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A common—perhaps modal—representation of geography in spatial analysis and geographic information systems is
native (unexamined) objects interacting based on simple distance and connectivity relationships within an empty
Euclidean space. This is only one possibility among a large set of geographic representations that can support
quantitative analysis. Through the vehicle of GIS, many researchers are adopting this representation without
realizing its assumptions or its alternatives. Rather than locking researchers into a single representation, GIS could
serve as a toolkit for estimating and exploring alternative geographic representations and their analytical
possibilities. The article reviews geographic representations, their associated analytical possibilities and relevant
computational tools in the combined spatial analysis and GIScience literatures. The discussion identifies several
research and development frontiers, including analytical gaps in current GIS software. Key Words: geographic
information systems, geographic representation, spatial analysis.

A
common—perhaps modal—representation of ge-
ography in spatial analysis (SA) and geographic

information systems (GIS) is native (unexa-
mined) objects interacting based on simple distance and
connectivity relationships within an empty Euclidean
plane. This representation has essentially remained un-
touched since its inception during the birth of quanti-
tative geography and computer cartography, an era
characterized by scarce geographic data, weak computers,
and crude spatial algorithms. It is only one possibility
among a large set that can support ‘‘analysis,’’ or the ability
to measure and infer quantitative properties and relation-
ships.1 The Euclidean model is useful in many contexts,
such as cartography, navigation, and many types of
analysis. However, there may be latent explanatory power
in geographic space not captured by the Euclidean model
and consequently missed by SAtechniques and GIS-based
analysis based on this georepresentation. Representation
and analysis are closely linked: mathematical and compu-
tational tools, however powerful, cannot extract more
information than is latent in a representation.

Through the vehicle of GIS, many researchers are
adopting the Euclidean model and its related analytical
possibilities without realizing its assumptions or its alter-
natives. Rather than locking researchers into a single
representation, GIS could serve as a toolkit for estimating
and exploring alternative geographic representations and
their analytical possibilities for a given geographic phe-
nomenon or problem. Reconsidering and expanding the
geographic representation model underpinning both SA

and GIS is an unexplored avenue for improving analytical
capabilities of both.

Theories and techniques for alternative geographic
representations and analyses exist in the SA and ge-
ographic information science (GIScience) literatures.2 SA
has a small but steady current of literature on representa-
tion issues in analysis, including theories of geographic
space and techniques for estimating distance metrics,
analyzing geographic relationships between spatial ob-
jects, and analyzing geometric form. The GIScience
literature contains recent breakthroughs in computa-
tional methods for storing and processing digital repre-
sentations of geography, including progress on several
representational issues of long-standing concern in SA.
These literatures are mostly independent from each other,
judging by the low level of cross-citations. The potential
synergy of the complementary developments in both
literatures may not be apparent to researchers in either
subfield or to researchers in broader domains of human
and physical geography as well as related disciplines. The
fusing of these independent research trajectories into an
integrated research agenda could generate SA and GIS
tools that might help reveal new insights into the role
of geography in explaining many physical and human
phenomena.

This article reviews geographic representations, their
associated analytical possibilities, and relevant computa-
tional tools in the combined SA and GIScience literatures.
We discuss developments in the SA and GIScience
literatures from the perspective of the Beguin-Thisse
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theory of geographic space (Beguin and Thisse 1979). The
Beguin-Thisse theory makes explicit the fundamental
assumptions and properties required to measure ge-
ographic phenomena in a manner that can support
analysis. It also clearly illustrates other analytical geo-
representations and the requirements for constructing
these representations. We also consider complementary
conceptualizations of fundamental geographic relation-
ships and form from the SA and GIScience literatures. In
addition, the discussion highlights analytical gaps in
current GIS software, suggesting requirements for GIS
software development.

We begin the review by describing in detail the
motivation for this article: tracing issues regarding
representation and analysis in GIS and SA (second
section). In the third section, we discuss the measurement
and analysis of fundamental geospatial properties, in
particular location, length, and area. We show that the
Euclidean model is only one among many possible
frameworks for representing these properties. In the
fourth section, we discuss the measurement and analysis
of geographic attributes, the geographic relationships and
properties implied by these attributes, and the possibilities
for analyzing these attributes. The fifth section provides
concluding remarks regarding research and develop-
ment frontiers, as well as strategies for progress along
these frontiers.

Representation Issues in Spatial Analysis
and GIS

Spatial Analysis and GIS

Spatial analysis (SA) is a subfield of geography and
regional science that studies properties that vary with
geographic location (see Goodchild 1987). The primary
methodological approach is quantitative analysis (see
Taaffe 1974). Geographic location is also a central
organizing principle in geographic information systems
(GIS) and science (GIScience). A shared goal of SA and
GIS is to improve capabilities for understanding geo-
graphic phenomena and solving geographic problems.

Given their mutual focus on geographic location as an
organizing principle, there have been many calls and
attempts to build stronger linkages between SA and GIS
(e.g., Goodchild 1989, 1992; Fotheringham 1991; Fischer
and Nijkamp 1992; Fotheringham 1992, 1993; Goodchild
et al. 1992; Fotheringham and Rogerson 1994; Turner,
Meyer, and Skole 1994; Openshaw 1994, 1995). While
much progress has been made, criticism persists that
linkages between SA and GIS are not fully realized
(Anselin and Getis 1992; Batty 1992; Grossmann and

Eberhardt 1992; Anselin, Dodson, and Hudak 1993;
Goodchild, Parks, and Steyaert 1993; Bailey and Gatrell
1995; Miller 1999; Fotheringham, Brunsdon, and Charl-
ton 2000; Ungerer and Goodchild 2002). Although some
techniques, such as local spatial statistics and geographi-
cally weighted regression, are difficult, if not impossible
without GIS (Anselin 1995; Brunsdon, Fotheringham
and Charlton 1996; Getis and Ord 1996), the spatial-
analytic breakthroughs seem sparse relative to the
apparent possibilities.

A similar, sometimes implicit criticism is apparent in
domain-oriented subfields of human and physical geog-
raphy. In many subfields of physical geography—primarily
biogeography and landscape ecology—GIS is embraced
as a tool for storage, display, data manipulation, and
integration. The use of GIS as an analytical toolkit is less
common (see, for example, Walsh, Butler, and Malanson
1998; Noonan 1999; Aspinall and Pearson 2000; Newson
and Newson 2000; Mawdsley 2001). Climatologists and
meteorologists have largely ignored GIS due to its lack of
capabilities for analyzing temporal processes, a limitation
frequently described in the literature (Langran 1993;
Peuquet 1994, 2001; Dragicevic and Marceau 2000).
Some human geographers have commented explicitly that
‘‘Cartesian perspectivalism’’ has limited the potential of
GIS (Roberts and Schein 1995; Curry 1998). A sterile
geometry is associated with a simplified GIS that fails
to fully represent some segments of society or complex
geographic processes.

Representation in Spatial Analysis and GIS

SA and GIS have roots in the ‘‘quantitative revolution’’
in geography and computer-assisted cartography, respec-
tively. Both emerged in an era when data were relatively
scarce and computational power was relatively limited
(1950s–1960s). Researchers in both areas adopted a
similar geographic representational model; we refer to this
as theEuclideanmodel, since it highlights simple Euclidean
space properties. The Euclidean model represents geog-
raphic entities as points, lines, and polygon objects, or as
an intensity field, within an empty Euclidean planar space.
These objects are often treated as native, in the sense that
their form is accepted rather than examined (with the
exception of the well-known modifiable-areal-unit prob-
lem; see Openshaw and Taylor 1979). Although SA and
GIS evolved somewhat separately, planar Euclidean
geometry remains central to the representational model
in both fields.

In SA, the Euclidean model allows tractable analytical
calculations based on simple objects, Euclidean distance
functions, and basic connectivity relationships that
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operate within a conveniently empty space. These proper-
ties are easily extracted from maps. In GIS, the Euclidean
model is convenient for data display, navigation, and
other traditional cartographic applications. It also does
not create problems for maintaining large databases in
inventory and management applications, another tradi-
tional use of GIS.

Since the formative years of SA and GIS, data have
become less scarce and computational power has dra-
matically improved. Of course, computers will always
have fundamental limitations with respect to power (e.g.,
intractability; see Garey and Johnson 1979) and scope
(e.g., properties that are difficult to measure, such as
‘‘political power,’’ or data that are controlled for security,
profit, or privacy). Nevertheless, given the new data-rich
and computation-rich environment for research and
practice, it is worthwhile to reexamine the fundamental
activities in the research and application communities.
Can we use the new data and computational power to do
things differently, perhaps even better? This is not an
original message; other attempts to rethink current
practice in light of new data and power include computa-
tional human geography (Openshaw 1994), geocom-
putation (Longley 1998; Openshaw 2000), geographic (and
other) data mining (Miller and Han 2001), agent-based
computational economics (Tesfatsion 2003), and bio-
informatics (Baxevanis and Ouellette 2001), just to name
a few.

Representation and Analytical Possibilities

There is an inherent tension between representation
and analysis. Analysis is based on a selective approxi-
mation of reality: we purposely ignore things we think
are peripheral to the phenomenon being modeled. The
Euclidean model may be sufficient as a selective view
of geographic reality: distance and simple connections
between native objects in empty Euclidean space may
capture sufficiently the explanatory power of geographic
space for many human and physical geographic processes.
However, these assumptions have not been examined in a
comprehensive and systematic manner in many subfields
of geography and related disciplines.

A major and broad-ranging research question raised
by this article is that of whether there are particular
geographic phenomena or problems for which alternative
representations and analysis can lead to new insights.
Possibilities include phenomena that are highly depen-
dent on spatial interaction among disaggregate and ge-
ographically dispersed entities. For example, Cliff and
Haggett (1998) argue that the Euclidean plane is limited
for analyzing spatial diffusion processes such as the spread

of disease over geographic space. Geographic representa-
tion can limit and even bias the analysis of spatial
interaction systems (Worboys, Mason, and Lingham 1998;
Horner and O’Kelly 2002). Geographic representation
can lead to qualitatively different outcomes from those
produced by interspecies population dynamics models in
ecological analysis (Durrett and Levin 1994; Malanson
and Armstrong 1997; Malanson 2002).

Closely related possibilities are phenomena the evolu-
tion of which is sensitive to initial conditions and therefore
measurement of geographic context. Physical processes
such as weather systems and climate change are well-
known examples of chaotic dynamic processes, in which
small differences in starting conditions lead to large
differences in solution trajectories; this is often referred to
as deterministic complexity (see Manson 2001). Human
systems can also exhibit sensitivity to geographic context.
For example, economic phenomena that are subject to
increasing returns (or ‘‘positive feedback’’) can exhibit
path-dependency, or processes with many possibilities,
rather than a stable and predicable outcome, as with
traditional equilibria (Arthur 1994). Fujita, Krugman, and
Venables (1999) use increasing returns within a mono-
polistic competitive framework to solidify the economic
foundations of location theory and reconcile von Thü-
nen’s land use theory with Lösch’s central place theory.
They conduct a simple experiment to analyze the impact
of geographic variation on location patterns. Although
their analysis is highly abstract with respect to geographic
representation (a simple tree network), it clearly demon-
strates the strong influence of geographic context on the
evolution of the spatial economy. In a review of complexity
theory and its geographic applications, Manson (2001)
notes that social theorists in human geography have
implicitly embraced deterministic complexity and the
importance of local context and interaction in study-
ing phenomena such as economies, social organization,
and cities.

Another potential opportunity for alternative geog-
raphic representation and analysis is enhancing disaggre-
gate spatial statistics such as G and G* autocorellation
statistics (Ordand Getis 1995) and geographically weighted
regression (Brunsdon, Fotheringham, and Charlton
1996). Disaggregate spatial statistics usually require some
form of a distance weight matrix; this is typically
calculated from the Euclidean plane and therefore carries
with it the assumptions and limitations of the Euclidean
model. Another problem is that matrices become bulky
when large datasets are being evaluated. Although
kernels are frequently applied to narrow the focus to a
smaller geographic region, the calculations can still be
cumbersome. Brute-force technology certainly can handle
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these calculations, but a non-Euclidean geographic
representation may provide elegant and unexpected
alternatives.

Yet another domain in which alternative geographic
representations may generate new breakthroughs is
continuous spatial modeling. Continuous spatial modeling
views two-dimensional geographic processes as an in-
tensity field rather than a collection of discrete locations
and spatial objects. Geographic phenomena such as
markets, and transportation and urban systems are rooted
in an underlying fabric of least-cost path relationships
among continuous locations in space (Puu and Beckmann
1999). Although continuous spatial modeling has its
roots deep in the SA and regional-science tradition (e.g.,
Warntz 1965; Werner 1968; Wardrop 1969; Angel and
Hyman 1976), it has fallen out of favor in more recent
times. This is not due to a perceived intellectual failure of
continuous spatial modeling. Rather, it is more likely due
to the rise of the digital computer, its affinity for discrete
structures, and the subsequent biasing of the human
sciences toward objects rather than fields. Although
object-based representations seem more natural for many
human phenomena, the field approach can provide
unique and complementary insights (Puu and Beckmann
1999). The digital computer could breathe new life into
continuous spatial modeling by supporting estimation and
analysis of sophisticated least-cost path and other geo-
graphic relationships in both empty and attributed
geographic space, as well as supporting integrated ob-
ject-field based representation and analysis (see Cova and
Goodchild 2002).

A Framework for Geographic Representation
and Spatial Analysis

The central framework of this article is a conceptual
model of geographic representation based on the Beguin-
Thisse theory of geographic space (Beguin and Thisse
1979), described in detail in the third section. Note that
there are no widely or explicitly accepted standards for
geographic representation in SA or GIScience. We could
define a mathematical space through any set of objects and
some defined relation between pairings of those objects
(see Gatrell 1983). Alternative models of space with
special reference to geographic representation are avail-
able (e.g., Herring 1991; Schneider 1997; Smith and Varzi
1997; Casati, Smith, and Varzi 1998). However, the
Beguin-Thisse theory focuses on the properties required to
support the quantitative measurement and analysis of
attributes using space as a framework. Since SA requires
quantitative measurement of geographic properties (by
definition and in practice), the Beguin-Thisse system is a

reasonable statement of the (often unstated) representa-
tion assumptions made by spatial analysts.

Figure 1 illustrates the major components of the
representational framework. The foundation is a geospatial
measurement framework, defined by a set of locations and
a length-metric for spatial measurement. The geospatial
measurement framework supports geographic space, cre-
ated by measuring attributes within the metric implied
by the framework. From geographic space emerges the
properties geographic relationships and geographic form. For
each component illustrated in the diagram, we describe
formal representations, the analytical functions they sup-
port, and tools for implementing these functions in a com-
putational environment such as a GIS. We also comment
on the shortcomings of widely available GIS software.3

Geospatial Measurement Framework

The Beguin-Thisse theory dictates that measurement
of geographic attributes requires an underlying geospatial
measurement framework (GMF; termed pre-geographic
space by Begin and Thisse [1979]). We prefer the term
‘‘geospatial,’’ as opposed to ‘‘spatial,’’ to highlight that this
framework ultimately—if only conceptually—relates to
locations and relations on the Earth’s surface. A GMF is
defined through a set of locations, a length-metric relation
between locations and an area measure:

X; dL;mAð Þ ð1Þ

Figure 1. A conceptual model of geographic space.
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where X is a set of locations with at least two locations
distinguishable from each other, dL is a length-metric
defined over length dimension [L] drawn from a set of
nonnegative real numbers, and mA is an area measure
defined over the Cartesian product of the length mea-
sure A½ � � L½ �� L½ �.

Geospatial Measurement Framework Components

Locations. The set of locations can be either strictly
bounded or countably bounded. The strictly bounded case
corresponds to the commonly used notion of ‘‘discrete
space’’ in SA: that is, there is a finite set of spatial units for
which we can measure attributes. Countably bounded
corresponds to ‘‘continuous space’’ in SA, where any
location in the Cartesian space can be associated with a
measured attribute. If the number of locations is infinite, it
must be countable to support measurement and analysis:
that is, the set of locations must have the same cardinality
as the set of natural numbers, the smallest infinite set
(Beguin and Thisse 1979).4 This is mostly a theoretical
issue with apparently little consequence for practice other
than suggesting a limit on SA, since there are sets larger
than we could possibly analyze (whether these sets corres-
pond to anything geographical is an open question).5

The SA and GIS literature generally assume that the
set of locations in the GMF corresponds to a plane. When
considering regions approaching the size of continents and
above, a spherical GMF can allow more accurate repre-
sentation of distance, direction, and area. One system for
quantifying locations on the curved surface of the Earth is
through spherical coordinates (Raskin 1994):

xi ¼ xai ; x
b
i

� �
xai 2 �p=2;p=2½ �; xbi 2 0; 2p½ �
���n o

ð2Þ

Length. The length-metric dL is a shortest-path
relation defined between any two members of X. These
shortest paths have the properties of nonnegativity, identity,
symmetry, and triangular inequality. Nonnegativity means
that shortest path lengths are always zero or positive real
numbers; identity means that the length between a
location and itself is zero; symmetry means that length
between two locations is the same in both directions;
triangular inequality means that the (direct) length
between two locations will be less than or equal to
the (indirect) length between the two through a third
location. The length-metric is often interpreted as the
distance between any two locations in the space.

The standard or default assumption in the Euclidean
model is that the length-metric is the straight-line
segment between any two locations; this corresponds to

the Euclidean distance between the pair. Euclidean space
is a meaningful framework for representing and analyzing
geographic phenomena due to the tradition of projecting
the globe to a flat surface as well as to the fact that
geographic reality can appear Euclidean (at least to our
naked senses). However, geographic processes can have
non-Euclidean properties. For example, human-made or
natural networks often channel spatial interaction. This
means that the shortest path between two locations may
no longer correspond to a straight-line segment. If flow
congestion is a factor in the channels, the symmetry and
triangular-inequality properties also may not hold. There
is also strong evidence that individuals’ perceptions of
geographic space violate the Euclidean space assumptions
(Montello 1992).

The following formula can generate length-metrics
that obey the nonnegativity, identity, symmetry, and
triangular-inequality properties:

dp xi; xj
� �

¼
Xn
k¼1

xki � xkj

��� ���p
" #1

p

; p � 1 ð3Þ

where xi is a k-dimensional vector of location coordinates
and p is a real number referred to as the length-metric
parameter. Only one length-metric parameter value
(p5 2) corresponds to the standard straight-line segment
distance assumption. Another important special case is
p5 1, or the ‘‘Manhattan metric,’’ where shortest paths
are polylines with segments parallel to one of the axes; this
simulates a regular grid network (Shreider 1974; Love,
Morris, and Wesolowsky 1988; Puu and Beckmann 1999).
Other distance metrics are possible, since interaction
along straight-line paths is the exception rather than the
rule. For example, distance metrics implied by actual
travel distance at urban and regional scales are typically
1 � p � 2 (Love, Morris, and Wesolowsky 1988).

Although equation (3) is highly general, it is possible to
formulate even more general length relationships, al-
though they will not obey the three metric properties.
Smith (1989) formalizes distance as the greatest lower
bound on all path lengths between any two locations. The
resulting lengths are quasimetric, since they only obey
the triangular-inequality property. Huriot, Smith, and
Thisse (1989) generalize this by formalizing distance as the
greatest lower bound of all minimum cost trips (possible
movements) between any two locations, where ‘‘cost’’ is a
very general measure of the difficulty of movement. This
conceptualization can accommodate a wide range of
possible length measures, including economic, social,
psychological, and functional distances. The resulting
distance measure is also quasimetric.
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The increasing availability of global databases and the
rise of global science means that the plane may not be
appropriate as a GMF for analyzing some geographic
phenomena. Shortest paths within spherical spaces are
less well known in the SA (and, indeed, wider geographic)
literature, even though they are fundamental to the globe.
The shortest path between any two locations on a sphere is
the smaller arc of the great circle passing through the
locations, where a ‘‘great circle’’ is a circle on the surface
of a sphere the center of which coincides with the center of
the sphere (Shreider 1974; Love, Morris, and Wesolowsky
1988). In a spherical GMF, length is measured through
cosines (Raskin 1994):

dSðrÞ xi; xj
� �

¼ r cos�1 xi � xj
� �

ð4Þ
where S(r) refers to a sphere with radius r and

xi � xj ¼ sin xa1 sin xa2 þ cos xa1 cos xa2 cos xb1 � xb2

� �
ð5Þ

Spherical length functions obey the metric space prop-
erties (nonnegativity, identity, symmetry, and triangle
inequality).

Area. An area-measure mA is any real-valued function
of the locations only (i.e., no attributes) that is additive for
disjoint subsets and zero for the empty set.6 Area-measures
are nonnegative, since they are functions of the locations
only and not measured attributes. If the area measure for a
subset of places is positive and finite, then that subset is
dimensional (e.g., a line or polygon). If the area measure for
a subset of places is zero, than the subset is adimensional
(i.e., a point).

Although the topological or connectivity properties of a
GMF are more fundamental than the length-metric, in
practice most analysts assume or choose a length-metric
that implies a topology. In the Euclidean plane, neighbor-
hoods, or the fundamental units of connectivity, are open
discs or circles of arbitrary radius without their boundaries
(Worboys 1995). A neighborhood is diamond-shaped at
p5 1 and approaches a square as p approaches infinity
(see Love, Morris, and Wesolowsky 1988). The topology
determines the collection of subsets of X for which the
concept of an area-measure makes sense.7

Measuring and Analyzing Non-Euclidean and
Nonplanar Spaces

Abandoning the standard Euclidean assumptions
requires deciding which GMF is most appropriate for the
geographic phenomena being studied. One strategy is to
shift the locations in X to the relative locations implied by
the geographic phenomenon. This approach changes the

locations of X to better fit the phenomena, but retains the
standard length and area metric assumptions in the GMF.

Two analytical techniques for inferring the relative
locations of places are multidimensional scaling (MDS) and
bi-dimensional regression. MDS attempts to construct a
space such that relative locations reflect as closely as
possible the space implied by a set of binary comparisons
between members of a set (see Golledge and Rayner 1982;
Gatrell 1983; Cliff and Haggett 1998). Bi-dimensional
regression is an extension of the < ! < mapping in
standard regression to a<2 ! <2 mapping, where< is the
set of real numbers (Tobler 1994). Statistical inference tests
allow discrimination among hypothesized bi-dimensional
regression formats (Nakaya 1997). An especially valuable
feature of bi-dimensional regression is output measures,
such as displacement vectors, strain tensors, areal distor-
tion, and angular distortion. These can be mapped using
GIS to provide powerful visual inferences to the structure
of functional and cognitive space.

Another approach to measuring non-Euclidean planar
spaces is to retain the absolute locations of X in the GMF
and instead estimate the length-metric (and consequent
area-measure) implied by the geographic phenomenon.
Muller (1982) uses a similar parameter search method
to fit a generalization of equation (3). Love and Morris
(1972, 1979) estimate the parameters of several metric
and semimetric distance functions from observed urban
and rural travel distance. These equations can be easily
estimated given distance or interaction costs between
pairings of locations. If we cannot accept the symmetry
assumption inherent in length-metrics, an alternative
is to model the resulting space as a vector field in
which each location has a direction as well as magnitude
(Tobler 1976, 1978; Dorigo and Tobler 1983; Puu and
Beckmann 1999).

The estimation and analytical tools described in this
section seem to be core spatial analytic tools, since they
help define the appropriate GMF for the geographic
phenomena being measured and analyzed. As far as we
know, no commonly available GIS software supports these
estimation and analytical functions. A key requirement
is support for a logical data model that can support
effectively object pairings and their attributes (see
Goodchild 1987, 1998). Most GIS software does not sup-
port a simple logical structure, the matrix, which can
maintain object pair relationships as well as algebraic
manipulation of these quantities (Miller and Shaw 2001).
Supporting vector fields requires a raster data structure
that can support vectors in addition to scalars, and tools
for analyzing and visualizing these vectors. MDS, bi-
dimensional regression, and parameter-search-method
procedures for estimating distance functions should also
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be innate GIS tools with supporting user interfaces,
visualization and decision support tools, and perhaps intelli-
gent agents, to make these procedures accessible to a wide
audience.

Spherical space requires extensive modification of
planar space analytical techniques. Three strategies are
available for analysis of spherical geometry ( Jupp and
Mardia 1989; Raskin 1994). The first is to retain planar
space and use map projections to transform between the
plane and the sphere. This is the implicit approach in
the majority of SA, although projection back to the sphere
rarely occurs. This approach is problematic, since map
projections cannot simultaneously preserve distance and
area. A second approach is to represent space intrinsically
as non-Euclidean spherical space. This involves analysis
using spherical coordinates and trigonometric functions,
requiring additional computational overhead to access
and execute the trigonometric functions. A third strategy
is embedding the sphere within three-dimensional Eu-
clidean space. In this case, we use three-dimensional SA
but restrict solutions to the sphere surface. This requires
additional data storage overhead for the third dimension,
but does not require computationally expensive trigono-
metric functions.

There are some basic statistical techniques available for
the sphere, including interpolation methods, measures of
central tendency and dispersion, and hypothesis tests for
statistical distributions in spherical space, although these
deal mostly with point processes. Correlation measures
and regression models are available (Chang 1986),
although the regression procedures do not capture spatial
autocorrelation among structural variables or error terms.
Also required are statistical techniques for line and area
processes, as well as a theory and methods of spatial
autocorrelation on the sphere (Watson 1983; Renka 1984;
Goodchild 1988; Raskin 1994). MDS or bi-dimensional
regression methods for spherical space are still required, as
is empirical research on estimating spherical distance
functions from global-level interaction behavior.

Location analysts have addressed the problem of opti-
mal facility location on a sphere (Drezner and Wesolowsky
1978; Drezner 1981, 1983, 1985; Wesolowsky 1983;
Love, Morris, and Wesolowsky 1988; Hansen, Jaumard,
and Krau 1994). Tobler (1997) extends the vector field
method to spherical space for analyzing interaction at
global scales.

Geographic Space

Measuring attributes within the framework imposed by
a GMF creates a geographic space. From this emerge the

properties of geographic relationships and geographic
form. In this section, we discuss the measurement and
analysis of geographic attributes, the geographic proper-
ties implied by these attributes, and the possibilities for
analyzing these attributes.

Geographic space consists of the three components
of the GMF, along with measured attributes (mh) from
a set of attributes H, corresponding to geographic
phenomena:

X; dL; mA; mh : h 2 Hf gð Þ ð6Þ

Beguin and Thisse (1979) note that this formal definition
is consistent with Brian Berry’s (1964) classic ‘‘geographic
matrix’’ characterization of SA. Note that geographic
space does not require Euclidean assumptions: the GMF
can include any length-metric and area-measure as
defined in the second section above. However, most
of the techniques discussed in this section assume a
Euclidean plane. Extending these techniques to non-
Euclidean and/or spherical spaces is an open and worth-
while research frontier.

A simple attribute is a measured value defined on a
measurable subset of places (i.e., any subset for which an
area-measure as defined above makes sense). Two types of
simple attributes are stock attributes and flowattributes. The
former is a value assigned to one location. The latter is a
value associated with two disjoint places and implies
movement of the mass from an ‘‘origin’’ to a ‘‘destination.’’
As we noted previously, most GIS software does not
support these object pairings and their attributes very well.
Composite attributes are a function of some combination of
a length-metric, an area-measure, and/or simple attri-
butes. These can include geographic densities (i.e., the
ratio of a simple attribute to an area-measure, or path
distances within a network; see Beguin and Thisse 1979
for details).

Two emergent properties of geographic space are
geographic relationships and geographic form. As noted
earlier, methods for measuring and analyzing these
properties have not spread widely, apparently due to
historically scarce data and difficulty in processing the
required information, as well as a lack of knowledge about
these theories and methods. In this section, we describe
the theories and analytical and computational methods
for analyzing geographic relationships and form. Since
representing geographic attributes on a sphere is different
than the plane, we first discuss issues related to represent-
ing geographic attributes within a spherical GMF. We then
discuss theories and computational methods for analyzing
geographic relationships and form.
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Representing Attributes in Spherical Geospatial
Measurement Frameworks

Similar to planar space, we can represent geographic
objects or fields in spherical space using vector-based or
tessellation-based data models for implementation within
computational platforms. Most vector-based representa-
tions in spherical space are straightforward modifications
of the planar models. For example, although spherical
polygons are comprised of great-circle segments instead of
line segments, as in the planar case, they can be stored
using the standard endpoint lists, since the underlying
geometry is understood to be spherical (Raskin 1994).
Available spherical space computational geometry algo-
rithms include methods for determining kth nearest
neighbors (Hodgson 1992), computing polygon areas
(Kimerling 1984), performing a point-in-polygon test
(Bevis and Chatelain 1989), overlay operations (Schet-
tino 1999), and determining the side of an arc where a
point lies (Lawson 1984; Renka 1984).

Tessellations of the sphere are more problematic than
similar subdivisions of the plane. Unlike the case with
planar tessellations such as raster grids, it is difficult to
divide the sphere into exhaustive and nonoverlapping
regions of equal size and shape: shape, area, or both
must be nonuniform (White, Kimerling, and Shar
1998). An alternative approach is to project the sphere
onto one of the polyhedral solids, since these can support
exhaustive and nonoverlapping regions of uniform size
and shape.

Spherical data structures tend to be hierarchical,
reflecting the requirement to maintain very large global
datasets (Raskin 1994). Tobler and Chen (1986) provide
an example of a quadtree structure for maintaining global
data. Dutton (1999) develops a quarternary triangulated
mesh georeferencing system based on a projection of the
sphere to an octahedral solid. Ottoson and Hauska (2002)
develop an ellipsoidal quadtree for indexing global
geographic data that is based directly on the ellipsoid
rather than on an approximation.

Geographic Relationships

Nystuen (1963) identifies three fundamental relation-
ships of geographic space from the spatial analytic
perspective: distance, connectivity, and direction (also see
Pullar and Egenhofer 1988). In the SA and GIS literature,
the measurement of distance and connectivity between
spatial objects is often incomplete relative to the range of
possibilities. We can also extend the concept of distance to
encompass least-cost paths in geographic space. Direction
has received only limited attention.

Distances between Geographic Entities. A distribution
of distances, rather than a single distance, exists between
two geographic entities if at least one of the entities’
geometry is dimensional as defined above (Kuiper and
Paelinck 1982; ten Raa 1983; Kuiper 1986). In practice,
analysts often use a single, centroid-to-centroid distance
measurement as a summary of this distribution. This can
be a poor surrogate (Hillsman and Rhoda 1978; Current
and Schilling 1987, 1990; Okabe and Miller 1996; Okabe
and Tagashira 1996).

Since the distance between dimensional geographic
entities is a distribution rather than a single value, we can
calculate different measures depending on the application
needs. One measure is the expected distance. This requires
density functions that describe the probability of an
interaction between locations in both objects (Larson and
Odoni 1981). For tractability, analysts often assume that
the interaction probabilities between locations in the two
objects are independent—that is, the origin location
in one object does not influence the destination location in
the second object. Even with that simplifying assumption,
only a subset of special geometric cases has been solved,
due to analytical intractability (Gaboune, Laportre, and
Soumis 1993; Hale 1998).

More tractable is the average distance. This is a special
case of the expected distance when interactions are
equally likely from all locations in both objects (Koshizuka
and Kurita 1991). Average distances are useful when
measuring interaction ‘‘cost’’ (time, money, energy)
between two objects. Average distance is a good summary
for total interaction distance: that is, minimizing average
distance also minimizes total interaction distance given
the equal-probability assumption. The centroid-to-centroid
measure discussed above is apparently a surrogate for the
average distance, although it is a poor approximation
under some circumstances, particularly as the entities are
relatively large and proximal in space (Okabe and Miller
1996). As far as we know, all widely available GIS software
calculates distances between dimensional entities using
the centroid-to-centroid measures, although none both-
ers to tell users about its potential weakness.

The average distance can be difficult to calculate for
arbitrary spatial objects. In two-dimensional Euclidean
space, one strategy is to approximate the spatial objects as
circular regions (e.g., Rodriguez-Bachiller 1983; Vaughan
1984; Koshizuka and Kurita 1991). Another strategy is to
calculate the root mean squared distance. This is tractable
for a wider range of spatial objects, but systematically
overestimates the average distance (see Wilson 1990).
Okabe and Miller (1996) develop computational methods
for calculating average distance (in Euclidean space)
between any pairing of points, polylines, or polygons when
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stored in the vector spatial data format. Worst-case
time complexity is O(mn), where m, n are the number
of line segments in the polyline or polygon boundary
of each object.8 This limits the application to objects
where n, mo 1000.

Another possible distance measure is the minimum
distance between two objects. This is appropriate when the
interaction is affected by proximity. Minimum distance
calculation is closely related to a well-studied problem in
the computer-science literature: namely, the closest-pair
problem for a finite set of points. Peuquet (1992) develops a
quadtree-based algorithm for calculating the minimum
distance between arbitrary and disjoint spatial objects.
Fujishige and Zhan (1992) specify a method for two
polytopes. Okabe and Miller (1996) develop minimum
distance methods based on Voronoi diagrams. Worst-case
time complexity is O(n) for point-line and point-area
where the line and area are described by an n segment
polyline or polygon and O(m1n) for line-line, line-
polygon, and polygon-polygon pairings described by
polylines with m and n segments respectively. This is
tractable even for large problems.

Two types of maximum distances between spatial
objects are possible. First is the distance between the
two farthest locations. Okabe and Miller (1996) also
develop methods for maximum distance calculations
between points, lines, and polygons. These methods are
variants of the minimum distance calculations that
involve farthest-point Voronoi diagrams. These methods
require only linear time in the worst case, meaning that
they are tractable even for very large datasets. Another
possible maximum distance is the Hausdorff, or ‘‘maxi-
min,’’ distance. This is the maximum of the distances
between locations in one object and the closest location in
the other (Preparata and Shamos 1985). Note that the
Hausdorff distance is not symmetric. Atallah (1983)
presents a linear-time algorithm for the Hausdorff distance
between convex polygons.

Perception of distances between geographic features is
often considerably less precise than the quantitative
relationships described above. Humans acquire knowl-
edge about distance based on environmental features
encountered during movement. This is mitigated by
attention-related factors, such as environmental familiar-
ity and travel purpose (see Golledge and Stimson 1997;
Montello 1997). The contingent and inexact nature
of this process suggests that qualitative distance rela-
tionships (e.g., ‘‘closer,’’ ‘‘farther’’) are perhaps more
meaningful than distance measures in structuring
human spatial behavior. Gahegan (1995) discusses the
use of ‘‘semiquantitative’’ linguistic operators and fuzzy-
set membership functions to reason about proximity

relationships. These operators could be used with spatial
reasoning systems that infer geographic information from
imprecise, incomplete, and subjective descriptions (e.g.,
Frank 1992; Jungert 1992).

Least-Cost Paths through Geographic Space. The
central property of distance from the GMF can also be
extended to the concept of least-cost paths through
geographic space. The distinction is that in geographic
space, an assumption is made that one or more attributes
of the geographic space affect movement or interac-
tion; examples include land cover, terrain, and traffic
congestion. Least-cost paths through geographic space
require one or more measured attributes to be inter-
pretable as an interaction cost. We refer to this structure as
a cost-density field. A cost-density field is a function
distributed continuously on the plane with no points of
concentration (Beguin and Thisse 1979). Conceptually,
the cost-density field defines how much resource (energy,
money, time) is required for moving across locations in
the plane.

Given a cost-density field, we can determine the least-
cost path between any two locations by solving a classical
problem from the calculus of variations that minimizes the
cumulative cost of a continuous path between a location
pair (Warntz 1965; Wardrop 1969; Angel and Hyman
1976; Puu and Beckmann 1999). Direction-specific cost
can also be accommodated (see Puu and Beckmann
1999). Solving the variational problem for the general case
is difficult. Analytical solutions usually require restrictive
assumptions, such as the radially symmetric case, in which
cost is a function of distance from a single point location
such as an urban center (see Angel and Hyman 1976).
Although analytical solutions to the continuous space
problem are difficult, there are tractable computational
solutions for several discrete approximations. However,
there are no widely available software tools, nor are these
techniques widely applied in SA or GIS. The discussion
below is based on (but also expands on) Miller and Shaw
(2001, chapter 5).

Special case 1: Cost polygons. The ‘‘shortest path
through geographic space’’ problem is more tractable if a
tessellation of cost polygons represents the cost surface. In
this case, the problem of finding the minimum cost path
reduces to finding the locations where the path crosses the
boundaries, since the path within a polygon is a line
segment. Werner (1968) demonstrates that the boundary-
point location problem can be solved using the law of
transportation refraction. This reformulation of Snell’s law
for the refraction of light provides the first-order optim-
ality conditions for the boundary point (see Werner 1968,
1985 for more detail).9
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Smith, Peng, and Gahinet (1989) and Mitchell and
Papadimitriou (1991) formulate scalable procedures for
the case where the tessellation is a triangulation of the
two-dimensional plane. Smith, Peng, and Gahient (1989)
use a generalization of Snell’s Law to construct a family of
local, asynchronous, and parallel algorithms that find
least-cost paths when the cost polygons are a triangu-
lation. Local means that each processor only requires
information from neighboring processors. Asynchronous
means that neighboring processors do not execute
simultaneously. These properties are achieved by restrict-
ing crossings to finite locations within the boundary
segments of a triangle. The algorithms are exact for the
special case of a corridor of triangles along a single
dimension. Globally optimal paths are not guaranteed for
the two-dimensional triangulation, but numerical experi-
ments are promising.

Mitchell and Papadimitriou (1991) apply Snell’s Law
for the case where the tessellation is a constrained
Delaunay triangulation. Their procedure generates a
‘‘map’’ of shortest paths from a given source location,
allowing the user to determine a specific shortest path
by querying from the database. The procedure requires
O(n4) time in the worst case but is likely to be shorter
in practice.

Another subcase occurs when the polygons correspond
explicitly to a polyhedral terrain in three-dimensional
Euclidean space. In this case, the polygons are not
weighted by cost; instead, the polyhedral surface is a
distortion of Euclidean space, and the objective is to find
the minimum Euclidean distance path on this surface.
Mitchell, Mount, and Papadimitriou (1987) develop an
O(n2log n) procedure for arbitrary (possibly nonconvex)
polyhedral surfaces. De Berg and Van Kreveld (1997)
develop procedures that determine shortest paths over
polyhedral surfaces that are restricted to stay below a
specified elevation or minimize total ascent. This is useful
for cross-country movement-planning in mountain-
ous terrain.

The shortest path through cost polygons problem is
a particularly vivid example of the theme of this article.
This idea has its roots in the early SA literature. Once
processors were fast enough, GIScientists and computer
scientists exploited this idea to build computationally
scalable routing methods. But no commercial GIS soft-
ware implements these tools at present, and to date, they
have not been widely applied in SA or integrated into
SA techniques that require distance or minimal cost
path measures.

Special case 2: Finite locations. Another approxima-
tion is to restrict the set of locations to a finite set in n-
dimensional space. We only define interaction cost for

pairings of these locations. This defines a network and
allows us to solve the approximation as the more tractable
shortest path in a network problem. Conversion to network
representations is a form of controlled relaxation of the
Euclidean space assumptions used by spatial and other
analysts for decades (Tobler 1993), although these
representations often correspond to physical networks in
the real world.

Network-based approaches can be combined with
special-case 1 to simultaneously model within-network
and cross-country movement. If we constrain the Delau-
nay triangulation boundaries to match road features in the
landscape, within-network flow can be modeled using the
resulting triangulated irregular network (TIN) structure,
while cross-country movement can be modeled using
the Mitchell and Papadimitriou (1991) algorithm (van
Bemmelen et al. 1993).

Special case 3: Cost lattice. Another tractable
approximation is to restrict the locations to a discrete
and finite lattice of the plane and specify interaction costs
only between neighbors. We can define the neighbors
based on the rook’s case (proximal locations only in
directions parallel to the axes), the queen’s case (rook’s case
plus proximal locations along the diagonals), or the knight’s
case (the queen’s eight moves plus ‘‘L’’ shaped moves). This
is still a network representation, but the regularity and
density of locations can better represent the properties of
some continuous surfaces, such as terrain or land cover.
We typically interpret each lattice point as the centroid of
a small raster cell exhibiting that interaction cost value.

The lattice approximation introduces three types
of error: elongation, deviation, and proximity distortions
(Goodchild 1977). Elongation errors occur, since the
lattice path will be longer than the continuous space path.
Deviation errors occur when the lattice path differs in
location from the continuous space path; this is maximal
when all moves in one direction are executed first.
Proximity distortions occur when the cost measure for
a raster cell does not consider neighboring cells. The
resulting paths can be optimal with respect to their site but
suboptimal with respect to their situation (Goodchild
1977; Huber and Church 1985; Lombard and Church
1993; van Bemmelen et al. 1993).

Intuition might suggest that as the lattice becomes
denser and closer to continuous space, the lattice solution
approaches the continuous-space solution. However,
elongation and deviation errors are independent of the
lattice density. Instead, these errors relate to the permu-
tation of move directions in the lattice-based path. These
cannot be eliminated through a finer mesh (Goodchild
1977). Other strategies for reducing these errors include
more connected rasters and an extended raster approach. The
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more-connected raster approach connects each lattice
point to more of its proximal neighbors in Euclidean space
(e.g., connect to the closest 16, 32, 64, . . . lattice points
instead of just four or eight, in the rook’s and queen’s cases,
respectively). This can reduce elongation and deviation
errors, but requires additional computational expense and
can create nonintuitive intersecting paths. The extended
raster approach configures the network so that a path
enters and exits each cell at specified locations at the
boundaries, rather than traveling between the centroids of
each raster cell. The cost of each segment of the path is
easier to calculate, since it is contained within a single cell.
These strategies can also be combined with a quadtree
structure for reducing data storage and computational
requirements (van Bemmelen et al. 1993).

There are generally few tools or applications of shortest
paths through geographic space in widely available GIS
software, although the related problem of hydrological
network extraction from digital terrain models is well
studied (see Band 1999) and more widely available. A
general modeling system and software toolkit by Burrough
(1998) analyzes the distribution and transportation of
material over a raster structure. A wide range of dynamic
geographic processes can be captured, including determi-
nistic and stochastic processes and processes without and
with memory (an example of the latter case is the flow of
water through a capacitated medium over time). Since the
system can be described and implemented as local
operations within a raster tessellation, it is computation-
ally scalable to very large dynamic geographic processes.
However, as Malanson and Armstrong (1997) demon-
strate, these modeling systems are sensitive to modifiable
areal unit effects related to the total gradient represented,
number of raster cells, and step size between cells.

Connectivity between Geographic Entities. In SA, the
concept of ‘‘connectivity’’ is often reduced to a relatively
simple binary condition or intensity measure. For example,
contingency matrices often record a connectivity relation-
ship such as nearest neighbor, adjacency in a graph, or a
shared boundary as a binary variable. These variables can
also be weighted—that is, a function of the nearest
neighbor distance, arc length, or length of the shared
boundary. This is a limited view of the possible topological
relationships between two geographic features when one
or both is dimensional.

Using point-set topology as a foundation, Egenhofer
and Franzosa (1991) and Egenhofer and Herring (1994)
substantially expand conceptualization and representa-
tion of topological relationships between spatial objects
in <2. The 4-intersection model identifies possible topolo-
gical relationships between spatial regions10 based on

the set intersections between their boundaries and inte-
riors (Egenhofer and Franzosa 1991). The 9-intersection
model extends the 4-intersection model to encompass
topological relations involving lines by considering
the set intersections between the object’s interiors,
boundaries, and exteriors (Egenhofer and Herring
1994). The 9-intersection approach can also be embedded
within a temporal framework (Egenhofer and Al-Taha
1992).

The 9-intersection model illustrates the diversity of
potential connectivity relationships between geographic
features. For example, there are thirty-three possible
topological relationships between two simple lines, with
an additional twenty-four relationships possible if the lines
are not simple.11 Twenty possible topological relationships
exist between a line and a region, and eight possi-
ble topological relationships exist between two regions.
Human-subjects experiments suggest that the line-region
relationships correspond to natural language descrip-
tions of real-world geographic features by human sub-
jects (Mark and Egenhofer 1994; Knauff, Rauh, and
Renz 1997).

The ‘‘Egenhofer relations’’ only require testing for the
existence of intersections among the boundaries, inter-
iors, and exteriors of spatial objects. These tests are
tractable, subject to the accuracy of the input data
and precision of the computational platform (see Prepar-
ata and Shamos 1985; Worboys 1995). These tools are
not evident in commonly available GIS software. How-
ever, if spatial database-management systems incorporate
Egenhofer relations for spatial querying, users could
write their own code in embedded query languages,
such as SQL3, that support user-defined objects and
relationships

Directional Relations betweenGeographic Entities. Dir-
ectional relationships between geographic entities have
received limited attention in SA and GIS, although this is
changing (e.g., Lee and Wong 2001). The importance of
directional relationships is well recognized in physical
geography with regard to issues such as capturing the
interactions of material or energy due to wind or water. For
example, wind direction is critical when analyzing and
predicting the dispersion of air-pollution plumes from
point sources and/or nonpoint sources (Hruba et al. 2001;
Loibl and Orthofer 2001). Directional relationships are
less commonly considered in human geography, although
they can be important in human spatial perception and
behavior. For example, individuals can have directional
biases in their knowledge of and movement within an
urban area (Adams 1969; Moore 1970; Moore and Brown
1970). At regional and continental scales, individuals
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exhibit clear biases towards the four cardinal directions in
their mental images of spatial relationships (Mark 1992;
Egenhofer and Mark 1995).

Both quantitative and qualitative procedures exist for
analyzing directional relationships. A quantitative theory
is available for point objects; theories of directional
relationships among dimensional spatial objects are
qualitative. A quantitative theory of directional relation-
ships among dimensional objects is an open and valuable
research frontier.

Directional statistics are a suite of techniques for
statistical inferences from directional observations of
point processes. Directional observations are typically
made from a reference location in <2. These observed
directions are generally treated as realizations of a random
process on the unit circle centered on the observation
point. (Spherical statistics, discussed previously, are a
special case of directional statistics defined on the unit
sphere.) Measures of central tendency, dispersion, good-
ness of fit to theoretical distributions, and sample
difference tests are available (Mardia 1972). Klink
(1998) illustrates the use of directional statistics in
conjunction with scalar and vector-based methods for
analyzing wind fields and inferring the factors that
influence these processes. As with spherical statistics, a
theory of directional statistics for line and area processes is
still required.

Directional autocorrelation statistics are an extension of
spatial autocorrelation statistics from one-dimension
(distance) to two dimensions (distance and direction).
Directional autocorrelation statistics have been used to
study distributions of genetic structure, anthropological
features (e.g., cranium measurements), and cancer mor-
tality over space (see Rosenberg 2000). However, many
directional autocorrelation methods are ad hoc extensions
of standard spatial autocorrelation statistics. For example,
the ‘‘windrose’’ approach of Oden and Sokal (1986)
aggregates observations into independent distance/direc-
tion classes, each having its own weight matrix. This
method requires large sample sizes, since each distance/
direction class must have a sufficient number of observa-
tions. Not very satisfactory solutions to this sample-
size problem include weighting distances with the angle
relative to the reference location (Falsetti and Sokal 1993)
or projecting the locational coordinates onto a fixed
bearing with respect to the reference location. Rosenberg
(2000) develops a bearing autocorrelation statistic that
improves these methods by formulating a nonbinary
spatial weights matrix that simultaneously reflects dis-
tance and direction. This results in a bearing autocorre-
lation statistic that is more directly comparable to
traditional spatial autocorrelation statistics.

Computational procedures are available for assessing
and reasoning about qualitative directional relationships
among dimensional geographic objects. Peuquet and
Zhang (1987) develop a linear-time algorithm to deter-
mine directional relationships between arbitrary poly-
gons in <2. They use a cone-based search strategy that
determines directional relationships relative to the eight
angular regions defined by the four cardinal directions
(e.g., north, south) and the four diagonals (e.g., northeast,
northwest). Papadias and Egenhofer (1996) use a hier-
archical method that generates projection lines perpendi-
cular to the coordinate axes. This determines directions
based on rectangular subregions of <2 relative to a
reference location.

Geometric Form

Geometric form can provide insights into geographic
phenomena, particularly when linked with process
theory (King 1969). Properties such as shape, configura-
tion, and pattern preserve information on the processes
that influence the entity’s development (Bunge 1966;
Whyte 1968). Comparison among geographic forms
can highlight differences in the development paths of
the entities (Tobler 1978). Geographic form can also
guide the search for process explanations (Lo 1980;
Dobson 1992). Analyzing the mismatch between pre-
dicted and observed form can provide insight (Simons
1973–1974, 1974; Eason 1992; Batty and Longley 1994).
Geometric form also influences the functioning and
growth of geographic entities. Boundaries can dampen
or enhance interaction across and within boundaries
(Longley et al. 1992; Haines-Young and Chopping 1996;
Nystuen 1997). Shape and pattern also affect human
processes such as spatial behavior and wayfinding by
affecting environmental legibility and recall (Gluck 1991;
Miller 1992).

Shape analysis is a body of techniques for analyzing
geometric form. No commonly available GIS software has
an adequate set of shape-analysis tools. This is probably
due to traditional difficulties in conceptualizing and
measuring shape as well as computing the required
geometric properties. However, there has been recent
progress in shape analysis that, combined with faster
processing speeds and more detailed digital geographic
data, can make these tools more useful in SA.

A common conceptualization of shape in the SA and
geographic literature involves the dimensions of compact-
ness, concavity, and ellipticity (Austin 1984). This con-
ceptualization seems driven more by convenience than
theory, since properties are easily isolated and measured
using traditional (in particular, analog) methods. A more
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defensible conceptualization involves the dimensions of
edge roughness, perforation, and elongation; these follow
from the mathematical definition of shape as the residual
properties after removing translation, rotation, and dila-
tion transformations (Wentz 2000).

Another problem with shape analysis is difficulty in
capturing the conceptualized shape dimensions in a
manner that preserves information—that is, one that
can discriminate among all possible shapes. A common
approach is to compare the perimeter, area, or distances
within the spatial object to an idealized reference object,
such as a circle. These methods can capture only one
shape dimension, such as compactness or ellipticity
(Massam and Goodchild 1971; Massam 1975; Austin
1984). Fractal-based measures capture only boundary
roughness (see Lam and DeCola 1993). The Boyce-Clark
(1964) radial vector measure is more comprehensive, but
is sensitive to the number of radii and the object’s
orientation. Medda, Nijkamp, and Rietveld (1998)
eliminate these arbitrary aspects of the Boyce-Clark
method. The dual-axis Fourier shape analysis (DAFSA)
is information-preserving, in the sense that the object can
be recovered from its parameters (Moellering and Rayner
1981), although it may capture arbitrary (nonshape)
information about the object (Griffith 1982). The tri-
variate shape measure has separate indices for the
dimensions of edge roughness, perforation, and elonga-
tion, but is interpreted jointly (Wentz 2000).

A third problem is that many shape measures are not
computationally efficient and therefore do not scale to
handle very large databases. Methods that compare test
objects to reference objects are not computationally
burdensome, but also do not tell much about shape. The
Boyce-Clark method is more complete, but has a higher
computational burden, particularly for Medda, Nijkamp,
and Rietveld’s (1998) enhancement. Fractal measures are
scalable computationally, but convey information only
about roughness properties. The trivariate measure uses a
fractal dimension calculation combined with other scal-
able measures to convey a wide spectrum of unambiguous
shape information (Wentz 2000).

Some computationally scalable procedures are avail-
able for making comparisons among forms. Bi-dimensional
regression and other statistical techniques can compare
among forms (Tobler 1978; Bookstein and Sampson
1990). Arkin and colleagues (1991) use angular calcula-
tions to compare polygons represented using the vector
GIS format (i.e., as a closed polyline). Some techniques
also exist for shape analysis of imagery data, including
biomedical images (e.g., Banerjee and Dutta Majumdar
1996) and fractal methods for remotely sensed data (e.g.,
DeCola 1989; Lam 1990; see Wentz 2000).

There are also some techniques for evaluating geo-
metric form based on computable models of geographic
fields, such as lattices and TINs. These include methods
for calculating simple properties such as slope and aspect,
including error estimates and sensitivity analyses (e.g.,
Chang and Tsai 1991; Hodgson and Gaile 1996; Hunter
and Goodchild 1997). Also available are methods for
calculating fractal dimensions of terrain features (e.g.,
Burrough 1981; Clarke and Schweizer 1991; Helmlinger,
Kumar, and Foufoula-Georgiou 1993).

Connecting shape to process can benefit from a
language to describe the evolution of shape over time.
Stiny (1980) develops a shape grammar that consists of a set
of shapes, a set of symbols, a set of shape-transformation
rules, and an initial shape. This system can support
rigorous analysis of shape evolution and its influence on
geographic processes. Krishnamurti and Earl (1992)
extend this approach to three-dimensional space. Chase
(1997) combines this approach with predicate logic for
inferring high-level geographic relationships in digital
geographic databases.

Determining relationships between geographic process
and geographic form must proceed with caution. Geo-
graphic fields and objects are, to some degree, artifacts of
the measurement process. Since field and object-based
representations are inverse constructs, they are arbitrary,
although one may seem more natural than the other
for a given application (Couclelis 1992; Worboys 1995).
Also, the crisp representation of an object is often counter
to the geographic entity’s inhomogeneous nature and a
lack of well-defined boundaries. Factors such as scale,
resolution, perspective, and the user’s purpose can dictate
an object-based representation (Couclelis 1996; Plewe
1997; Tate and Atkinson 2001). Boundaries can be
arbitrary and create yet another manifestation of the
modifiable areal unit problem by artificially bounding
geographic processes (Griffith 1982). Aggregating ele-
mental spatial units can create zones with shape and
boundary effects that were not present in the underlying
geographic process, requiring sophisticated analytical
tools to compensate (e.g., Ferguson and Kanaroglou
1998). Similarly, scale and resolution affect pattern
measurement (Turner, O’Neill, and Gardner 1989; Moody
and Woodcock 1995).

Other problems when connecting form to process
relate to the nature of nonlinear processes. As mentioned
previously, nonlinear processes can be sensitive to initial
conditions, generating divergent geographic forms from
very similar initial configurations. Also possible is equifin-
ality, or diverse processes converging to the same macro-
structure. It can be difficult to separate deterministic (and
therefore reducible) uncertainty from purely random
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(and therefore irreducible) components in spatiotemporal
processes (see Phillips 1997, 1999).

GIS has great potential for resolving some problems
associated with linking process and form. GIS can support
sensitivity analysis based on variable representations
(Fotheringham and Rogerson 1993). Also emerging
for dealing with ambiguous or imperfectly known bound-
aries are fuzzy-set-theory shape techniques (see Chaud-
huri 1990) and shape-reasoning systems (see Schlieder
1996).

Conclusion

The Beguin-Thisse theory of analytical geographic
spaces provides a useful focus for considering representa-
tional and analytical alternatives to the Euclidean model.
This theory suggests that underlying geographic attributes
is a geographic measurement framework (GMF) that
strongly influences measurement by specifying the set
of locations, shortest path distance relations, and mea-
surement of area-based properties. The GMF must be
carefully considered and possibly estimated rather than
accepted.

Measuring attributes within a GMF allows analysts to
conceptualize and measure geographic objects and rela-
tionships among these objects. Key geographic relation-
ships are distance, connectivity, and direction. Distances
between dimensional geographic objects are often incor-
rectly measured in many SA techniques and GIS software;
some efficient techniques for appropriate distance mea-
surement exist, as do needs for developing and bench-
marking some heuristics. It is also possible to generalize
the distance relation to a least-cost path through a cost
field, such as terrain or land cover. There are several
tractable methods for finding these paths based on
discrete-space approximations. Connectivity relations in
the SA literature are less sophisticated than those
conceptualized and analyzed in the GIScience literature.
A small but growing number of direction-based statistical
and computational tools exists. These should be expanded
and integrated into other SA techniques, such as auto-
correlation and interaction modeling. Digital geographic
data allow detailed representation of geographic objects;
this information can be exploited using new shape-
analytic techniques and grammars.

There are several research and development frontiers
for alternative geographic representation in SA and GIS
tools. A broad-ranging research agenda involves deter-
mining the geographic phenomena and problems that
benefit from alternative representations and their analy-
tical possibilities. We have made several tentative sugges-
tions in this regard. There are also specific research and

development frontiers, many of which serve this overall
goal. These include:

1. GIS software tools for estimating and testing GMFs,
including multidimensional scaling, bi-dimensional
regression, and distance metric parameter estima-
tion techniques.

2. Additional techniques for spherical SA with corre-
sponding GIS software tools and spherical spatial
data models.

3. GIS tools that appropriately measure distance
between dimensional geographic objects. There
is also a need for developing and benchmarking
heuristics for average and expected distances.

4. Techniques and corresponding software tools for
analyzing relationships based on least-cost paths
through geographic space, included those embed-
ded within non-Euclidean and/or spherical spaces.

5. Analytical techniques that capture the full spec-
trum of possible connectivity relationships between
dimensional geographic objects.

6. Analytical techniques and GIS software tools for
analyzing directional relationships between geog-
raphic objects, including those embedded within
non-Euclidean and/or spherical spaces.

7. A quantitative theory and methods for direction-
al relationships among dimensional geographic
objects.

8. Additional techniques and GIS software tools
for shape analysis, including those for objects
embedded in non-Euclidean and/or spherical
spaces.

Required enabling technologies include GIS and
related software tools that support the representations
and analyses discussed in this article. It is unlikely that the
GIS software vendor community will provide these tools
directly, at least initially, due to lack of market support.
Even if the vendor community is responsive to this call,
however, the value of these tools will be blunted if they are
proprietary. The research frontiers identified in this article
involve the integration of detailed georepresentation with
SA and detailed geometry with process. The technologies
to support this integration must be interoperable, sup-
porting common standards and protocols that allow
integration across heterogeneous software environments.
Scalability to large geodatabases with complex spatial
objects and relations will most likely require efficient
software for spatial database management, spatial query-
ing, and geovisualization combined with customized code
for SA and modeling, written in high-performance
programming languages rather than computationally
cumbersome macrolanguages. There is also a need for
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SA software clearinghouses where software tools can be
shared among members of the research and practitioner
communities. These clearinghouses could reside in uni-
versity settings, perhaps supported by both public and
private sectors.

Requirements for interoperable, computationally scal-
able, and extensible software tools suggest the need to
develop open software standards such as the OpenGIS
Consortium. The current OpenGIS data model supports
points, polylines, and polygons, as well as collections of
these objects. However, the data model does not support
field-based approaches to georepresentation, which are
required for techniques such as shortest paths through
geographic space (see above). There is also support for
some distance and topological relationships, but the
currently implemented relationships are limited with
respect to the spectrum outlined in this article. A
worthwhile research and development topic is extension
of the current OpenGIS data model to include the full
range of geographic entities and relationships identified in
this article.
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Notes

1. ‘‘Analysis’’ is a multifaceted term. We refer here to its precise
mathematical definition as the class of sciences that examines
exact relations between quantities or magnitudes (Webster’s
UnabridgedDictionary 1998). Analysis can only examine real-
world properties that are measurable, countable, or formally
comparable. This definition is consistent with the spatial
analytic tradition in modern geography (Taaffe 1974). While
there are other valid forms of inquiry, including narratives
and graphics, these are not the direct concern of the
discussion in this article.

2. Following standard usage, we use the term ‘‘geographic
information systems’’ (GIS) to refer to the technology and
‘‘geographic information science’’ (GIScience) to refer to the
theories and methods that underlie the technological
implementation.

3. We purposely avoid naming any commercial or public-license
GIS software directly. When we use the phrase ‘‘most GIS
software’’ (or a variation), we imply precisely that: there is one
or a very small number of software packages to which this
observation does not apply. We decline to name the specific
GIS software, either in a positive or a negative light.

4. ‘‘Countable’’ means that we can derive a one-to-one
correspondence between the set in question and the set of
natural numbers. In 1873, Georg Cantor proved that
different ‘‘sizes’’ of infinite sets exist, with the natural
numbers being the smallest. The set of irrational numbers is
a larger and uncountable infinite set (Borowski and Borwein
1991). The term ‘‘s-bounded’’ is often used to designate
‘‘countably bounded.’’

5. See Flake (2000) for an excellent discussion of the relation-
ships between computability and natural (including human-
made) systems.

6. More precisely, this set is the Borel s-algebra associated with
(X, dL). This is the smallest s-algebra that contains the open
subsets defined by X; dLð Þ. The s-algebra of a set is a
collection of subsets that contains: (1) the set itself; (2) the
empty set; (3) the complements of all members of the set; and
(4) all countable unions of members of the set (Borowski and
Borwein 1991; see Beguin and Thisse 1979 for an alternative
definition). Any Borel set ismeasurable, meaning that we can
define a ‘‘measure’’ as indicated in the main text (see Haaser
and Sullivan 1971).

7. Note that the concept of ‘‘area’’ does not require a metric
space topology; see Casati, Smith, and Varzi (1998).

8. O ( ) or ‘‘big oh’’ notation indicates the order or general
complexity class of the algorithm in the worst case. For
example,O n2

� �
states that the algorithm will require no more

than n2 operations, subject to a proportionality constant. For
more information on complexity analysis, see Garey and
Johnston (1979) and Sipser (1997).

9. The law of transportation refraction assumes a cost-density
field with no points of concentration or other impenetrable
objects that can ‘‘block’’ shortest paths. Incorporating these
objects requires an analogous concept of diffusion. Thanks to
Mike Goodchild for pointing this out.

10. Or, more precisely, cells. A cell is a connected two-
dimensional region with no ‘‘holes.’’ See Worboys (1995)
for a more precise definition.

11. A simple line is a one-dimensional spatial object that is
topologically equivalent to a straight line (Worboys 1995): in
other words, the line does not ‘‘cross’’ itself.
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