Climate-Change Problem Solving: Structured Approaches Based on Real-World Experiences

> Richard B. Rood Laura J. Briley Daniel A. Brown

all at University of Michigan, Ann Arbor

Outline

- Model of knowledge system
- Structured problem solving
- How to express problem solving in information technology
- Concrete design example:
 - Development of quasi-controlled vocabulary
 - Narrative information
- Conclusions: Major Design Considerations
- Draw a single thread through a complex problem

Knowledge System

- Need to bring together disparate information and different points of view to develop strategies for applied problem solving
- Key to development of successful strategies: iterative process or codevelopment with information providers and information users
 <u>Cash et al: 2002</u>

Lemos & Morehouse, 2005 Dilling & Lemos, 2011

Knowledge System, Science Focused

- Two Points
 - This figure overstates the role of "science" in the knowledge systems
 - I choose not to draw a line between the two bubbles, as the relation between "science" and the application is not direct.

Heuristic Knowledge System

These elements sit in a complex and changing relationship within any specific application, as well as across multiple applications.

Heuristic Knowledge System

Common Structure of Problem Solving

Definitions: Structured Problem-solving

- <u>Inventory</u> is the collection of the necessary information to address the problem.
- <u>Analysis</u> is the consideration of the nature of the information: deconstruction breaking down the information, identifying relationships, determination of information gaps ...
- <u>Evaluation</u> is the determination of the quality and value of the information: accuracy, relevancy, defensibility, validation ...
- <u>Synthesis</u> is the fitting together of the information resulting from the above problem solving processes to address a specific problem: reconstruction, integration, creation of new knowledge

How to support this in IT?

- Inventory is easy to conceive as a database with a content management system
 - How to extend this to support
 - Analysis
 - Evaluation
 - Synthesis

Iterative Co-development Capture Expertise of People Solving the Problem

- Tag information (range of descriptors)
- Translate information across disciplinary boundaries
- Tailor information to be relevant to specific application
- Describe uncertainty
- Provide judgment on usability of information
- \rightarrow Knowledge applied to real problems

The way we have chosen to pursue this (<u>GLISAclimate.org</u>)

Drupal: Open Source Content Management Apache Solr: Open Source Search

Vocabulary for Faceted Search

- Controlled or defined vocabulary
- User provided vocabulary

We have chosen a design of quasi-controlled vocabulary.

Co-developed with initial users Limit terms to promote usability Especially at the top, first levels

Development of Controlled Vocabulary

Search: GLISAclimate.org

Support Co-development: GLISAclimate.org

Conclusion: Major Design Considerations (<u>http://www.glisaclimate.org</u>)

- Support iterative co-development
 Eccus on those actively engaged in a
 - Focus on those actively engaged in process
- Information is not hierarchical
 - "Science" only part of knowledge base
- Fundamental elements of problem solving
 - Inventory, Analysis, Evaluation, Synthesis
- Quasi-controlled vocabulary
 - Classification, usability
- Free-form narrative information and tags
 - Analysis, Evaluation, Synthesis
 - Iterative Co-development