, and Tabular Data
	Selected Code from db.php
	Selected Code from rpc.php
	Selected Code from table.php
	Selected Code from result.js

	Appendix H: Sample Area-based GridServer Method
	Appendix I: GridServer Area-based Statistical Calculations
	Appendix J: PCA Calculation in Python
	Appendix K: GridStats Client-side Code Samples
	Sample Change Function
	Sample Menu Updater
	Sample Validator
	Sample AJAX Call

	Appendix L: Calculating Centered Moving Averages

