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ABSTRACT 
 

GIS based habitat modeling and a modified form of binary logistic regression were 

used to assess habitat-use of gray whales (Eschrichtius robustus) along the south coast of 

Flores Island, British Columbia.  Principle objectives include the derivation of a resource 

selection function (RSF) to determine relative likelihood of use of available bathymetric 

depth, slope and complexity features within the study area.  Micro-scale pelagic currents 

were subsequently incorporated to examine their potential impact on gray whale habitat 

use.  877 whale presence observations were contrasted with bathymetric GIS layers to 

produce a RSF identifying increased whale occurrence in waters ~10 meters deep, in 

combination with areas having higher benthic topographical complexity.  Acoustic 

Doppler current profiling data were used to derive continuous, dynamic current surfaces 

at three separate depths of the water column.  The effects of current speed and direction 

on foraging whales were found to be negligible, but areas with south flowing surface 

currents consistently predicted increased use.  

 
Keywords: gray whale, resource selection function, GIS, logistic regression, habitat 
model, marine GIS. 
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1 INTRODUCTION 
 

Sample data are rarely available to explain species presence at every location on the 

landscape.  Therefore, models are used to extrapolate beyond the locations where species 

presence is known, by linking presence to underlying habitat variables (Pearce and Boyce 

2005).  However, accurately predicting species interaction with their environment is a 

challenging task (Scott et al. 2002).  The complex relations that define ecological 

processes are often dynamic and blur the patterns that statistical models attempt to 

uncover (Huston 2002).  This vagueness is proliferated when the habitat under study is 

submerged, and the processes therein are inherently more obscured (Urbanski and 

Szymelfenig 2003).      

Many statistical techniques have been used to accurately model habitat, with the 

intent of predicting species occurrence solely from environmental variables (Scott et al. 

2002; Guisan and Zimmermann 2000).  Selecting the most effective quantitative method 

depends on the amount and quality of species presence data, and landscape information.  

Additionally, not all of these data suit the popular statistical models, often violating the 

assumptions that govern hypothesis testing (Lowell et al. 2003).   

A common modeling technique employs binary logistic regression, a method that 

assesses how a species uses resource units within an area of interest (MacKenzie et al. 

2006).  Logistic regression utilizes dichotomous data of used and available habitat to 

produce a resource selection function (RSF).  This method is favourable because it 

accommodates presence-only data for which there is no information on locations where a 

species does not occur on the landscape, a frequent result of species sampling.  There are 

several approaches for constructing models using this type of data (Pearce and Boyce 

2005; Manly et al. 2002).   

The exponential form of logistic regression offers a more representative prediction of 

species occurrence than other common logistic models (Manly 2002).  Species presence 

data are often paired with an independent sample of available habitat data subsequent to 

being in the field.  These available sites are generally sampled post-hoc from habitat 

layers represented in a geographic information system (GIS) (Erickson et al. 1998).  The 
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exponential model is particularly well suited for this sample design, and does not require 

a measure of species abundance (Manly et al. 2002).  

This analysis demonstrates the functional application of the exponential model on 

foraging gray whale (Eschrichtius robustus) locations on the west coast of Vancouver 

Island, British Columbia.  The derived RSF surface depicts areas of increased likelihood 

of gray whale habitat-use, which has potential management applications that include: 

delineating the spatial extent of marine protected areas (Short 2005), monitoring effects 

of boat traffic on foraging sites (Duffus 1996), and examining shifts in whale occurrence 

as a result of changing oceanic climate (Grebmeier et al. 2006; Moore et al. 2003)1.   

Species presence data were obtained from a continuing, long-term study by the 

University of Victoria Whale Research Laboratory.  A previous investigation of whale 

habitat use was performed here by Meier (2003).  The results were significant at various 

spatial and temporal scales, showing that whales select for particular depths and 

bathymetric slopes.  Kopach (2004) expanded this investigation in pursuit of linking 

whale occurrence to dynamic current features in the study area.  Although no association 

was found, a complex portrayal of current dynamics within the study area was attained.   

The whale occurrence data are suitable candidates for the exponential model using 

Study Design 1 as outlined by Manly et al. (2002:6), which utilizes transect-based 

presence surveys, and a random sample of available habitat extracted from a GIS.  The 

RSF surface was derived while considering the following objectives at a fixed spatial 

micro-scale across several seasons: 

 

Objective 1: Use logistic regression to confirm the findings of Meier (2003), and identify 
gray whale preference for specific bathymetric slope and depth. 

 
Objective 2: Construct a RSF model through the introduction of additional static marine 

landscape variables: Benthic topographical complexity, distance from shore, 
and a polynomial form of depth. 

 
Objective 3: Examine the influence of dynamic, multi-depth, continuous marine current 

variables on the model.   
 
 
 
                                                 
1 Conservation status of gray whales, refer to Appendix C 
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GIS was used to facilitate the modeling process.  This analytic geographic 

environment permits the integration of multiple habitat layers that represent the natural 

features negotiated by gray whales in the ocean.  This case study offers insight into the 

effectiveness of habitat-use models within this unique ecological context.  Although GIS 

retains fixed terrestrial origins, it has only recently been adapted for use in aquatic 

ecosystems (Wright 2000; Li and Saxena 1993).   

The marine environment presents additional GIS modeling complexities with the 

introduction of an intrinsic third dimension, perpetual dynamics, and indistinct 

boundaries (Valavanis 2002).  The ocean obscures regular human observation, making 

data collection difficult compared to land-based investigations (Wright and Goodchild 

1997; Lockwood and Li 1995).  Unlike land, which has rigid coordinate systems, few 

things in the ocean are static.   There is a significant lack of control points, datums, and 

landmarks available to model this space (Wright 2002).  This has prompted developments 

in GIS software to accommodate these ambiguities; the result of the process has been 

termed Marine GIS (Wright and Scholz 2006; Breman 2002).  This particular 

nomenclature does not refer simply to the use of GIS in a marine context, but designates 

an independently burgeoning branch of GIS itself2.   

 

2 BACKGROUND 

2.1 PATTERNS OF SELECTION AND HABITAT USE 
 

In a marine context, this investigation considers habitat to be defined as the 

characteristic space occupied by an individual, population or species (Baretta-Bekker et 

al. 1992).  RSF modeling provides a controlled methodology that identifies relationships 

between variables coexisting in this characteristic space.  The link between whales and 

their abiotic habitat is not direct, rather, intermediate factors such as prey influence their 

distribution.  An animal is going to occupy the space that offers the most favorable 

biological requirements for that individual.  Patterns of occurrence are influenced by the 

availability of food and the energy required to obtain it (Dunham and Duffus 2002).   

                                                 
2 For a complete review of concepts in marine GIS, refer to Appendix B 
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RSF models isolate these patterns by statistically combining available environmental 

attributes (extruded from GIS layers) with whale presence sites (Manly et al. 2002).    

Gray whales are unique because they are the only cetaceans to exploit both the open 

water and seafloor features of their habitat (Rice and Wolman 1971).  As a result, both 

static (benthic) attributes and dynamic (current) attributes are considered in this study.  

By utilizing both static and dynamic spatial elements, whales increase their probability of 

encountering areas of concentrated prey.   

A population of approximately 250 summer residents forage along the coast of 

Vancouver Island (Megill et al. 2003; Dunham and Duffus 2002, 2001; Darling et al. 

1998).  Their primary prey species are sub-benthic invertebrates that live in seafloor 

sediments (Moore 2003).  These include tube dwelling ampeliscid amphipods (Ampelisca 

spp.) and ghost shrimp (Callianassa californiensis) which occur nearshore in waters up to 

35 m deep (Dunham and Duffus 2002, 2001; Darling et al. 1998).  The whales essentially 

vacuum soft sediments from benthic substrate into their mouths, then expel the silt while 

retaining prey with their comb-like baleen (Nerini 1984).   

Gray whales also forage on dense groups of swarming plankton.  These species 

include hyper-benthic mysids (Holmesimysis sculpta) and pelagic porcelain crab larvae 

(Petrolithes eriomerus) (Darling et al. 1998).  Mysids consistently swarm above shallow 

rock reefs up to 15 m deep, while porcelain crab larvae are found in greater 

concentrations above boulder covered substrate in waters less than 30 m (Megill et al. 

2003; Dunham and Duffus 2002, 2001).  In essence, these prey are directly linked to the 

surrounding static and dynamic landscape, acting as the spatial connection between 

whales and the places they occupy. 

This investigation parallels previous research linking whale distribution to oceanic 

landscape variables using GIS (Yen et al. 2005; Meier 2003; Moses and Finn 1997).  

Moore et al. (2002) established a connection between northwest Pacific blue whales 

(Balaenoptera musculus) and seafloor bathymetry, sea-surface temperature, surface 

currents, and chlorophyll-a concentration.  Chlorophyll-a acts as an indicator of primary 

production and is directly related to the principal prey of baleen whales: plankton (Littaye 

et al. 2004).  Gregr and Trites (2001) made predictions of critical habitat for five whale 

species off the coast of British Columbia, by correlating historic whaling location records 
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with seafloor depth, slope, sea-surface temperature, and salinity.  Depth was shown to be 

a strong influence in distribution for most whale species.  Moore et al. (2003) sampled 

benthic prey biomass directly to characterize the distribution of gray whales in the 

northern extent of their range.  A variety of statistical models were used in this previous 

research to predict whale distribution patterns based on physical oceanographic habitat 

attributes.  For this case study, the exponential form of logistic regression has been 

selected. 

 

2.2 THE EXPONENTIAL MODEL  
 

Originally explained in an ecological context by Manly (1992), and later readdressed 

by Manly et al. (2002), the exponential form of the logistic regression model is used to 

derive realistic estimates of resource selection by animals.  It has been applied in several 

ecological studies (Nielsen 2005; Boyce and McDonald 1999; Erickson et al. 1998) in an 

attempt to quantify species-landscape associations.   

Logistic regression is widely used in biology because it conveniently restricts 

predicted probability values between 1 and 0, and is similar to linear regression, but 

forgives many of the assumptions (Manly et al. 2002).  This restriction is based on the 

dichotomous nature of species location data, being either present (1) or absent (0), 

matching the logistically confined probabilistic result of either high (1) or low (0) use.  

The purpose of using a logistic transformation is to accommodate the binary proportions 

of the response variables.  Unlike a linear model where a single variable (y) is regressed 

against a set of independent predictor variables ( 1χ , 2χ .. kχ ), logistic regression uses a 

link function to combine the ratio of presence vs. absence in the data to act as a single 

variable (y).  This way, the logistic regression assumes many of the desirable properties 

of a regular linear model (Hosmer and Lemeshow 2000).   

When modeling presence-only data, a sample of non-presence is also required.  True 

absence across the landscape is not known because it was not measured concurrently 

during presence sampling.  Traditional logistic regression assumes that both were 

sampled simultaneously within the same timeframe (Manly 1992).  Absence sites can be 

obtained after being in the field, by randomly sampling habitat layers in a GIS.  This is 
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now in fact pseudo-absence, because true absence was still never recorded.  The 

predictive power of the traditional logistic model is slightly weakened by the use of 

pseudo-absence, because many cases of absence may contain an unknown number of 

presences, acting to contaminate the sample (Pearce and Boyce 2005).   

Alternate forms of logistic regression exist to accommodate the various sampling 

techniques used to acquire pseudo-absence.  Depending on the definition, one of two 

models can be used: presence-absence or use-available.  The former is utilized to 

contrast consumed resource units against the characteristic units where use has not been 

recorded.  The latter considers all resource units to be available for use, but some units 

are used more frequently than others.  The distinction between these definitions is small, 

because their sampling designs are similar, but there are larger conceptual differences 

between them.  This is a main reason for differing logistic modeling techniques (Pearce 

and Boyce 2005).  The exponential model in particular assumes the dichotomous data to 

be defined as used (1) and available (0) habitat3.  Therefore this case study defines the 

RSF model as use-available herein.  

Traditional logistic regression requires that total species abundance in the study area 

is known, so that sampling probabilities of use and available can be calculated.  However, 

actual abundance is rarely measured, and the proportion of available habitat is randomly 

sampled using GIS.  The equation constant ( 0β ) that contains these probabilities is 

dropped from the logistic regression equation, because it is meaningless without species 

abundance (Manly et al., 2002).  The constant is simply an extra parameter that scales the 

intercept to reflect how rare or common a species is on the landscape, which is unknown 

in the first place (Nielsen pers. com. 2006).  Equation 2.1 then assumes the exponential 

form:   

                             )...)( 221 kk1exp(  xw χβχβχβ +++=                                     (2.1)       

                                             

The exponential model now only effectively estimates relative likelihood of 

occurrence rather than calculating true probability.  Firstly since the sampling 

probabilities are removed, and secondly because the proportion of used and available 

                                                 
3 The derivation of the exponential model is explained in Appendix A 
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samples has been arbitrarily determined.  The results of the model are still approximately 

equal to the traditional logistic regression model, and reflect the proportional probabilities 

of habitat use (Manly pers. com. 2006).     

 

3 METHODS 

3.1  SCALE  
 

Levin (1992) states that a substantial problem in ecology is to relate ecological 

phenomena across scales.  Scale is considered the continuum through which entities, 

patterns, and processes can be observed and linked (Marceau 1999).  Meier (2003) found 

that gray whales display differing patterns of selection at separate spatial and temporal 

scales.  This analysis uses a fixed spatial and temporal scale to focus on the effects of 

how additional habitat variables influence occurrence.  

Gray whales have the longest migration of any mammal, traveling over 16,000 km 

annually from their summer feeding grounds in the Chukchi, Bering, and Beufort Seas, to 

the shallow lagoons of Baja Mexico to reproduce (Rice and Wolman 1971).  The breadth 

of scale at which they interact is vast, and presents differing criteria for habitat-use across 

these scales.  The summer residents do not complete the journey to the arctic, but 

preferably consume substantial nutrients in habitual feeding sites along the coast of 

Vancouver Island.  For the purpose of this investigation, and in contrast to the entire 

range of the summer residents, the study area can be considered a micro-site (Figure 3.1).      
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   Figure 3.1  Vancouver Island, gray whale migration route, and Flores Island4.  
 

The spatial extent of the study area is limited by the extent of the University of 

Victoria whale census transect, and is coincident with the coverage of the GIS layers that 

characterize available habitat.  Although the study area is constrained by these layers, it is 

recognized that in reality, these boundaries may not coincide with the actual limits of 

availability (Erickson et al. 1998).   There is no established method for defining a study 

area, but these constraining factors ultimately limit the spatial extent of the analysis 

(Marceau et al. 1994).  It was determined that the grain of the GIS layers must be finer 

than the scale at which whales congregate within the micro-site, in order to detect 

variation in habitat at individual locations  (Duffus pers. com. 2006).  This spatial 

resolution was kept consistent between layers at <30 m, which is within the GPS 

accuracy used to record whale locations. 

Temporally, surveys from nine independent, four month-long seasons were 

available.  Given enough time, presence could eventually occur at every point in the 

study area, possibly obscuring any spatial patterns.  Therefore, a subset of these data was 

used; by only observing occurrence during a brief temporal window from every 

independent season.  Observations during July were chosen because calm weather 

                                                 
4 Background bathymetry credit: Jeff Ardron, Living Oceans Society. 
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permits a more consistent survey effort, and the summer resident population has 

stabilized in the region.   

The landscape encompassing the study area is an aggregation of adjacent hierarchical 

levels of spatial and temporal scales (O’Neill et al. 1986).  The focus of this case study is 

on a single level of available scales, with no quantitative effort to investigate how 

ecological patterns and processes are linked across the hierarchy.   

 

3.2 STUDY AREA 
  

The population of summer residents have displayed long term site fidelity to feeding 

sites in Clayoquot Sound, BC.  (Moore et al. 2003; Calambokidis et al. 2002).  The study 

area contains several of these feeding sites along the southwest coast of Flores Island, 

which is flanked by non-productive areas that are rarely used by foraging resident whales 

(Meier 2003).  The area extends along approximately 12 km of shoreline from Dagger 

Point in the northwest, to the eastern edge of Cow Bay (Red Rocks) (Figure 3.2).  The 

study area is characterized by an assortment of physical substrate types including shallow 

rocky reefs, boulders, mud and sand bays, with water depths ranging to 35 m (Dunham 

and Duffus 2001). 

 
 
                 

             
               Figure 3.2  Flores Island study area. 
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3.3 PRESENCE DATA  
 

Whale location data were collected from late May to early September from 1997 to 

2005, weather permitting.  This analysis used every presence site that occurred within the 

month of July across nine seasons, totaling 877 points.  Vessel based surveys were 

conducted along transects as described by Kerr (2005) and Meier (2003).  An inshore 

transect was followed ~350 m from shore heading north, then adhering to a return 

southbound transect ~2 km offshore.  Surveys were conducted with a crew of three to 

seven observers following speeds of ~15 km/hr (8.5 knots), with individuals scanning 

fore, aft, and on each side of the vessel for whale blows.  When a whale was observed, 

the vessel would deviate from the transect to approach the animal, and collect its position 

using a GPS, digital flux compass, and a laser range finder.  The vessel then returned to 

the transect and continued the survey.  Positional accuracy is assumed to exist in the 

region of ±100 m.  

 

3.4 AVAILABLE HABITAT: GIS SURFACE DESIGN 
 

Model layers were selected using a priori knowledge of gray whale foraging 

behavior, and their exploitation of benthic and pelagic habitat.  Variables were also 

considered on their use and success in previous resource selection investigations (Kopach 

2004; Meier 2003).  It is assumed that each candidate variable plays an active role in 

selection by gray whales, representing both static and dynamic oceanographic entities.     
   

3.4.1 DEPTH  
                 

Nearshore depth was derived from multibeam sidescan sonar data provided by 

Nautical Data International Inc., an associate of the Canadian Hydrographic Service.  

Sonar data were converted to a grid of discrete points with 50 m intervals, and then 

interpolated to create a continuous bathymetric seafloor surface for the extent of the study 

area.  Interpolation was executed using kriging in ArcGIS Geostatistical Analyst (ESRI 

2006).  Kriging estimated unknown values of depth for areas between sonar points.    

Unlike other interpolators, kriging determines the non-arbitrary range where 
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autocorrelation decays, and spatial dependence dissipates.  Sonar points beyond this 

distance were not used for weighted estimates.   

The derived bathymetric surface had an overall RMS error of 0.84 m, with a 30 m 

spatial resolution (Figure 3.3).  This surface provided the foundation for the other static 

landscape features of the same resolution.  This layer was used to confirm the 

significance of depth as a static indicator of whale selection.  Where Meier (2003) found 

preference for shallower depths by whales, possibly indicating better foraging in these 

areas. 

 

   
   Figure 3.3  Interpolated bathymetric depth surface. 
   

3.4.2  SLOPE 
 

Bathymetric slope was derived from the bathymetric surface using the Surface 

Analysis tools in ArcGIS Spatial Analyst.  The slope surface is measured in degrees, 

showing minimal relief in the study area with a maximum slope of 19º (Figure 3.4).  

Meier (2003) found disproportionate use of available bathymetric slope by whales. 
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                       Figure 3.4  Bathymetric slope (degrees). 
 

3.4.3 DISTANCE FROM SHORE 
          

Gray whales forage along the coast, and are rarely found more than a couple 

kilometers offshore at any point during their migration (Rice and Wolmann 1971).  

Distance from shore was calculated using the Euclidean Distance tool in ArcToolbox, 

with a resolution of 10 m (Figure 3.5). 

 

    
     Figure 3.5  Distance to shore (meters). 



 13

3.4.4 BENTHIC TOPOGRAPHICAL COMPLEXITY 
 

Benthic topographical complexity is an indicator of heterogeneous areas commonly 

associated with high species richness.  It is often possible to use benthic complexity as a 

surrogate for species abundance in the absence of comprehensive biological data (Ardron 

2002).  Species exist in greater diversity in complex areas that provide more available 

niches.  Increased niches support more concurrent life stages, offering greater resiliency 

when a swarm of plankton is consumed by a passing whale for instance.  These areas will 

frequently attract more intense foraging because they can quickly rebound from heavy 

use (Patterson 2004). 

Benthic complexity measures how frequently the slope of the seafloor changes, it 

is a measure of variability.  Slope represents steepness and relief looks at the maximum 

change in depth; benthic complexity examines the intensity of convolutions along the 

bottom.  A similar measurement is rugosity, where bottom surface distance is divided by 

the total planar distance.  This can be strongly influenced by single large change in depth, 

where complexity considers all surface variations more equally (Ardron 2002).       

The derivation of this marine specific surface was adapted form Ardron (2002).  The 

bathymetry layer was exaggerated in ArcMap Raster Calculator to expose smaller shifts 

in depth that may have been overlooked.  The exaggeration also groups very steep 

features together as they generally dominate the results.  The slope of the exaggerated 

depth was calculated, and then again taking the slope of this surface identified dense 

areas of seafloor variation.  The technique creates a final surface that diffuses complexity 

around abrupt linear features such as ridges, and displays convoluted regions with 

increasing values of higher benthic complexity (Figure 3.6).  This is an enhanced 

representation of the marine environment, an improvement over the discrete categories 

common to most GIS habitat layers. 
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Figure 3.6  Benthic topographical complexity. 

 

3.4.5 CURRENT VELOCITY 
 

The interpolated dynamic variables originate from discrete data collected by Kopach 

(2004) using an acoustic Doppler current profiler (ADCP).  The ADCP measures the 

Doppler shift of sonar pulses reflected off particles suspended in the water column (RD 

Instruments 1996). The ADCP collects both current velocity (cm/s) and flow direction 

(360º) in 50 cm bins extending from the surface to the seafloor.  Bins were averaged into 

three layers of the water column: top, middle, and bottom (Kopach 2004).  A series of 

vessel based transect ensembles were run both perpendicular and parallel to shore 

throughout the study area.  Each transect was sampled four times in total, twice during 

ebb (receding), and flood (advancing) tides. 

Kopach (2004) determined that tides are the major driving force of current dynamics 

in the study area.  It is believed that currents physically concentrate swarming mysids and 

provide refuge in slower waters, while faster currents would sweep them away.  Areas of 

slower velocity may produce detritus stalls and fallout nutrients would supply both 

pelagic and benthic prey (Kopach 2004).  Gray whale summer residents have an 

increased reliance on prey suspended in the water column, but Kopach (2004) found that 

whales did not seem to select for any particular current speed.  This analysis was limited 
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by the difficulty of synchronizing whale presence sites with discrete ADCP ensemble 

locations.   

Interpolated current GIS surfaces permitted the use of all whale occurrences, 

regardless of their proximity to the discrete ADCP measurements.  Unlike other 

phenomena such as temperature or elevation, the interpolation of velocity was much 

more complex.  By nature, any object with velocity has both speed and direction 

components acting on the whole.  For example, the interpolated velocity in between two 

currents depends if they are traveling on a collision course, which will ultimately affect 

their velocities (Figure 3.7).  Interpolation of velocity must account for the influence of 

directional momentum impacting the final values of the interpolated surface. 

 
                      

        
            Figure 3.7  Impact of flow direction on the interpolation  
           of velocity. 
 
 

A solution was to decompose velocity into directional components of x and y. 

interpolate them separately, and then recombine to form the final velocity surface.  The 

direction of travel was converted from degrees to radians.  Since the azimuth originates at 

0º, the total velocity V
r

 is multiplied by the cosine and sine of θ to produce component 

magnitudes xV
r

and yV
r

 respectively (Equations 3.1 & 3.2).   

 

                                               θsinVVx

rr
=                                                     (3.1)                

                                               θcosVVy

rr
=                                                      (3.2) 
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Each vector component was interpolated using Geostatistical Analyst.  Kriging was 

initially attempted, but a lack of spatial autocorrelation in the vector components resulted 

in no suitable semivariogram.  Most likely a result of fine scale current turbulence such as 

rapid shifts in speed and direction.  Inverse distance weighting (IDW) was used instead, 

and is analogous to kriging a surface with no spatial trend, because an arbitrary range is 

employed.  IDW estimates unknown locations by receiving more influence from nearby 

points, and inversely reducing the influence from distant points.  Shifts in speed and 

direction occur very quickly in the ADCP measurements, a shorter range was used as not 

to include weights from distant dissimilar points.  The power value of the IDW was 

increased to preserve the abrupt spatial variation in a regionalized structure similar to 

Thiessen polygons (Figure 3.8).   

 
  

              
                                       Figure 3.8  Conceptual diagram of regionalization as an effect of 
                               increasing IDW power. 

   
 

This heavily localized structure on the final surface implicitly generated regions of 

confidence surrounding each ADCP point.  Following the interpolation of each vector 

component, both surfaces were recombined by applying the root sum of squares to each 

surface (Equation 3.3) using Raster Calculator in Spatial Analyst.   

 

                                             
22
yVxVV
rrr

+=                                                       (3.3) 
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The result was final velocity surfaces for the top, middle and bottom of the water 

column during both ebb and flood tides (Figure 3.9).  

 
        

 
Figure 3.9  Interpolated current velocity (cm/sec) at the surface, middle and bottom of the water column. 
 
 

3.4.6 CURRENT DIRECTION 
 

The ADCP provides current flow direction at the surface, middle, and bottom of the 

water column.  A circular transformation was performed to avoid problems interpolating 

similar directions represented by very different values (i.e., 5º and 355º).  The cosine of 

their radians converted north and south into values of +1, and -1, while the sine of their 

radians changed east to +1 and west to -1.  As a result, two separate direction surfaces 

were used in the model, north-south and east-west flow (Figure 3.10).   

Similar to the interpolation of velocity, direction was found to be intrinsically linked 

with speed.  Therefore, current momentum was incorporated as an inertial component 

acting on the interpolated values of direction.  North-south corresponds with values of yV
r

 

and east-west is represented by xV
r

 for both ebb and flood tides (Equations 3.1 & 3.2).   

Prevailing current direction is assumed to be analogous to the effects of prevailing wind 

in a terrestrial habitat, an influence on gray whale occurrence that has not been previously 

explored. 



 18

Figure 3.10  Interpolated current flow direction at the surface, middle and bottom of the water column. 

 

3.5 STATISTICAL ANALYSIS 
 

The RSF model considers all habitat units available for use, but some are more 

frequently used than others (Pearce and Boyce 2005).  This definition follows that 

outlined in Manly et al. (2002) from Study Design 1 where presence measurements are 

made at the population level and GIS layers are used to randomly census habitat 

availability.  The exponential model produces a RSF that predicts relative likelihood, not 

probability of use, therefore the ratio of presence to available points needs only to reflect 

that the available points are actually representative of what is ‘available’ (Manly et al. 

2002).   

There are no strict means of determining the number of random available habitat 

units.  However, the higher the sampling intensity the better, this ensures that the RSF 

coefficients are stable by effectively sampling what is available, and solely reflect the 

result of animal use.  A drawback of a larger available habitat sample size is the reduced 

effectiveness of model selection techniques such as Akaikes Information Criterion (AIC) 

(Nielsen pers. com. 2006).   

Increasing the number of available units will eventually exceed the point where 

available resources are so well defined that further increase is unnecessary (Nielson et al. 

2003).  For this model, a magnitude of three times the number of presence points was 

randomly sampled to derive the available sample.  This was determined by increasing 
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random sample sizes until the ArcMap Spatial Analyst histogram distribution closely 

matched the distribution of the raster layer from which they were sampled.  Nielson et al. 

(2003) found that exceeding a ratio of three times the number of presence units provided 

minimal change in coefficients, or a reduction in standard error.  A ten percent, random 

equal proportion of presence and available points were withheld for model validation.   

In this model there was no adjustment for autocorrelation from individual 

overrepresentation, because no individuals were identified; measurements were made at 

the population level.  All of the independent variables were tested for multicollinearity 

using Spearman’s rank correlation in SPSS 13 (SPSS Inc. 2006).  Any relationship 

between two or more habitat covariates above R2 = 0.7 were deemed too analogous for 

use in the same model (Suring et al. 2003).   
 

3.5.1 POLYNOMIALS  
 

Logistic regression does not require, but generally assumes linear relationships 

between locations of presence, and underlying habitat variables (Hosmer and Lemeshow 

2000).  In all reality, this association may not necessarily be linear.  For that reason, 

polynomials can be applied to enhance the fit of the function curve.  The quadratic 

function form of bathymetric depth was used as a surface because it is obvious that 

whales do not continue linearly into the abyss during foraging.  No other functions were 

included to avoid forcing model fit by using increasingly complex polynomials which 

could potentially stray from simplicity.   
 

3.5.2 MODEL ASSUMPTIONS 
 

This model considers presence as an event that occurs solely at the ocean surface.  

Presence below the surface is only assumed to extend vertically to the bottom of the 

water column.  This may not be the case, as whales may diverge laterally from this 

location while out of sight; a consequence of research in a relatively opaque, three 

dimensional ocean (Hooker and Baird 2001).  However, it was assumed that over time, 

presence points cluster in areas where whales consistently forage. 
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Much effort was employed in the creation of the current speed and direction 

surfaces, but this did not prevent measurement error.  The discrete ADCP data were 

found to be very spatially and temporally coarse considering the extent of the study area 

(Kopach 2004).  In practice, an ADCP must collect data over an extended duration to 

resolve any enduring trends.  Insufficient measurements would be directly transferred to 

the interpolated surfaces.  IDW partially mitigated uncertainty by restraining the ADCP 

values to local regions around the measurement sites.  The use of a 95% confidence 

interval may have been too strict for the stochastic nature of these variables.  On the 

contrary, any detectable signal emerging above the noise would indicate a very strong 

natural relationship worthy of further examination. 

All dynamic variables occur at three separate depths, and then combined with the top 

ranking static variables to detect any model improvement.  The resulting number of 

possible model combinations would be too vast for individual testing at discrete depths.  

To contend with the number of dynamic variables, it was assumed that there are two main 

biological influences of ocean currents: velocity and direction.  Therefore, these variables 

were entered into the candidate models at all depths simultaneously.  The intent was to 

detect any obvious relationships, and then identify a particular depth where these 

relationships have the greatest effect.  Significant variables were then reassessed after the 

initial modeling, because it was assumed that the large number of dynamic variables may 

produce spurious relationships that confound the models, overestimating goodness-of-fit 

through over-fit (Hosmer and Lemeshow 2000).  Through the introduction of many novel 

dynamic variables, this portion of the analysis should be considered exploratory because 

it was observational rather than a manipulative experiment (Manly et al. 2002).   
 

3.5.3 AKAIKES INFORMATION CRITERION (AIC) 
 

  All candidate models were ranked using AIC.  This technique is regularly used for 

biological research, and derives candidate models that contain variables based on both 

statistical significance and biologically plausible contributions (Hosmer and Lemeshow 

2000).  The AIC process ranks the best model as the one with the lowest AIC score, a 

compromise between reducing deviance in model fit (log likelihood), and reducing the 
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total number of parameters (Burnham and Anderson 2002).  Models with fewer variables 

tend to be more robust as they seek parsimony, or overall simplicity.  The explanation of 

any phenomenon should hold as few assumptions as possible, and eliminate those that 

make no difference in observable predictions (Young et al. 1996).  Therefore, penalties 

are added to the AIC scores of models having more parameters than necessary 

(MacKenzie 2006). 

                                           nLAIC Me 2)}({log2 +−=                                            (3.4) 

 
Where LM is the maximized likelihood for the fitted model, and n is the number of 

unknown parameters in the model that must be estimated (Manly et al. 2002).   
 

3.5.4 DYNAMIC MODEL SCALE ADJUSTMENT   
 

Objective 3 contained two separate spatio-temporal subdivisions that differ from the 

previous two analyses.  This was necessary to differentiate whale selection during 

opposing tidal phases which dominate the dynamics of the study area (Kopach 2004).  

One model used ebb tide current surfaces, the other used flood tide current surfaces.  The 

whale presence points were also partitioned based on their time of census corresponding 

to either ebb or flood tides.  Not all years of census data had corresponding location 

acquisition times needed for the partition.  There were an insufficient number of July-

only occurrences to maintain the temporal stratification used for Objectives 1 and 2.   

A new temporal stratification was applied to model ebb and flood current variables 

against whale locations occurring during these tides respectively.  Segregation was 

performed using information from the Xtide Harmonic Tide Predictor (Flater 2006), 

based on the central tide prediction algorithm developed by Schureman (1924).  Tidal 

predictions were calculated for Tofino BC, and were amended for the distance from the 

study area as Tofino + 1 hour.  Presence occurrences were plotted on the tidal chart for 

the corresponding time and date.  Kopach (2004) made ADCP measurements for ebb and 

flood tides no less than one hour from slack tide, the peak or trough between tides.  This 

ensured the strongest respective currents were present during measurement.  Accordingly, 

whale census times occurring within one hour before or after slack tide were omitted 

(Figure 3.11). 
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    Figure 3.11  Tide chart from an unspecified date showing ebb and flood tidal phases,  
    and ADCP sample windows occurring no less than one hour from slack tides. 

 
 

Considering the reduced spatial extent of the ADCP transects, the extent of the study 

area had to be slightly decreased to include the dynamic surfaces used in Objective 3.  As 

a result, the AIC results could not be compared with the models derived in Objective 2, 

because of the different number of presence and available points.  However, Manly et al. 

(2002) states that the subset RSF should explain similar patterns of occurrence as in the 

original study area.  
 

3.5.5 MODEL VALIDATION USING ROC 
 

The RSF determines the relative likelihood of use, and can be used as a predictive 

surface.  The accuracy of the static RSF model was tested using withheld validation data 

by means of a Receiver Operating Characteristic (ROC) curve in SPSS 13.  This method 

iteratively cross-classifies the validation data with a dichotomous variable whose values 

are derived from the estimated logistic probabilities (Hosmer and Lemeshow 2000).    

The area under the ROC curve provides a measure of the model’s ability to 

discriminate between actual presence or absence points.  If the model predicts too many 

false positives or false negatives, the area under the curve is reduced.  The ROC curve 

plots sensitivity vs. 1- specificity across all possible probabilistic thresholds (Hosmer and 

Lemeshow 2000).   Sensitivity is the number of correctly classified presences over the 

total number of true presences, and specificity is the number of predicted absences over 

the total number of true absences.  The resulting plotted curve exhibits whether the static 

RSF model predicts better than a purely random model.  
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The final results of this investigation are presented in chronological order as each 

objective builds upon the previous.  Figure 3.12 summarizes each process step, and the 

overall methodological flow. 

 

 
                Figure 3.12  Analysis flow-chart. 



 24

4 RESULTS 

4.1 CROSS-CORRELATIONS  
 

Spearman’s rank correlations for the habitat variables revealed that depth and 

distance from shore are too correlated and could not be used in the same model (R2 = 

0.86).  Both variables were used in exclusivity during modeling.  The remaining variables 

showed no correlation exceeding the predetermined threshold of R2 = 0.7. 

 

4.2 OBJECTIVE 1: CONFIRM INFLUENCE OF DEPTH AND SLOPE 
 

Both depth and slope display a clear relationship with whale presence (Tables 4.1 & 

4.2).  This result substantiates the findings of Meier (2003), where there was a significant 

association with these same variables.   

 
                        

   Table 4.1  Coefficients (β), standard error, Wald statistic and significance (p)  
   for bathymetric depth as a predictor of gray whale habitat use. 

Predictors β  SE Wald      p 

     
Depth -.079 .006 193.4   < .001* 

Constant -.162 .081 3.935      .047* 
                               Nagelkerke R2 = .090                                                                             * significance at <0.05 
                                                                                                
 
                         
                         Table 4.2  Coefficients (β), standard error, Wald statistic and significance (p)  
                          for bathymetric slope as a predictor of gray whale habitat use. 

Predictors β  SE Wald      p 

     
Slope  .273 .027 105.1   < .001* 

Constant -.166 .060 753.8   < .001*   
                               Nagelkerke R2 = .046                                                                             * significance at <0.05 
             
 
 

The Wald statistic reflects the relative importance of a habitat layer in the model, and 

the amount of explained variability in occurrence.  Nagelkerke R2 is a measure of model 

goodness-of-fit.  Being a pseudo R2, it implies only relative strength between models.  

Low values do not necessarily imply a weak explanation of variance or poor model fit 

(Crawley 2002).   
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The results show a negative coefficient value (β) for depth, expressing a tendency 

away from increasing depths, with more use of shallower waters.  The slope coefficient is 

positive, implying increased presence in areas of greater benthic relief.  Confidence in 

these relationships is strong, as highlighted by small standard errors, and being well 

within the 95% confidence interval.   

These results parallel the findings of Meier (2003) where there was an avoidance of 

deeper waters, and selection for areas of increased bottom slope.  Depth appears to have a 

more substantial influence; with a Wald score nearly double that of slope.  

   

4.3 OBJECTIVE 2: RSF MODEL FROM ADDITIONAL STATIC 
VARIABLES  

 
The AIC top ranked static model was simple and robust, containing only the 

quadratic function of depth and benthic complexity (Table 4.3).  The rapid decrease in 

AIC score of the four top models is considerably less than all of the other candidates.  

The best performing models all included the quadratic function of depth, which improved 

model fit much more than its linear equivalent, depth.  Benthic complexity appears in the 

top two models, and therefore also a strong indicator of whale presence.   

 
     Table 4.3  Candidate static RSF models of gray whale habitat use. 

Rank Candidate Models AIC iΔ  iw  Nagelkerke 

      
1 [Depth+Depth2]a+Cmplxb 3121.0 0.0 0.67  0.247 
2 [Depth+Depth2]+Cmplx+Slope 3122.5 1.5 0.32 0.247 
3 [Depth+Depth2]+Slope 3150.1 29.1 <0.01 0.236 
4 [Depth+Depth2] 3174.2 53.2 <0.01 0.227 
5 Dstncc+Slope+Cmplx 3364.9 245.9 <0.01 0.155 
6 Dstnc+Cmplx 3365.3 246.3 <0.01 0.154 
7 Dstnc+Slope 3395.9 276.9 <0.01 0.142 
8 Dstnc 3437.8 318.8 <0.01 0.124 
9 Depth+Cmplx 3437.9 318.9 <0.01 0.125 

10 Depth+Cmplx+Slope 3438.8 319.8 <0.01 0.125 
11 Depth+Slope 3479.5 360.5 <0.01 0.108 
12 Cmplx 3519.0 400.0 <0.01 0.091 
13 Cmplx+Slope 3520.2 401.2 <0.01 0.091 
14 Depth 3520.5 401.5 <0.01 0.090 
15 Slope 3627.2 508.2 <0.01 0.046 

     Models are shown in decreasing order of importance based on overall AIC score, including difference    
    in AIC ( iΔ ), Akaike weights ( iw ), and Nagelkerke R2. aQuadratic function of depth,  
   bBenthic complexity, cDistance from shore. 
 



 26

The negative coefficients for the quadratic of depth in combination with high Wald 

scores, and low standard error indicate a higher likelihood of whale occurrence in shallow 

waters (Table 4.4).  Although the coefficient is negative, this trend does not imply that 

whales are selecting for the shallowest depths possible, it is not a linear association.  

Rather there is a trend for shallower water relative to all depths available in the study 

area.  This relationship is visualized by plotting the coefficient of depth2 against actual 

depth (Figure 4.1).  It is apparent that the likelihood of occurrence is low near shore, but 

increases dramatically to a maximum use at depth ~10 m.  Occurrence then subsides as 

depth increases further offshore into pelagic waters.                   
 
 
                       Table 4.4  Coefficients (β), standard error, Wald statistic and significance (p) for the 
                   top ranking static RSF models. 

Rank     Predictors β  SE Wald        p 

     
     Depth         .386 .031 < .001* 
     Depth2        -.018 .001 < .001* 
     Cmplx         .014 .002 < .001* 

 1st
 

     Constant  -2.85 .198 

155.9 
200.2 
54.8 

206.1 < .001* 

     
     Depth  .386 .031 < .001* 
     Depth2 -.018 .001 < .001* 
     Cmplx .013 .002 < .001* 
     Slope .027 .036   .456 

2nd
 

     Constant -2.86 .167 

155.5 
199.8 
29.6 

0.555 
205.3 < .001* 

      
     Depth  .380 .031 153.2 < .001* 
     Depth2 -.018 .001 207.9 < .001* 
     Slope .146 .029 25.8 < .001* 

 3rd  

     Constant -2.55 .187 185.5 < .001* 

 
                                                                                                                                                           * significance at <0.05                                                               

         
   

A strong positive relationship with areas of increasing benthic complexity is 

explicitly shown in all the top models with relatively strong Wald scores, and small 

standard errors.  The role of benthic complexity is extraneous compared to the variability 

accounted for by depth2.  Slope also appears in these top models, but offers very little in 

terms of increasing model fit.  It provides no change in Nagelkerke R2 in the top two 

models, because slope is very insignificant and has no Wald score.   
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                                      Figure 4.1  Likelihood of use at depth2 vs. depth in meters. 
 
 

The top ranked AIC model was used to create the RSF surface by entering the 

logistic coefficients into the exponential model using Raster Calculator in ArcMap 

(Eqaution 4.1).   

                    )})(014.0()])(18.0())(386.0{[()( 2 cmplxdepthdepthexp  xw +−=               (4.1) 

 

The RSF clearly exhibits increased likelihood of use in shallow, nearshore areas of 

high benthic complexity (Figure 4.2).  

 

 

  
                     Figure 4.2  The RSF surface. 
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The ROC curve expresses how well the RSF model predicts the likelihood of habitat 

use (Figure 4.3).  The area under the curve (AUC) equals 0.77 which implies that 77% of 

the time, a randomly selected presence point will have a higher predictive value than a 

randomly selected available point.  An AUC of 0.77 approaches the boundary of 

acceptable to excellent model discrimination (Hosmer and Lemeshow 2000). 

 
                            

    
                                           Figure 4.3  The receiver operator characteristic curve. 
 
 

4.4 OBJECTIVE 3: INFLUENCE OF DYNAMIC MARINE VARIABLES 
 

4.4.1 EBB TIDAL CURRENTS AT ALL DEPTHS 
 

During ebb tides, north-south flowing currents occur in all of the top ranked models 

(Table 4.5).  The negative coefficients suggest that south flowing currents have the most 

influence, but relatively large standard errors imply that these coefficients may be 

insubstantial (Table 4.6).  East-west flowing currents also occur in the top model, but are 

surpassed by the frequency of the north-currents in the other models.  
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Current velocity appears to offer very little in improving model fit, only reaching the 

3rd ranked model.  Insignificance and high standard errors overshadow any possible effect 

current speed may have in this stage of the results. 

 
      Table 4.5  Candidate models for selection by whales of dynamic ebb tide current variables in     
     combination with static RSF variables. 

Rank Candidate Ebb Tide Models AIC iΔ  iw  Nagelkerke 

      
1 [Depth+Depth2]+Cmplx+Northa+Eastb 991.7 0.0 0.57 0.189 
2 [Depth+Depth2]+Cmplx+North 993.3 1.5 0.26 0.182 
3 [Depth+Depth2]+Cmplx+North+East +Spdc 995.7 4.0 0.07 0.191 
4 [Depth+Depth2]+Cmplx+North+Spd 998.7 7.0 0.02 0.182 
5 [Depth+Depth2]+Cmplx 1002.3 10.6   < .001 0.165 
6 [Depth+Depth2]+Cmplx+East 1003.9 12.2   < .001 0.169 
7 [Depth+Depth2]+Cmplx+Spd 1004.6 12.9   < .001 0.168 
8 [Depth+Depth2]+Cmplx+East+Spd 1006.4 14.7   < .001 0.176 

         
      Models are shown in decreasing order of importance based on overall AIC score, including difference 
     in AIC ( iΔ ), Akaike weights ( iw ), and Nagelkerke R2.  aNorth/South trending ebb tidal currents (all    
     depths),  bEast/West trending ebb tidal currents (all depths),  cCurrent velocity (all depths). 
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                    Table 4.6  Coefficients (β), standard error, Wald statistic and significance (p) for the  
                  top ranking ebb tide dynamic models. 

Rank      Predictors β  SE Wald        p 

     
    Depth  .457 .071      41.0 < .001* 
    Depth2       -.020 .003 44.9 < .001* 
    Cmplx   .021 .004 33.3 < .001* 
    North Top -.020 .011 3.27   .071 
    North Mid -.010 .014 .472   .492 
    North Bot -.010 .010 1.03   .310 
    East Top -.014 .007 4.37    .037*  
    East Mid   .000 .010 .000   .995 
    East Bot   .015 .010 2.38   .123 

 1st
 

    Constant -5.42 .473 131.1 < .001* 

     
    Depth  .466 .071 43.2 < .001* 
    Depth2 -.020 .003 48.1 < .001* 
    Cmplx  .020 .004 32.4 < .001* 
    North Top -.010 .010 .995        .318 
    North Mid -.016 .014 1.17        .279 
    North Bot -.013 .010 1.90        .169 

2nd
 

    Constant -5.25 .456 132.8 < .001* 

     
    Depth  .452 .072 39.9 < .001* 
    Depth2 -.019 .003 41.6 < .001* 
    Cmplx .021 .004 31.9 < .001* 
    North Top -.022 .012 3.29 .070 
    North Mid -.016 .015 1.08 .298 
    North Bot -.010 .010 .880 .348 
    East Top -.017 .007 5.29 .022* 
    East Mid -.006 .012 .252 .616 
    East Bot .020 .011 3.18 .075 
    Spd Top -.020 .015 1.77 .183 
    Spd Mid .006 .016 .144 .705 
    Spd Bot -.008 .013 .402 .526 

 3rd
 

    Constant -5.10 .550 85.7 < .001* 

                                                                                                                                                           * significance at <0.05                                                               
   
  

4.4.2 FLOOD TIDAL CURRENTS AT ALL DEPTHS 
 

Similar to ebb tides, north and south trending currents consistently appear in all of 

the top ranked flood models (Table 4.7).  The sign of the coefficients dictates that they 

are flowing south, but any meaning is negated by high standard error, weak Wald scores, 
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and a lack of statistical significance of the parameter (Table 4.8).  Current velocity is in 

the top ranked model and is significant at the top and bottom of the water column. 
 
             
      Table 4.7  Candidate models for selection by whales of dynamic flood tide current variables in   
     combination with static RSF variables. 

Rank Candidate Flood Tide Models AIC iΔ  iw  Nagelkerke 

      
1 [Depth+Depth2]+Cmplx+North+East+Spd 890.9 0.0 .56 0.251 
2 [Depth+Depth2]+Cmplx+North 894.2 3.3 .11 0.234 
3 [Depth+Depth2]+Cmplx+North+Spd 895.9 5.0 .05 0.239 
4 [Depth+Depth2]+Cmplx+North+East 896.3 5.4 .04 0.239 
5 [Depth+Depth2]+Cmplx+East+Spd 898.7 7.9 .01 0.236 
6 [Depth+Depth2]+Cmplx+Spd 905.4 14.5    < .001 0.223 
7 [Depth+Depth2]+Cmplx+East 909.0 18.1    < .001 0.219 
8 [Depth+Depth2]+Cmplx 911.8 20.9    < .001 0.209 

      Models are shown in decreasing order of importance based on overall AIC score, including difference  
      in AIC ( iΔ ) Akaike weights ( iw ), and Nagelkerke R2. 
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                    Table 4.8  Coefficients (β), standard error, Wald statistic and significance (p) for the  
                   top ranking flood  tide dynamic models. 

Rank      Predictors β  SE Wald p 

      
    Depth  .669 .098 46.2 < .001* 
    Depth2 -.031 .004 49.8 < .001* 
    Cmplx  .016 .004 14.9 < .001* 
    North Top -.035 .011 10.3    .001* 
    North Mid  .013 .018 .491   .484 
    North Bot  .002 .015 .022   .882 
    East Top  .000 .015 .001   .980 
    East Mid -.031 .018 2.86   .091 
    East Bot  .030 .011 7.16    .007* 
    Spd Top -.052 .021 5.95    .015* 
    Spd Mid  .042 .022 3.70   .054 

 1st 

    Spd Bot -.035 .018 3.90    .050* 
     Constant -5.03 .637 62.3 < .001* 

      
    Depth  .699 .097 51.7 < .001* 
    Depth2 -.033 .004 58.8 < .001* 
    Cmplx  .011 .004 8.75    .003* 
    North Top       -.023 .007 10.3    .001* 
    North Mid       -.018 .013 1.74   .187 
    North Bot .028 .012 5.52   .019* 

 
 
 

2nd 

    Constant -5.75 .560 105.1 < .001* 

      
    Depth  .697 .098 50.6 < .001* 
    Depth2 -.033 .004 56.7 < .001* 
    Cmplx  .012 .004 9.63    .002* 
    North Top -.031 .010 8.94    .003* 
    North Mid  .006 .017 .108  .743 
    North Bot  .012 .014 .659  .417 
    Spd Top -.031 .019 2.63  .105 
    Spd Mid  .020 .019 1.15  .283 
    Spd Bot -.011 .013 .724  .395 

 3rd 

    Constant -5.34 .619 74.3 < .001* 

                                                                                                                                                            * significance at <0.05                                                                    

 
 

Current direction emerged in the top ranking ebb and flood models, while the 

influence of velocity was generally small.  In both tidal phases, it is evident that these 

models have a better fit than the static model alone.  This is likely a genuine beneficial 

impact of currents on occurrence, but could be a result of spurious confounding by the 

large number of variables presented to each model.  Here, direction and velocity are a 
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composite of three separate depths, and have been forced into the candidate models for a 

preliminary look at their combined role, if any. 

It is apparent that modeling variables at all depths weakens the statistical 

significance and Wald scores, because deep areas may not reflect what is happening on 

the surface where whale occurrence was recorded.  For this reason, there is an apparent 

trend of strong variables occurring at the surface of the water column.    The following 

supplementary analysis was performed to isolate surface variables that may increase 

overall model fit when added individually.   
 

4.5 EVALUATION OF SURFACE CURRENT VARIABLES 
 

The ranking of surface models demonstrated south flowing currents having a 

considerable influence.  The addition of north-south currents out performed the static 

RSF for both the ebb and flood models, (Tables 4.9 & 4.11).  This is shown by an 

improved Naglekerke R2, and noticeably smaller AIC score during both tidal phases, but 

model fit is not better than using all depths combined (Tables 4.6 & 4.9). 

The AIC rankings ordered the candidate models in the same arrangement for both 

ebb and flood tides.  No variation in order may indicate that foraging behavior of whales 

may be consistent across tides, and that a changing tide has no affect on habitat use.  

Velocity consistently provided little explanation during either tidal phase, with negligible 

improvement of model fit.   

  

4.5.1 EBB TIDE SURFACE CURRENTS 
 
             
              Table 4.9  Ebb tide surface current candidate models. 

Rank Ebb Tide Surface Models AIC iΔ      iw    Nagelkerke   
      

1 [Depth+Depth2]+Cmplx+Topnortha 994.0 0.0 .58 .175 
2 [Depth+Depth2]+Cmplx 1002.3 8.3 .009 .165 
3 [Depth+Depth2]+Cmplx+Topeastb 1002.7 8.7 .008 .166 
4 [Depth+Depth2]+Cmplx+Topspdc 1003.4 9.4 .005 .166 

              Models are shown in decreasing order of importance based on overall AIC score, including  
           difference in AIC ( iΔ ) and Akaike weights ( iw ), and Nagelkerke R2.  aNorth/South trending  
           ebb tide surface currents, bEast/West trending ebb tide surface currents, cSurface current velocity. 
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                    Table 4.10  Coefficients (β), standard error, Wald statistic and significance (p) for the  
                  ebb tide surface current models. 

Rank      Predictors β  SE Wald p 

      
    Depth  .468 .070 44.0 < .001* 
    Depth2 -.021 .003 49.5 < .001* 
    Cmplx .019 .003 30.6 < .001*  1st 

    Topnorth -.022 .007 9.9    .002* 
     Constant -5.15 .448 132.4 < .001* 

      
    Depth  .464 .071 43.3 < .001* 
    Depth2 -.021 .003 48.9 < .001* 
    Cmplx .019 .003 29.0 < .001* 

 
2nd 

    Constant -4.97 .445 124.5 < .001* 

     
    Depth  .456 .071 41.3 < .001* 
    Depth2 -.020 .003 46.6 < .001* 
    Cmplx .018 .004 24.9 < .001* 
      Topeast .010 .008 1.6   .214 

3rd
 

    Constant -4.89 .452 117.1 < .001* 

     
    Depth  .466 .071 43.6 < .001* 
    Depth2 -.021 .003 49.0 < .001* 
    Cmplx .019 .004 30.0 < .001* 
    Topspd .011 .011 .931   .334 

4th
 

    Constant -5.22 .520 101.1 < .001* 

                                                                                                                                                            * significance at <0.05 
 
 

Negative north-south coefficients imply that these currents are flowing south during 

each tidal phase.  Large Wald scores and very low standard errors during each tide 

suggest these currents play a significant role in the models (Tables 4.10 & 4.12).  During 

flood tides in particular, the Wald score for south moving currents exceeds that of benthic 

complexity.  East-west flowing currents offer nothing in explaining either the ebb or 

flood surface models.  Exceedingly small Wald scores, large standard error, and no 

statistical significance confirm this. 
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4.5.2 FLOOD TIDE SURFACE CURRENTS 
 

 
           Table 4.11  Flood tide surface current candidate models. 

Rank Flood Tide Surface Models AIC iΔ      iw  Nagelkerke   
      

1 [Depth+Depth2]+Cmplx+Topnorth 898.0 0.0 0.56 .226 
2 [Depth+Depth2]+Cmplx 911.8 13.8 < .001 .209 
3 [Depth+Depth2]+Cmplx+Topeast 913.7 15.7 < .001 .210 
4 [Depth+Depth2]+Cmplx+Topspd 913.8 15.8 < .001 .209 

Models are shown in decreasing order of importance based on overall AIC score, including  
difference in AIC ( iΔ ) and Akaike weights ( iw ), and Nagelkerke R2 

 
                 
 
 
 
 
                    Table 4.12  Coefficients (β), standard error, Wald statistic and significance (p) for the  

    flood tide surface current models. 

Rank      Predictors β  SE Wald p 

      
    Depth  .699 .096 52.8 < .001* 
    Depth2 -.033 .004 59.5 < .001* 
    Cmplx  .012 .004 10.0    .002*  1st 

    Topnorth -.028 .007 15.3 < .001* 
     Constant -5.84 .556 110.6 < .001* 

      
    Depth  .718 .097 54.6 < .001* 
    Depth2 -.034 .004 62.9 < .001* 
    Cmplx .011 .004 8.3    .004* 

 
2nd 

    Constant -5.64 .558 102.0 < .001* 

     
    Depth  .717 .097 54.4 < .001* 
    Depth2 -.034 .004 62.5 < .001* 
    Cmplx .011 .004 8.4    .004* 
      Topeast -.002 .007 .122   .727 

3rd
 

    Constant -5.66 .562 101.4 < .001* 

     
    Depth  .719 .097 54.5 < .001* 
    Depth2 -.034 .004 62.7 < .001* 
    Cmplx .011 .004 8.3    .004* 
    Topspd -.001 .010 .009   .926 

4th
 

    Constant -5.62 .594 89.5 < .001* 

                                                                                                                                          * significance at <0.05 
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5 DISCUSSION  
 

This investigation provided a case study to examine the effectiveness of logistic 

regression and marine GIS to derive further insight into marine habitat-use by grey 

whales.  The results reveal a critical link with depth and benthic complexity as chief 

predictors of whale presence, and a possible link with south flowing currents at the top of 

the water column.  These findings support the effectiveness of the exponential RSF 

model as a tool for marine ecological analysis. 

The suitability of logistic regression in a marine context was assessed by confirming 

the findings of Meier (2003) in Objective 1.  This previous investigation detected a 

disproportionate use of depth and benthic relief.  Whales were found to occur in areas of 

decreasing depth and increased relief.  Using logistic regression, the present analysis 

discovered the same tendencies; with occurrence corresponding to shallow waters and 

greater bathymetric slope.  Although these findings are in agreement, their goodness-of-

fit cannot be compared directly, as two divergent statistical techniques were used.  This 

stage of the analysis offered confidence to proceed with the derivation of a RSF surface 

using additional static habitat variables. 

Objective 2 introduced novel static variables of benthic topographical complexity, 

distance to shore, and a polynomial function of depth.  The greatest model improvements 

were provided by the quadratic function of depth.  This variable fits the likelihood of 

finding whales at depths they use most, approximately 10 m.  The relationship between 

whales and depth is not linear, if this were the case they would be in waters either too 

shallow or too deep.  Increased occurrence at 10 m may be the proximity from the highly 

productive intertidal zone that offers the greatest quantity of pelagic prey.  This area 

boasts nutrient rich detritus, kelp beds, and sunlight, while providing adequate 

maneuverability for an adult grey whale.  Meier (2003) suggested that whales may 

conserve more metabolic energy exploiting shallow waters than having to propel 

themselves to greater depths to forage. 

The best model in Objective 2 was not explained by depth alone, but in combination 

with benthic topographical complexity.  Complexity may in fact be an improved measure 

of slope, just like the quadratic function provided a better fit over linear depth.  Slope, is 

present in the top models, but fails to show any significance and is very weak in 
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association with complexity (Tables 4.3 & 4.4).  The increased explanation may be due to 

benthic complexity providing a much better representation of seafloor variability, and 

prey biodiversity.   

The validation of the RSF (AUC = 0.77) asserts that the exponential model provides 

consistent predictions of areas with an increased likelihood of whale presence.   Garner 

(1994) and Bass (2000) state that whales select for areas of densest prey.  It can be 

assumed that the densest prey is located in areas identified by the RSF model, with the 

highest concentrations tied to specific, static habitat features.  This may be true, but the 

model still cannot discern if the whales are shifting within the areas indicated by the RSF 

surface.  Clearly there are more patterns to identify during other periods of the season, 

and this model has the potential to do so.  It has been previously inferred that whales 

express diverse selection patterns throughout a single season (Meier 2003).  This shift 

would be undetectable using the present RSF since it was derived from temporally 

specific presence sightings.   

Objective 3 of this investigation determined whether current velocity and direction 

improved the predictions of the static model.  It was a biological assumption that adding 

currents would improve the model.  The consistent appearance of south flowing currents 

at the surface may indicate that they are influential in gray whale habitat use.  One 

explanation may be that during flood tides, where model fit was the highest, the 

prevailing direction of flow is north (Kopach 2004).  Areas of south trending currents 

would indicate an area of turbulence as they converge with the prevailing northward 

flow.  It has been established that turbulent areas are found to correspond with areas of 

increased mysid density (Kopach 2004).   

During ebb tides, southward currents were also influential in the model.  In this case, 

the orientation of Flores Island suggests that south flowing currents would be heading 

away, perpendicularly from the coast.  These offshore flowing currents may be a result of 

deflection from nearshore convergence zones.  There may be some type of foraging 

benefit in these out-flowing riptides, perhaps turbulence. 

Current layers occurring at the top of the water column explained more variability in 

occurrence than deeper layers.  This is possibly due to whale presence being recorded at 

the ocean surface.  Therefore, it would be expected that these variables have a stronger 
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relationship with surface presence, or at least offer more confidence in shallow waters 

where vertical deviation is limited.  The role of currents are, in all probability, indirect 

and their connection to whales is perceivably convoluted.  There is some indication that 

current dynamics do influence occurrence, but whales likely choose to move freely about 

the study area. 

Overall, the exponential model performed well, and can be considered a suitable 

statistical method for marine spatial analysis.  It is well adapted to this unique ecological 

setting because it forgives many of the assumptions and conditions required by other 

habitat models.  Ensuing interpretations must be biologically feasible, and should be held 

in contrast to any shortcomings of the model. 

As stated by Fielding and Bell (1997), the greatest difficulty ecological processes can 

create for this model is that some of the available locations may be similar, and possibly 

identical, to used locations.  The ROC validation attempts to discriminate between true 

and false positives as predicted by the final RSF.  The model itself is initially constructed 

on the belief that whales are present in areas where the independent variables are 

significantly different than in areas of whale absence.  Considering that sampling is not 

exhaustive, model predictions may have been weakened by unobserved use occurring in 

the exact same conditions as unused available habitat.  

The goodness-of-fit of the logistic regression is expressed by a pseudo R2 that was 

consistently low in all of the models.  Once more, it should be noted that this expresses 

only the relative strength of each model within this specific investigation, but is 

commonly low in other logistic analyses as well.  This tendency of low fit in 

dichotomous models is a result incorporating the available data post-hoc.  If availability 

is going to be truly representative of what is actually available in the study area, a very 

large sample of habitat is needed.  The result is a proportionally large and unbalanced 

number of zeros acting as constants in the regression, weakening the fit of the model 

overall.  If every point acts as a constant, there is no way of predicting a relationship at 

all.  This cannot be avoided because there must be a representative number of available 

sites throughout the study area.  If these are reduced, there will be better predictions of 

the y variable (more presence), and the fit of the model is increased, but reducing this 
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number would no longer truly represent availability.  For that reason, the models 

remained statistically sound at the expense of having lowered Nagelkerke values.  

Lower than expected model fit may also be a result of other independent variables 

present in the study area that were not considered in the investigation.  An effect of 

marine ecosystem complexity and the limited ability to collect comprehensive habitat 

data.  If unaccounted parameters are not available to explain variability in whale 

presence, then model fit is further diminished.  Sampling errors and GIS layer 

inaccuracies may have also cumulatively affected the quality of the RSF.  Concerns that 

the sampling effort was concentrated too highly along the inner transect may have 

inflated the incidence of nearshore use.  The spatial accuracy of the presence data is also 

uncertain.  Whale census data have been collected for over a decade, and during this time 

the accuracy of GPS field units has increased significantly, reducing spatial error by up to 

100 m in some cases.  It is possible that early presence data may have affected the 

precision of the model.   

The RSF model is a best attempt at representing conceptually intuitive associations 

between whales and their habitat.  Despite ambiguities introduced by the marine 

environment, the model has successfully provided some guiding insight into the spatial 

ecology of gray whales.   

 

5.1 FUTURE RESEARCH 
 

Improving model results would require more thorough field measurements of 

available habitat, particularly for currents.  The quality and resolution of the static 

variables are superior to the dynamic surfaces.  Anchoring a buoy mounted ADCP for 

long-term measurements, at an increased spatial frequency, would be essential.  These 

additional data would improve interpolation and provide more consistency across layers.  

Supplementary points would permit fully three dimensional interpolations, instead of 

using three layers at separate depths.  Complete 3D interpolation was attempted initially, 

but the existing ADCP data were too sparse5. 

                                                 
5 See Appendix B, chapter 3.2: Marine object representation. 
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There was a negligible difference in the influence of ebb versus flood tidal phases in 

the results.  An additional model should explore whale occurrence during slack tides.  

This is the period at the peak of flood tides and the trough of ebb tides where there is no 

significant current movement.  This additional analysis may offer further clarification 

about the role of dynamics.   

Considering the strong influence of benthic complexity in the RSF, it would be 

valuable to sample and derive a complementary benthic substrate type layer.  Complex 

areas are indicative of swarming mysids, but gray whales also forage on benthic 

amphipods in muddy substrate.  This soft substrate was not suitably represented in the 

model, and could offer further explanation of occurrence.   

The quality of the presence location measurements is ample, but could be improved.  

More accurate instrumentation can be used during transect sampling, such as differential 

GPS and modified vessel-whale referencing techniques.  If the same individual was 

observed more than once in a single census, these sightings are treated as two separate 

occurrences of presence.  Future initiatives should include the use of photo-id of whales 

to derive RSF’s at the individual level.   

If the RSF model were applied in the study area, to inform a management plan for 

example, it would be necessary to perform a more rigorous validation.  The ROC was 

suitable for this study, but a K-fold cross-validation would be much more comprehensive 

(Blum et al. 1999).  It is an extensive iterative process that permits the use of all data for 

both model building, and validation (Kohavi 1995).   

Breaking types of habitat use into separate behavioral categories would also be of 

interest.  Although it is not possible to view the whales actions below the surface, refined 

inference can be made to discern the type of behavior at the time of observation.  

Behavioral observations were present only in a small portion of the data, not enough to 

partition a usable sample.  Narrowing down certainty around behavior below the surface 

would require monitoring devices such as time depth recorders and digital acoustic 

recording tags to determine submerged spatial interactions (Woodward and Winn 2006; 

Malcolm et al. 1996). 

A beneficial future analysis would occur at multiple spatial and temporal scales.  A 

core advantage of GIS is altering layers to efficiently derive models at differing scales.  
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The results at the present scale are satisfactory, but only explain presence over a fixed 

spatio-temporal range.  Multiple scales offer the most insight into species spatial 

organization, therefore analysis must eventually extend beyond the confines of the 

present study area.  It is certain that habitat use changes throughout their migration, 

including periods where whales are eating tons of food in a single day, to eating nothing 

for months at time (Nerini 1984).  It would be interesting to test this predictive model 

elsewhere in British Columbia, but more interestingly, at the contrasting reaches of their 

greater home range. 

 

6 CONCLUSION  
 

In this investigation, it has been demonstrated that there is a strong link between gray 

whale habitat-use and relatively shallow depths along the coast.  The best performing 

RSF model also included increasing benthic topographical complexity as a predictor of 

whale occurrence.  In addition, the effect of current dynamics on foraging whales was 

examined, where the influence of prevailing current flow direction had not been 

previously explored.  It was found that areas with south flowing surface currents may 

potentially have an affect on habitat use.  Current speed and subsurface current dynamics 

offered little improvement to the model.  The adapted binary logistic regression in the 

form of the exponential model worked well in identifying patterns of resource use in a 

marine environment. 

The results confirmed previous habitat-use analysis in the study area, and 

incorporated new and significant explanatory variables.  A high quality multi-beam sonar 

bathymetric surface provided a robust foundation for the successful static habitat RSF 

surface, with predictions found to be acceptable to excellent.  It is likely that ocean 

currents do play a role in habitat use, but only additional comprehensive field 

measurements will provide an improved analysis.  It is commonly acknowledged that 

coarse input data is a regular offering to the majority of marine ecological analyses.   

The marine environment is an ideal space to examine the advantages of GIS based 

habitat modeling.  Common concepts of relatedness and object associations were 

frequently reassessed when dealing with disconnected objects, three dimensions, fluid 
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dynamics and an enigmatic submerged species.  Recent developments in habitat models 

and progress in GIS representations has made complex analysis more efficient.  The 

combination has ultimately provided a better understanding of marine and coastal 

ecology. 
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APPENDIX A   

 

DERIVATION OF THE EXPONENTIAL MODEL 
 

The traditional logistic regression (Equation 1.1) requires a sample of presence (1) 

where use was observed, and a sample of absence (0), where use was not observed.  At 

each of these points, corresponding habitat variables are measured, and the standard 

statistical software provides the following logistic regression equation expressing the 

relationship between them: 
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The logistic regression equation does not provide probability directly, it only 

generates relationship coefficients for each covariate, but probability (p) is still bound by 

the logistic function that constrains the dichotomous, proportional data.  Simple algebraic 

manipulation solves for the probability of use as a function of x (Equation 1.2) (Crawley 

2002).  The numerator here acts as the resource selection probability function (RSPF) 

(Nielson et al. 2003): 
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In this form, the model holds the assumption that the study area contains samples of 

presence and absence in approximate proportion to their occurrence on the landscape 

during a single period of selection (Keating and Cherry 2004). Yet this is not the case, 

because the derivation of pseudo-absence occurs outside the sampling period.  Therefore 

the RSPF (numerator) is assumed by Manly et al. (2002) to take an exponential function 

form to incorporate proportional sampling probabilities: 
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The RSPF equation (1.3) holds the condition that the sampling probabilities of 

presence and absence are known.  Again, equation 1.2 assumes that the two samples are 

in approximate proportion to each other, however this is not the circumstance since 

absence was sampled separately, and after the fact.  Therefore Manly et al. (2002) states 

that each presence unit must be selected with probability Pu of being independently 

selected during presence sampling, and that the separate sample of available units is 

selected with probability Pa of being independently selected form any other unit, without 

replacement.  These sampling probabilities are linked to the constant, parameter 0β  

(Erickson 1998): 
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In the majority of cases, these sampling probabilities are still unknown.  It is very 

difficult, if not impossible to identify the proportion of sampled presence units to actual 

species presence on the landscape.  As a result, the true sampling probabilities or sample 

fractions that the RSPF estimation requires, are rarely provided.  Given that these 

probabilities are included as part of the constant, but unknown, the entire constant is 

dropped from the equation (Manly 2002).  The eliminated isolated constant is expressed: 
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  Removal of this parameter is acceptable because there is no knowledge of the 

sampling probability Pu, so the constant is meaningless.  It is simply an extra parameter 

that scales the intercept to reflect how rare or common a species is on the landscape, 

which is unknown in the first place (Nielsen pers. com. 2006).  0β cannot be estimated, 

but the final RSF can still be calculated, which is the remaining exponential equation 

(Manly et al. 2002): 
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The exponential model (1.6) now only effectively estimates relative likelihood of 

occurrence rather than calculating true probability.  Firstly since the sampling 

probabilities were removed from the equation by eliminating the constant, and secondly 

because the proportion of used and available samples has been arbitrarily determined.  

Pearce and Boyce (2005) explain why this is so; given that presence and available 

locations are sampled independently, the proportion of these samples does not reflect the 

true prevalence of the species in the population.   

They continue with an example of 100 observations of 20 presence and 80 absence 

locations, the probability of occurrence is 0.2 [p = 20/(20+80)].  If the absence sample is 

increased to 200, then the probability of occurrence changes abruptly to 0.09 [p = 

20/(20+200)].  There is currently no accepted method of deriving the correct number 

absence units on the landscape.  As long as the derivative sample is representative of 

what is available, then the proportion of available units to presence units is thereby set 

solely by the researcher (Pearce and Boyce 2005).   

Agreeing that predictions of the RSF are interpreted as relative likelihoods, then 

there is no need to constrain the results between 1 and 0.  If there are no constraints, then 

the denominator is removed entirely, which in practice does not really matter, if the 

proportion of presence units is very small.  The results of the exponential model will then 

be approximately equal to the traditional logistic regression model, and reflect the 

proportional probabilities of habitat use (Manly pers. com. 2006).      
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APPENDIX B   

 

DEVELOPMENT AND APPLICATIONS IN MARINE GIS 

 

ABSTRACT 
 

The application of GIS in the marine environment is growing prevalent in numerous 

fields of research.  However, the transition of a terrestrially based geographic tool to a 

complex marine world is particularly challenging.  Main issues in marine GIS concern 

adapting to the inherent complexities of the oceans, while representing disconnected 

objects with fuzzy boundaries within a fully dynamic three dimensional space.  Existing 

land-based GIS systems are not entirely equipped, at this time, for georeferencing or 

storing this unique and specialized data.  Recent advances in commercial GIS software 

packages are fitting the needs of many marine investigations.   
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1 INTRODUCTION 
 

The Earth is predominantly enveloped by a complex marine environment that is 

home to an abundance of ecological processes.  This system generates key mechanisms 

that affect the entire planet.  However, in many ways, we know more about the surfaces 

of our near planetary neighbours than of our coastal waters (Bartlett 2000; Wright and 

Goodchild 1997).    

Our understanding of terrestrial habitats is extensive and has greatly increased 

through the use of geographic information systems (GIS).  GIS is described by Goodchild 

(2000) as the software that is used for handling, displaying, analysing, and modeling 

information about the locations of phenomena and features on the Earth’s surface.  The 

conventional application of GIS has been on land, and all of the techniques, methods and 

software development have stemmed from this terrestrial origin. 

Only until recently has GIS been implemented in understanding the marine 

environment ( Wright 2000; Li and Saxena 1993).  As a result, an entirely new branch of 

GIS has been developed and specialized solely for use in a coastal and marine context.  

This offshoot has been aptly named Marine GIS (Wright 2000; Lockwood and Li 1995).  

The transition from land to sea creates intuitive problems with regard to the intricate 

nature of the ocean, and its ambiguous physical boundaries (Ledoux and Gold, 2004; 

Wright and Goodchild, 1997; Gold and Condal, 1995; Li and Saxena, 1993).  Matters 

grow more complex when attempting to integrate an intrinsic third dimension, or 

temporal dynamics to a marine habitat model.  GIS software is not yet capable of 

displaying or evaluating a fully integrated 3D marine habitat model (Valavanis 2002; Su 

2000; Li 1994).  Currently however, GIS software packages do provide 3D extensions 

that assist in making marine models more complete (Breman et al. 2002).   

Marine GIS does not operate far from its terrestrial roots, and still borrows from the 

more refined land-based techniques.  Despite the complexities of adapting GIS to the 

ocean, the research benefits are just as beneficial underwater as they are on land.   
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2  MARINE GIS  

2.1 INTENT OF MARINE GIS 

 
Oceans are intricate systems that present a large number of variables and processes 

that can, in-turn, be combined in an infinite number of combinations.  To analyze and 

interpret this environment, it is first necessary to partition it into manageable, 

conceptually based geographic categories and objects.  These groupings tend to have two 

essential parts: location and attributes.  Conveniently, these elements make 

oceanographic data highly suitable for spatial analysis using GIS; where locations and 

their attributes can be stored, georeferenced, visualized, and analyzed (Valavanis 2002; 

Stanbury and Starr 1999).  In the literature, most marine applications that use GIS appear 

to have fallen under the blanket term of Marine GIS.  This term does not merely identify 

these applications as non-terrestrial, but rather denotes a growing and increasingly 

independent branch of GIS itself.    

The methods used in marine GIS result from the unique approaches and 

considerations that have been taken into account when faced with the complexity of the 

oceans.  This environment is four dimensional, where variables affected by time and 

depth are impacted much more rapidly than variables on land (Li and Saxena 1993).  This 

is not to say that marine GIS is autonomous from its land based counterpart, rather a 

different suite of questions need to be presented in marine investigations.  Valvanis 

(2002) illustrates two such questions that seldom occur in terrestrial GIS that deal with 

dynamics: (i) how frequently should variables or processes be mapped and (ii) the 

resolution at which mapping or data gathering should be carried out.  These concerns are 

poignant in marine GIS due to the high cost and difficulty of data collection (Wright and 

Goodchild 1997; Lockwood and Li 1995).  Oceanographic datasets also tend to be 

immense, and data arrives at a much higher rate, which taxes existing commercial GIS 

packages (Smith 2003; Wright 2000).  These questions are a result of the time, and effort 

encountered during an oceanographic investigation, when once completed, the final 

outputs are found to have grown obsolete due to the rapid change of the study area (Gold 

and Condal 1995).   



 B4

An approach must be sought that is tailored to the marine environment, which seeks 

both equilibrium and efficiency when considering the frequency of field excursions.  

Oceanographers are further restrained by existing GIS software and analysis techniques 

that have been developed in static, rigid environments that bear small resemblance to the 

ever-changing, multi-dimensional oceans.  Therefore the goal at the forefront of marine 

GIS is to develop this niche as its own separate entity with exclusive GIS software 

extensions, data models, visualization tools, and monitoring equipment  (Gold et al. 

2003; Valavanis 2002; Wright 2000; Wright and Goodchild 1997; Gold and Condal 

1995; Li and Saxena 1993).  From this, it will be possible to combine expert knowledge 

with data and spatial analysis techniques to develop a comprehensive marine model to 

“understand what and where things are, and how and why they are where they are” 

(Valavanis 2002).   

 

2.2 TRANSITION OF TERRESTRIAL GIS TO MARINE GIS 

2.2.1 MARINE GIS BEGINNINGS 
 

The GIS archetype has evolved from its land-based origins to an aquatic space, and 

is constantly adapting to this new and foreign environment (Goodchild 2000; Valavanis 

2002).  Currently, GIS can be defined by three fundamental components: the first 

includes georeferenced data with descriptive attributes that represent objects in the real 

world.  The second component is the hardware and software that is used to capture, store, 

update, visualize and manipulate these data.  The third component is the geographically 

enlightened human resource that implements and operates the GIS (Valavanis 2002; 

Longley et al. 2001; Stanbury and Starr 1999; Burrough and McDonnell 1998; 

Lockwood and Li 1995).  

There has been a recent shift in the evolution of GIS; Geographic Information 

Science is the suite of fundamental issues that arise in the development and application of 

Geographic Information Systems (Goodchild 2000).  Marine GIS is inclusive to this 

science, a result of the many developmental and application issues spanning its progress.  

In fact, Geographic Information Science may play a more important role in marine GIS 

due to the multiplicity of problems that have been faced by implementing a terrestrially 
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evolved science in a marine environment.  This struggle explains why GIS has not yet 

had the success in the oceans, than it has had within more terrestrial spheres of 

investigation (Bartlett 1993). 

The beginnings of marine GIS occurred when novel marine research using GIS 

prompted the appearance of abstracts, papers, and technical reports appearing in the early 

1990’s (Valavanis 2002; Wright 2000).  Acknowledging the significant benefits of GIS, 

these investigations were the first attempts to apply this tool in a marine context.  

Goodchild (2000) stated that much can be learned from applying existing GIS software in 

this new environment.  Applications of marine GIS share less than one third of the history 

of GIS as a whole (Valavanis 2002; Bartlett 2000).  Much was discovered during this 

pioneering phase of marine GIS, due to the difficulties of application, forcing existing 

land-based methods to adapt and evolve.  The majority of this initial development 

occurred within the academic sector, not through progress in commercial GIS.  Many of 

the advances in marine GIS came from academic visionaries who were not bound by the 

conservatism of commercial GIS at that time.  At the moment, the core of marine GIS 

still rests in the academic sector, but commercial vendors are now responding to the 

growing needs of this specialist group (Bartlett and Wright 2000).   
 

2.2.2  EARLY APPLICATIONS AND BEYOND 
 

Original explorations of marine GIS occurred in the coastal zone, not in the true 

pelagic or deepwater oceans as we know them.  There was plenty of activity occurring on 

the coasts, and many saw GIS holding an appropriate investigative role in this region.  

Bartlett (2000) sees the coast as one of the most hazardous locations to live, considering 

that 40% of the world’s population resides along it. GIS could be used to minimize the 

human and economic consequences of flooding, erosion and particularly ease concerns 

surrounding changes in the global climate (Smith 2003; Breman et al. 2002; Bartlett 

2000).  Along with environmental vulnerability, GIS plays an important economic role on 

the coast.  The majority of the worldwide gross national product is derived from activities 

directly or indirectly linked with coastal zones (Zeng et al. 2001).  The following decades 

have shown marine GIS to be indispensable for coastal zone management, because of its 
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ability to handle such a diversity of geographic inputs (Smith 2003; Bartlett 2000; 

Lockwood and Fowler 2000; Li and Saxena 1993).       

Marine GIS applications soon moved into the pelagic and deepest parts of the oceans 

(Wright 2000).  Currently there is a multitude of research employing GIS in all facets of 

marine investigation: coastal and submerged vegetation mapping, coastal bathymetry 

mapping, wetland research, flood and natural hazard research, coastal and open ocean 

oceanographic process modeling, deep ocean bathymetry mapping, marine 

geomorphology, coastal ecological modeling, tectonics, deep environments research, 

habitat mapping, and coastal resource management to name a few (Smith 2003; Baxter 

and Shortis 2002; Valavanis 2002; Zeng et al. 2001; Bartlett 2000,1993; Goldfinger 

2000; Hooge et al. 2000; McAdoo 2000).  It was during this growth into deeper waters 

that researchers encountered problems with existing GIS technologies.  Li and Saxena 

(1993) found that underwater research was limited due to the lack of appropriate marine 

specialized GIS.  There has been a steady evolution towards such a specialization, but the 

realm of marine GIS is still restricted by the terrestrial roots of the system.   
  

2.2.3 MARINE GIS STRUCTURAL AND SOFTWARE ISSUES 
 

There is a good understanding of how to apply GIS to data collected from a dry-land 

surface.  Landmasses are covered with geodetic control points that are highly accurate 

and only move by tectonic means.  These can be used to accurately find and survey the 

x,y location of features on the surface (Longley et al. 2001).  This is the environment that 

GIS was developed for: a static plane with a rigid coordinate system placed upon it.  

However, when GIS is applied to the oceans, few things are of a static nature that can be 

mapped except perhaps depth (Goodchild 2000).  There is a significant lack of control 

points in this environment, with no buildings or street corners to measure from, usually 

only GPS coordinates from floating vessels (Li and Saxena 1993).  The tides are 

constantly rising and falling, and shorelines are persistently changing profile, and there is 

no global vertical datum to accurately measure a ‘z’ value, or depth (Bartlett and Wright 

2000).   

The oceans have presented new challenges that are forcing a radically different way 

of representing phenomena that are independent of an absolute coordinate system so 
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characteristic of GIS (Goodchild 2000).  Aquatic features have fuzzy boundaries, are 

dynamic, and exist in a full three dimensions.  It is not completely suitable for land-based 

GIS to fully apply to the marine environment (Shyue and Tsai 1996).  Within these 

aquatic applications, there is an escalation of issues concerning scale as well as accuracy, 

where the dynamic nature of pelagic systems and the occurrence of variability over many 

scales blur the linkage between processes.  This spreads biotic interactions over spatial 

scales that exceed those prevalent in terrestrial systems (Goodchild 2000; Hyrenbach et 

al. 2000).   

A variety of problems exist when the spatial data structure of a terrestrial GIS is used 

in a marine context.  An example is that so much of the available marine information is 

collected as points, while the structure within a terrestrial GIS is now mostly based on 

vectors and rasters.  The rasters that do exist represent discrete entities common on land, 

not the dynamic, blurred entities common to oceans.  Many of the analytical operations 

needing to be performed on marine data are restricted by the available toolset.  Problems 

are posed in terms of the only available, but inappropriate GIS structure, limiting the 

quality of the analysis products (Gold and Condal 1995).  Static, terrestrial GIS is good 

for operations such as overlaying, buffering, reclassifying, but trying to assimilate marine 

data using these traditional analytical methods often proves difficult (Valavanis 2002; 

Stanbury and Starr 1999; Li and Saxena 1993).  Common GIS packages do not have the 

special functions required for marine applications, like dealing with the large size of 

oceanographic datasets, and the speed at which they arrive.  Beyond this, the ability to 

process spatial oceanographic data is still largely unavailable in commercial GIS (Zeng et 

al. 2001; Wright and Goodchild 1997).  This commercial software been designed around 

cartographic metaphors that are optimized for land (Bartlett 2000).  For example, many 

GIS packages can easily accommodate satellite images, but trying to find a package that 

can display underwater sidescan sonar is very challenging (Li and Saxena 1993).   

The development of improved and specialized marine GIS software has been a slow 

process.  Zeng (2001) explains that this is a direct result of marine and coastal 

complexity, and the difficulties creating software that can model it appropriately (ie: 

dynamic 3D).  There is also a lack of marine data in general, that further inhibits this 

development process.  In addition to these physical limitations, political scenarios also 
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tend to delay the advancement of the software.  There is a lack of communication 

between coastal experts and GIS developers.  This is problematic on its own, but also 

results in the commercial vendors not taking risks in the investment and development of 

marine specialized GIS.  On the whole, there have been steady developments in marine 

GIS software provoked by growing concerns of global change and marine resource 

management issues (Wright and Goodchild 1997).   

Most of the specialized advancements have come from user specific needs and 

independent programming.  Object oriented programming, UML, and Visual Basic are 

key additions to popular packages like ArcGIS that permit adjustments for unforeseeable 

marine applications (Bremen et al. 2002; Hooge et al. 2000).  Marine investigators are 

often stuck with creating their own stand-alone code and extensions for individual 

projects.  It is suggested that the most advancement in marine GIS software will come 

from the sharing of these extensions and adaptations amongst specialists (Hooge et al. 

2000).  Therefore, it is suggested that GIS packages should be selected based on their 

ease of extensibility.  A commercial package should be evaluated on its capacity to 

incorporate existing code and the malleability of its user interface (Hatcher and Maher 

1999). 

2.2.4  MARINE ENTITY CLASSIFICATION AND REPRESENTATION 
 

Within a GIS, the terrestrial nature of its functionality may impede processes for 

classifying or building topologic relationships for marine data.  There is a definitive lack 

of clear boundaries between marine entities, which also tend to be topologically 

disconnected (Urbanski and Szymelfenig 2003; Gold and Condal 1995).  Unfortunately, 

these entities need to be defined in some manner to proceed with analysis.  Various 

classification methods have been adopted from complex terrestrial GIS studies, and 

appear to work well underwater.  Conventional GIS classifiers use Boolean logic which 

allocates an entity to a certain class in a true or false, yes or no manner (Zeng et al. 2001). 

This approach will not work in an environment where entities are blended together along 

their edges.  The solution lies with object oriented classifiers that permit varying degrees 

of allotment between classes along a continuous scale.  It uses the fuzzy set concept of 

partial membership, where there is a gradual transition between classes.  An example 
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would be the shift from sand to mud on the ocean floor, where boundary areas are going 

to be a mix of both (Urbanski and Szymelfenig 2003).  This object oriented approach also 

adapts to the dynamic nature of these entities, as it is more flexible for simulating 

changes in time (Zeng et al. 2001).   

Baxter (2002) used artificial neural networks to classify substrate habitat types and 

found the result more accurate than common terrestrial methods such as traditional 

regression and maximum likelihood.  This learning classifier works exceptionally well 

with blended entities, because of their ability to learn and predict patterns of a non-

parametric nature.  The benefits of neural networks arise through the incorporation of 

additional variables into the classification decisions made (ie: slope and depth). 

In terrestrial investigations, most entities such as forests and pipelines are connected 

and tend not to move in a rapid dynamic nature.  Therefore, building topology between 

these objects is straightforward and easily updated.  This is not the case in the marine 

environment where objects are more mobile and usually disconnected.  Again, there is a 

need to better represent the location and relationships between marine objects.  The 

development of a dynamic algorithmic alternative is showing great promise within 

marine GIS (Ledoux and Gold 2004; Gold et al. 2003; Gold 2000; Gold and Condal 

1995).  The Voronoї tessellation specifies the spatial relationship of unconnected objects 

by linking them with surrounding objects using Delaunay triangulation.  This web of 

connections is just that - a series of linear attachments that can be easily modified as 

required, even dramatically without rebuilding the topology.  These connections 

automatically shift as an object moves within the GIS, where triangulations extend 

behind the object and shorten in front of it (Gold and Condal 1995).  These dynamic 

adaptations are the essence of marine GIS, where clever innovations fuel the progress of 

marine specializations (Valavanis 2002). 

 

2.3 MARINE DATA TYPES  
 

One of the intrinsic setbacks of marine research is the effort required in data 

collection.  It takes specialized equipment and a lot of preparation to do so.  It is well 

known that the maritime environment is often harsh, and can present a fair share of 
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climactic adversity. Additional preparation is required, since the ocean by nature is 

somewhat alien to us.  The cost of data collection alone is often prohibitive (Baxter and 

Shortis 2002; Lockwood and Li 1995; Li and Saxena 1993), where a large oceanographic 

research vessel normally costs upwards of $15000 - USD$20000 per day to operate 

(Wright and Goodchild 1997).  Financial strain is augmented by the extended period of 

time it takes to amass a usable amount of data (Li and Saxena 1993).  This results in a 

general lack of data overall, where it is merely sampled and never exhaustive (Lockwood 

and Li 1995).  Therefore, the most taxing problem is simply not knowing what is going 

on below the surface, introducing the pressing challenge of acquiring more reliable data.  

Without adequate data, even the most sophisticated analytical techniques are rendered 

useless (Bartlett and Wright 2000).  

Some examples of common marine data types are shown in Figure 2.1 which 

illustrates the breadth of categories, and how they are represented in the GIS.  It is 

extremely difficult to provide data for all points in the sample space, resulting in sparse 

oceanographic data on the whole.  This often forces researchers to combine marine 

geographic data for very different objectives in a GIS, and the original intended use of 

these data are often overlooked or minimized (Greene et al. 2006; Stanbury and Starr 

1999; Lockwood and Li 1995).   

Technological developments are increasing the ability to collect higher quality 

marine data, and more of it (Bremen et al. 2002).  Examples would be: sidescan and 

multibeam sonar, satellite and aerial imagery, acoustic doppler current profilers, stereo 

video systems, towed underwater gliders, water column salinity and temperature 

transponders (Baxter and Shortis 2002; Bremen et al. 2002).  This instrumentation is 

providing a very realistic representation of the marine environment in all three 

dimensions (Figure 2.2).  Time series data is introducing the needed dynamic portion of 

this representation.  A marine GIS should be designed to store this spatiotemporal data; it 

is essential in understanding dynamics and seasonality (Valavanis 2002).  Currently 

though, the quality of time series data in marine applications is weak and needs 

development (Bartlett and Wright 2000). 
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        Figure 2.1  Common marine data types and examples of what they represent in a marine GIS  
       (Bremen 2002). 
 

               

Knowing the range of marine data types, it is very important to also collect quality, 

comprehensive metadata (Greene et al. 2006).  Strictly defined, metadata are data about 

data which describe contents and define handling instructions (Longley et al. 2001). 

Often a variety of data is blended together in a GIS, and metadata keeps the user 

informed about the quality and particulars of the marine data at hand.  It also prevents 

loss of data, and should be produced at the same time as data collection.  In many 

respects it is as valuable as the data itself (Valavanis 2002; Stanbury and Starr 1999; 

Shyue and Tsai 1996; Lockwood and Li 1995).   
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               Figure 2.2  A representation of the many available methods for collecting marine data 
               (Rutgers 2005). 
 

 

2.4 THE MARINE GIS DATA MODEL 
 

Quality marine data create the foundation to perform spatial analysis.  These data are 

intended to represent natural pelagic features within the GIS; however, the information 

collected is often too rich to be included in the database, it must be simplified by a data 

model (Li 2000).  Data models lay the framework where natural entities and objects are 

represented in digital form (Wright and Goodchild 1997).  Since any GIS database is a 

model of reality, it is very important to have a strong structural knowledge of the marine 

habitats under study (Urbanski and Szymelfenig 2003).  It is subsequently vital to 

establish a conceptual model of the marine environment through extensive planning and 

designing, before implementing a GIS database (Bremen et al. 2002; Bartlett 2000).  

Considering the complexity of the marine and coastal environment, a well designed data 

model is crucial to the success of the entire information system (Li 2000).  This data 

structure helps users conceive their investigative purpose, and organize databases in an 

intelligent manner.      
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 The most basic spatial concept is that of location; for example, the location of a 

temperature buoy will give spatial meaning to that associated dataset.   This relationship 

needs to be expressed within the database, and provide meaning to these locations.  It is 

common geographical practice to begin any investigation by asking where, and then why.  

It is the purpose of the data model to best represent these relationships and then provide 

answers (Valavanis 2002; Duffus 1996).  Again, most data models have been developed 

and used successfully in the terrestrial arena.  These include: groundwater contamination 

models, climate models, hydrological models and soil loss equations.  Many of the 

techniques involved in combining marine models with a GIS are still weakly investigated 

(Bartlett and Wright 2000).   

Until recently, marine and coastal GIS practitioners were using the coverage data 

model; this has been practical, but coverage’s have their limitations.  Features are 

grouped together as homogeneous collections of points, lines and polygons with generic, 

one and two dimensional behaviour.  These do not represent the dynamic complexity of 

marine feature behaviours (Bremen 2002).  Fortunately, there has been an evolution of 

data models specifically tailored to better represent the marine environment.  They are 

based on the terrestrial models that function similarly on things like vector and raster data 

classification, aggregation, proximity, statistical analysis, and interpolation (Valavanis 

2002; Longley et al. 2001).  These models are more capable of harnessing the power of 

GIS, by combining and overlaying themes, conducting spatial analysis, and performing 

queries among objects in two or more layers (Stanbury and Starr 1999).  Since these 

models are attempting to simplify a complex system, they work by reducing parts of this 

system into themes or layers (Figure 2.3).  For example, bathymetric data forms one of 

the basic layers in a marine GIS model  (Li and Saxena 1993).  
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             Figure 2.3  Simplified environmental thematic layers within the marine data model (ESRI 2006). 

  

 

There has also been progress beyond these general abilities of the marine data model 

to accommodate specialized marine entities.  The evolution of the model’s capacity to 

perform various applications corresponds directly with advancements in technology.  The 

first marine data models were housed in PC 386 computers  (Li and Saxena 1993).  The 

objective of this early analysis was to create spatial data structures for various ocean 

related applications and to animate some marine operations, which was quite optimistic 

considering the technology at hand.  Many improvements have been made by Li (2000) 

where data models now include entities represented by surface and volumetric digital 

objects.  This same paper describes specific models for shoreline, seafloor and time series 

data.   
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The Environmental Systems Research Institute (ESRI), the world leader in GIS 

software and technology, has produced the most convincing and comprehensive marine 

data model to date6.  This model provides complete data structures that better integrate 

oceanic features.  It considers how marine and coastal data can best be represented in 

three and four dimensions by including a volumetric model to represent 

multidimensionality and dynamics of these marine data and processes.  It more accurately 

represents location and spatial extent, and has thus improved the analogous spatial 

analysis techniques by better characterizing the behavior of marine objects in the 

database (Bremen et al. 2002; Smith 2003).  It also acknowledges historic requests for 

more extensibility needed to program specific marine applications (Hooge et al. 2000; 

Hatcher and Maher 1999), but the model itself provides more complexity for imputing, 

formatting, geoprocessing, sharing of marine data, and deals more effectively with scale 

dependencies (ESRI 2005).  ArcGIS also includes an object oriented data model that 

assists in this endowment of more realistic marine behaviors.  Other beneficial 

adaptations of the model include the shape fields in the attribute table having a z value for 

depth, which would formerly only have room for x and y in a coverage model.  There are 

also adaptations for temporally dependent points.  Tidal variance, wave activity, and even 

atmospheric pressure can be incorporated into the model (ESRI 2005; Smith 2003; 

Bremen et al. 2002).  Marine data models should, as a minimum, incorporate the type of 

data, quality of data, metadata, and interpretive processes (genealogy) specific to marine 

data types (Greene et al. 2006). 

The current level of marine data modeling is finally paying heed to the specialized 

needs of marine and coastal GIS investigators.  This environment is being simplified in a 

more realistic manner, and retaining more real-world behaviors.  However, this reduction 

of complexity opens the door for misrepresentation, and the introduction of error into the 

model. 

 

 

 

                                                 
5 Accessible online at www.esri.com > support > data models > marine data model. 
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2.5 VARIABILITY AND UNCERTAINTY IN MARINE GIS 
 

As GIS technology and data modeling improve, so does the intensity of analysis, and 

the aesthetic of the visual outputs.  Amidst brilliant maps and other striking products, the 

problematic aspects of GIS are easily concealed or forgotten.  Particular care should be 

devoted to checking for errors, because these outputs are capable of charming the user 

into a false sense of accuracy and precision, unwarranted by the data at hand (Von Meyer 

et al. 2000).  After decades of GIS development there is still inadequate attention to how 

errors arise and propagate (Burrough and McDonnell 1998).  All too often the products of 

a marine GIS are trusted for major decisions with minimal consideration about the 

impacts of error and inaccurate data (Greene et al. 2006).  Identifying weaknesses in 

preliminary data, uncertainty in geographic concepts, and monitoring error propagation, 

all benefit the comprehension of the final product.   

Advantages of the marine GIS model include fitting data within a pre-designed 

structure, and simplifying marine phenomena.  However, the stochastic qualities of an 

actual ecosystem do not permit sufficient sampling to accurately reconstruct it within the 

model.  This generates uncertainty around their existing associations in reality.  Reducing 

complexity involves including or excluding biologically significant features; it is 

typically unfeasible to include them all (Horne 2002).  The reduction process may 

become arbitrary through misconceptions of what the parts of the system are significant.  

The model only provides a logical best attempt at conceptualizing these phenomena, but 

uncertainty remains in the final model.   

Uncertainty can be defined as the completeness of a digital representation, and the 

general measure of representation quality (Longley et al. 2001).  Most data models 

assume that data attributes have been described and measured exactly, which is not the 

case.  When uncertain data is used in quantitative analysis, the results contain these initial 

errors (Von Meyer et al. 2000; Burrough and McDonnell 1998).  Ambiguity is inherent in 

the marine environment simply because this system is out of view and difficult to sample, 

presenting problems of accuracy and scale (Goodchild 2000).   

There are gaps in the sampling density of most marine data, in both spatial and 

temporal dimensions (Von Meyer et al. 2000; Li and Saxena 1993).  Compounding this 
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problem, the variation in these phenomena is continuous, while the sampling points are 

often discrete (Lucas 2000).  Also, most marine investigations are broad scale and limit 

analysis within finer scales, resulting in reduced map and data resolution (Shyue and Tsai 

1996; Valavanis 2002).  Once more, this lack of data is a consequence of adverse 

sampling conditions and the high cost of marine sampling in general (Baxter and Shortis 

2002; Lockwood and Li 1995; Li and Saxena 1993).  Since most marine data is sparse, 

geostatistical interpolation methods are occasionally used to fill in the gaps, creating a 

certain amount of distortion in the outputs (Li and Saxena 1993).  Data error may also be 

introduced through human factors such as sampling bias, inexperience with measurement 

instruments, or general lack of sampling fundamentals (Burrough and McDonnell 1998).  

This error may be further amplified through lack of skill with GIS software and concepts.  

Wright and Bartlett (2000) explain that just by using GIS, does not necessarily mean it is 

used well.  Knowledge of the amount of error can only benefit an investigation.  If data 

collection or methodological inaccuracies propagate error, the truth in these results is 

questionable (Stanbury and Starr 1999).  It is known that, by nature, coastal processes are 

fraught with uncertainties and therefore marine GIS should be able to cope with them 

(Zeng et al. 2001).   

There are a variety of statistical tools that assist in quantifying error, and test model 

sensitivity.  Examples include Monte Carlo simulations, Receiver Operating 

Characteristic curves, and a variety of error propagation models (Burrough and 

McDonnell 1998).  With these methods, it is possible to better understand the effects of 

uncertainty, which in all actuality, is easier than finding ways of dealing with it (Longley 

et al. 2001).  The best means to reduce uncertainty is to avoid it in the first place.  This 

opportunity arises during preliminary data collection, where optimizing the sampling 

strategy and increasing sample density will improve the foundation for analysis 

(Burrough and McDonnell 1998).  Also, the simultaneous collection of abundant 

metadata, increases the future reliability of the actual data (Bartlett 2000; Stanbury and 

Starr 1999). 
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3  THREE DIMENSIONAL GIS  

3.1 LIMITATIONS OF 3D GIS IN MARINE MODELING  
 

The traditional demands of a GIS were met years ago, where spatial information is 

captured, structured, manipulated, analyzed and presented.  These operations have been 

developed for a two dimensional terrestrial plane.  GIS is now being applied in a 3D 

environment and, not surprisingly, the existing functionality fails to operate in this setting 

(Zlatanova et al. 2002).  Ideally a 3D GIS should offer the same capabilities as a 2D 

system, each with its own semantics, and full topology.  Although many 3D GIS models 

have been reported, they are all dissimilar and have a multitude of both strengths and 

weaknesses (Rahman et al. 2000).  Zlatanova et al. (2002) assert that the consensus on a 

3D topological model has not yet been achieved.   

3D GIS is still primitive, there is a need for sophisticated data structures to model 

and simulate the marine environment.  Currently, these applications are either impossible 

with existing GIS packages, or they are highly deprived by the lack of proper 3D data 

structures (Li 1994; Valavanis 2002).  Many marine GIS investigators desiring 3D 

functionality are forced to perform spatial analysis in a 2D, land-based GIS.  There is an 

overall lack of 3D GIS software, and existing packages are unable to derive, manipulate, 

query and analyze 3D structures (Stoter and Zlatanova 2003; Valavanis 2002; Zeng et al. 

2001; Shyue and Tsai 1996; Lockwood and Li 1995; Li and Saxena 1993).   

In fact, true 3D GIS does not exist at this point in time.  Most GIS data still consists 

of a location at x,y with a z value measured for depth, or height.  Additionally, there is 

difficulty capturing an accurate z value because of poor georeferencing control (Raper 

2000).  Depth measurements contend with a continually varying tidal value, that should 

consider a nineteen year planetary epoch to georeference accurately (Smith 2003).  This 

is still merely point data with an additional attribute that can only be described as 2.5 

dimensional; it is not fully 3D (Baxter and Shortis 2002; Bartlett and Wright 2000).  The 

derived surfaces appear as 3D, but their attributes only occupy a single plane, and not all 

points in space.   

The technology does exist to efficiently collect 2.5D data, but these methods are 

commonly biased towards one or two dimensions.  Fox and Bobbit (2000) describe a 
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tow-yo that is suspended beneath a vessel and moved vertically through the water column 

collecting various data.  Shyue and Tsai (1996) mention that dynamic 4D data collection 

is possible with an ADCP that uses sonar to capture ocean current speed and direction; it 

is commonly towed as well.  Disproportionate dimensional bias occurs where more 

vertical measurements are collected by the tow-yo, and the ADCP data has limited 

horizontal coverage along ship tracks.  For proper 3D analysis and visualization, all three 

dimensions must be considered equally, they are separate yet complimentary (Bartlett and 

Wright 2000).   

Beyond this dimensional bias, there are a multitude of hindrances in the collection of 

3D data and the development of 3D GIS software.  Again, the cost of collecting 2.5D 

data is much more than that of 2D, and is difficult and time consuming to assemble.  This 

added complexity also allows more error to be associated with the data.  The structure to 

house this data is much more intricate, and in many ways, non-existent.  There is a heavy 

burden put on processors, and the storage space requirement is exorbitant (Rahman et al. 

2000).  To have the necessary hardware for 3D analysis is very costly (Stoter and 

Zlatanova 2003; Valavanis 2002; Shyue and Tsai 1996).  At the moment, despite efforts 

at automation, most GIS 3D modeling is done manually which is very labour intensive 

and time consuming (Stoter and Zlatanova 2003; Rahman et al. 2000).   

Most GIS database management systems (DBMS) are not designed to handle 3D 

data, except for the addition of space for a z coordinate.  Data is often spread between 

several systems for storage and visualization.  This results in system inconsistency and 

general additional costs of time and money (Stoter and Zlatanova 2003; Zlatanova et al. 

2002; Rahman et al. 2000).  The visualization of 3D objects is the most developed aspect 

of GIS; therefore, the focus of software development should rather be on DBMS 

improvement (Valavanis 2002).  

 

3.2 3D GIS SOFTWARE & MARINE OBJECT REPRESENTATION  
 

Efforts are being made to create better 3D GIS systems, but there is currently no 

package that incorporates a 3D database with 3D data integration, and visualization all-

in-one (Valavanis 2002).  Although they have not yet been perfectly integrated, the 
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combination of GIS data structure and 3D visualization is very powerful (Su 2000).  3D 

applications in most commercial GIS’s are only for visualization and not other 3D 

functionality (Stoter and Zlatanova 2003).  There have been few efforts to build 

analytical tools for 3D GIS (Cook et al. 1998).  Visualizations that contend with large 

datasets require efficient software and hardware to accommodate them. The 

visualizations work to create feature layers similar to a 2D GIS; however it would be 

impossible to blend these layers together for accurate marine simulation and interaction 

(Stoter and Zlatanova 2003; Su 2000).  These 3D images have been found beneficial for 

conceptualizing various animal habitats (Hehl-Lange 2001).  Li and Saxena (1993) used 

3D fly-over simulations to traverse a marine setting, which they found to be an excellent 

method to practice costly marine operations in a virtual space beforehand.   

Advancement in GIS visualization has been rapid and sophisticated because this 

technology is borrowed from the superior 3D realms of Computer Assisted Drawing 

(CAD) and computer gaming.  Virtual Reality (VR) is growing in popularity for spatial 

geographic visualization.  One can walk through a model to examine various spatial 

phenomena and gain a better conceptual understanding (Rahman et al. 2000).  Immersion 

into a 3D VR was used by Cook et al. (1998) to explore multivariate spatial data using 

dynamic statistics which displayed 3D scatterplots above a corresponding 3D simulation 

of the study area.  These advancements show great promise, but  in the interim 2.5D GIS 

visualizations require better physical characteristic properties such as texture, colour, and 

shading (Stoter and Zlatanova 2003).  

Most traditional GIS vendors provide extensions for 3D navigation and animation, 

but still only in 2.5 dimensions (Zlatanova et al. 2002; Bartlett and Wright 2000).  Three 

dimensional representation and integration cannot be solved by simply adding a 3D 

extension onto an existing two dimensional GIS package (Li 1994).  There are a small 

number of extensions available that attempt to provide a solution for 3D representation 

and analysis (Zlatanova et al. 2002).  These are popular packages that hold the largest 

portions of the market, they include:  3D Analyst and ArcScene from ESRI’s ArcGIS; 

Imagine VirtualGIS from ERDAS Inc.; GeoMedia Terrain from Intergraph Inc.; and 

PAMAP GIS Topographer from PCI Geomatics (Zlatanova et al. 2002; Rahman et al. 

2000).  It is possible to see that none of these are specific for marine applications, except 
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perhaps the separate ArcGIS data model.  The model includes a feature called 

placeholders which attempts to represent the fluidity of marine data (Bremen et al. 2002).  

These packages provide the ability to drape rasters, generate surfaces and now perform 

volume computations, but do not extend beyond 2.5D data (Figure 3.1).   

 

 

        
        Figure 3.1  x, y, z coordinates interpolated to create a bathymetric surface (ESRI 2006). 
 
 

Most packages still mainly work with vector data, where rasters are only 

incorporated to improve visualizations.  They permit fly-by animations, but none allow 

3D data structuring and analysis  Many of these systems are lacking full 3D geometry for 

3D object representation, and a fully integrated solution has yet to be offered (Zlatanova 

et al. 2002).  Hooge et al. (2003) attempted to extend marine animal home ranges into 3D 

but was hampered by ArcView’s 3D Analyst, which lacks volumetric capabilities.  

Similarly, Su (2000) explained that there are no volume 3D GIS’s, only surface 3D.  

Meaning that a surface can be created that looks 3D, but can only holds attribute values 

on the surface itself.  A true 3D volume would appear three dimensional, but also have 

values at all points in space. 
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Few things in the ocean can be represented by lines and polygons.  There is a need 

for a more appropriate 3D representation (Li and Saxena 1993).  The goal is to build a 

topological model that incorporates fully 3D marine objects.  The problem with modeling 

marine objects is that they are represented by unconnected points that have three 

dimensional coordinates which tend to move over time, and the datasets have abnormal 

distributions (Ledoux and Gold 2004).   

A variety of marine object representations have been developed over the past decade.  

Li (1994) described 3D representations being categorized into two groups: surface and 

volume7. Surface representations include: grids, shape models, facet models, and 

boundary representations.  Boundary representations work by bounding objects with low 

dimensional elements such as lines, polygons, and polyhedrons.  This is optimal for 

representing real-world objects because the boundaries can be measured and transferred 

directly into the representation.  Conveniently, most rendering engines are based on 

boundary representations (i.e. triangles, pyramids).  However, modeling rules and 

constraints become very complex when building topology between these objects (Stoter 

and Zlatanova et al. 2002).   

Volume base representations are comprised of: 3D arrays, needle models, octrees 

and Constructive Solid Geometry (CSG).  CSG has its origins in CAD, which produces 

straightforward shapes like cubes spheres and cylinders.  They are simple to design, but 

topological relationships between them can grow very complex (Stoter and Zlatanova 

2003).  More contemporarily relevant representations include the Triangulated Irregular 

Network (TIN), which works well for 2.5D marine topological relationships, and the 

voxel representation.  A voxel is a volume element that is similar to a 3D pixel which 

creates a 3D raster that is suitable for modeling continuous marine phenomena.  

Disadvantages of the voxel include its high resolution that demands large computer 

power and a large amount of storage space.  Also, the surface is never regular and always 

appears rough.  The voxel is only good for reconstruction of solid 3D objects, but does 

not address any spatial modeling aspects (Ledoux and Gold 2004; Stoter and Zlatanova 

2003; Rahman et al. 2000).   

                                                 
7 For a more detailed explanation of these representations please refer to Li (1994) and Li (2000).   
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3D data modeling in GIS is not only concerned with the geometric and attribute 

aspects of the data, but is also the topological relationships of the data.  The topology of 

spatial data must exist so that connectedness between objects can be determined.  It 

would be impossible to model 3D oceanographic data in a 2D GIS because the topology 

is not appropriately defined and the movement of objects could not be incorporated 

(Ledoux and Gold 2004).   Bartlett in Zeng et al. (2001) proposes a method for an object 

oriented CSG data model for use in raster based 3D space using voxels.  This method 

develops the framework for a true 3D GIS that has the potential to model marine habitats.  

Perhaps the best 3D marine topological model resides with the three dimensional Voronoї 

diagram which is an expansion of Gold and Condals (1995) 2D version.  This method 

builds topology between unconnected 3D objects, which allows for the dynamic 

movement inherent to marine phenomena and perhaps the initial steps toward a fully 

integrated 3D GIS structure (Ledoux and Gold 2004).   

A recent application of the Voronoї tesselation is the 3D Delauney tetrahedral 

network (TetNet), using a specialized extension from ESRI.  The tool attempts to link 

2.5D points through all positions in space, and interpolate a triangulated network between 

them.  Although 2.5 dimensional, the final network works to fill the volume between the 

points, providing a very realistic representation of 3D space (Figure 5).  

                    

      
       Figure 3.2   Tetrahedral Network interpolation of ocean salinity (ESRI 2006). 
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The next stage of 3D GIS development will focus on methods for modelling the 

dynamic fourth dimension (time series 3D data).  The data and software requirements for 

4D representations would be nearly prohibitive, demonstrating why the oceans remain a 

challenging environment to apply GIS (Goodchild 2000).  

 

4 CONCLUSION  
 

The application of GIS to the characterization and analysis of the marine 

environment has seen large developments in recent years.  Marine GIS has progressed 

alongside existing GIS technologies to develop an exclusive approach to complex marine 

applications.  The unique demands of underwater geography are obvious, and the 

adaptability of existing GIS software has been a limiting factor.  The main obstacles 

include using software that has been structured upon a static, somewhat two dimensional, 

environment with very rigid coordinate systems.  Using this configuration in a setting that 

is characteristic of floating disconnected objects, in a fully dynamic three dimensions has 

produced many challenges (Greene et al. 2006; Breman 2002; Wright 2000).   

The requirements of marine GIS have been partially resolved through the 

development of specific concepts and tools for use in present GIS packages.  These 

include ESRI’s marine data model, and software extensions to support data storage and 

visualization.  The data model assists, but does not provide comprehensive topological 

relationships between 3D marine objects.  The major contribution to multi-dimentional 

GIS has come only in the form of 3D surface visualization.  Currently, the Tetrahedral 

Network is perhaps the most representative simulation of attributes in aquatic space.  To 

a large extent however, the majority of representations still exist only in 2.5 dimensions.  

Overall 3D GIS is still relatively primitive, there is a significant need for sophisticated 

data structures for the modeling and simulation of the marine environment (Zlatanova et 

al. 2002). 

The chief focus of marine GIS still remains on establishing protocols specifically 

developed to accommodate unique marine data types.  This includes the provision of 

suitable software, but also the development of a reliable method to clearly identify marine 

data types, quality, and interpretive processes.  This will ensure quality products, but also 
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will act to reduce error and uncertainty in an already ambiguous field of research (Greene 

et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 B26

WORKS CITED 
 
Bartlett, D. J. (1993) GIS and the Coastal Zone: An Annotated Bibliography pp. 25. 

National Center for Geographic Information and Analysis. Report 93-9. 
 
Bartlett, D. J. (2000) Workings on the Frontiers of Science: Applying GIS to the Coastal 

Zone. In: Marine and Coastal Geographical Information Systems (eds. D. J. Wright 
and D. J. Bartlett) pp. 11-24. Taylor & Francis, Philadelphia. 
 

Bartlett, D. J. and Wright, D. J. (2000) Epilogue. In: Marine and Coastal Geographical 
Information Systems (eds. D. J. Wright and D. Bartlett) pp. 309-315. Taylor & 
Francis, Philadelphia. 
 

Baxter, K. and Shortis, M. (2002) Identifying Fish Habitats: the use of spatially explicit 
habitat modeling and prediction in marine research. In: The 14th Annual Colloquium 
of the Spatial Information Research Centre pp. 12, University of Otago, Dunedin, 
New Zealand. 

 
Breman, J., Wright, D. and Halpin, P. N. (2002) The Incepetion of the ArcGIS Marine 

Data Model. In: Marine Geography: GIS for the Oceans and Seas (ed. J. Breman) 
pp. 3-9. ESRI, Redlands, CA. 

 
Burrough, P. A. and McDonnell, R. A. (1998) Principles of Geographic Information 

Systems: Spatial Information Systems and Geostatistics. Oxford University Press 
Inc., New York. 
 

Calambokidis, J., Darling, J. D., Deecke, V., Gearin, P., Gosho, M., Megill, W., 
Tombach, C. M., Goley, D., Toropova, C. and Gisborne, B. (2002) Abundance, 
range and movements of a feeding aggregation of gray whales (Eschrichtius 
robustus) from California to southeastern Alaska in 1998. Journal of Cetacean 
Research Management 4: 267-276. 

 
Cook, D., Cruz-Neira, C., Kohlmeyer, B. D., Lechner, U., Lewin, N., Nelson, L., Olsen, 

A., Pierson, S. and Symanzik, J. (1998) Exploring environmental data in a highly 
immersive virtual reality environment. Environmental Monitoring and Assessment 
51: 441-450. 

 
Duffus, D. A. (1996) The recreational use of gray whales in southern Clayoquot Sound, 

Canada. Applied Geography 16: 179-190. 
 
Dunham, J. S. and Duffus, D. A. (2001) Foraging patterns of gray whales in central 

Clayoquot Sound, British Columbia, Canada. Marine Ecology Progress Series 223: 
299-310. 

 
Dunham, J. S. and Duffus, D. A. (2002) Diet of gray whales (Eschrichtius robustus) in 

Clayoquot Sound, British Columbia, Canada. Marine Mammal Science 18: 419-437. 



 B27

 
ESRI (2006) The Marine Data Model [Internet]. Environmental Systems Research 

Institute, Redlands, CA.  
Available from: <http//support.esri.com/index.cmf?Fa=downloads.dataModels> 
[Accessed November 19, 2006] 

 
Gold, C. (2000) An Algorithmic Approach to Marine GIS. In: Marine and Coastal 

Geographic Information Systems (eds. D. J. Wright and D. J. Bartlett) pp. 37-52. 
Taylor & Francis, Philadelphia. 

 
Gold, C., Chau, M., Dzieszko, M. and Goralski, R. (2003) The "Marine GIS" - Dynamic 

GIS in Action pp. 6. Dept. Land Surveying and Geo-Informatics, Hong Kong 
Polytechnic University, Hong Kong. 

 
Gold, C. M. and Condal, A. R. (1995) A spatial data structure integrating GIS and 

simulation in a marine environment. Marine Geodesy 18: 213-228. 
 
Goldfinger, C. (2000) Active Tectonics: Data Aquisition and Analysis with Marine GIS. 

In: Marine and Coastal Geographical Information Systems (eds. D. J. Wright and D. 
J. Bartlett) pp. 237-254. Taylor & Francis, Philadelphia. 

 
Goodchild, M. F. (2000) Foreword. In: Marine and Coastal Geographical Information 

Systems (eds. D. J. Wright and D. J. Bartlett). Taylor & Francis, Philadelphia. 
 
Grebmeier, J.M., Overland, J.E., Moore, S.E., Farley, E.V., Carmack, E.C., Cooper, 

L.W., Frey, K.E., Helle, J.H., McLaughlin, and McNutt, S.L. (2006)  A major 
ecosystem shift in the northern Bering Sea.  Science. 311(5766): 1461-1464  

 
Greene, H.G., Bizzarro, J.J., Tilden, J.E., Lopez, H.L., and Erdey, M.D. (2006) The 

benefits and pitfalls of Geographic Information Systems in marine benthic habitat 
mapping. In: Wright, D.J., and Scholz, A.J. Place Matters: Geospatial tools for 
marine science, conservation, and management in the Pacific Northwest. Oregon 
State University Press, Corvallis.  305 pp. 

 
Hatcher, G. A. and Maher, N. (1999) Real-Time GIS for Marine Applications. In: Marine 

and Coastal Geographical Information Systems (eds. D. J. Wright and D. J. Bartlett) 
pp. 137-147. Taylor & Francis, Philadelphia. 

 
Hehl-Lange, S. (2001) Structural elements of the visual landscape and their ecological 

functions. Landscape and Urban Planning 54: 105-113. 
 
Hooge, P. N., Eichenlaub, W. M. and Solomon, E. K. (2000) Using GIS to Analyze 

Animal Movements in the Marine Environment, Manuscript pp. 20, Gustavus, AK. 
 
 



 B28

Horne, B. V. (2002) Approaches to Habitat Modeling: The Tensions Between Pattern and 
Process and Between Specificity and Generality. In: Predicting Species 
Occurrences: Issues of Accuracy and Scale (eds. J. M. Scott, P. J. Heglund, M. L. 
Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall and F. B. Samson) pp. 63-72. 
Island Press, Washington D.C. 

 
Hyrenbach, K. D., Forney, K. A. and Dayton, P. K. (2000) Marine protected areas and 

ocean basin management. Aquatic Conservation: Marine and Freshwater 
Ecosystems 10: 437-458. 

 
Ledoux, H. and Gold, C. (2004) Modelling Oceanographic Data with the three-

Dimensional Voronoi Diagram. In: Dept. Land Surveying and Geo-Informatics pp. 
6pp. Hong Kong Polytechnic University, Hong Kong. 

 
Li, R. (1994) Data structures and application issues in 3-D Geographic Information 

Systems. Geomatica 48: 209-224. 
 
Li, R. (2000) Data Models for Marine and Coastal Geographic Information Systems. In: 

Marine and Coastal Geographic Information Systems (eds. D. J. Wright and D. J. 
Bartlett) pp. 25-36. Taylor & Francis, Philadelphia. 

 
Li, R. and Saxena, N. K. (1993) Development of an integrated marine Geographic 

Information System. Marine Geodesy 16: 293-307. 
 
Littaye, A., Gannier, A., Laran, S. and Wilson, J. P. F. (2004) The relationship between 

summer aggregation of fin whales and satellite-derived environmental conditions in 
the northwestern Mediterranean Sea. Remote Sensing of Environment 90: 44-52. 

 
Lockwood, M. and Fowler, C. (2000) Significance of Coastal and Marine Data Within 

the Context of the United States National Spatial Data Infrastructure. In: Marine and 
Coastal Geographic Information Systems (eds. D. J. Wright and D. J. Bartlett) pp. 
261-278. Taylor & Francis, Philadelphia. 

 
Lockwood, M. and Li, R. (1995) Marine Geographic Information systems: what sets 

them apart? Marine Geodesy 18: 157-159. 
 
Longley, P. A., Goodchild, M. F., Maguire, D. J. and Rhind, D. W. (2001) Geographic 

Information Systems and Science. John Wiley and Sons Ltd., Chicester, West 
Sussex, England. 

 
Lucas, A. (2000) Representation of Variability in Marine Environmental Data. In: Marine 

and Coastal Geographical Information Systems (eds. D. J. Wright and D. J. Bartlett) 
pp. 53-74. Taylor & Francis, Philadelphia. 

 



 B29

Malcolm, C. D., Duffus, D. A. and Wischniowski, S. G. (1996) Small scale behaviour of 
large scale subjects: diving behaviour of a gray whale (Eschrichtius robustus). 
Western Geography 5: 35-44. 

 
McAdoo, B. G. (2000) Mapping Submarine Slope Failures. In: Marine and Coastal 

Geographic Information Systems (eds. D. J. Wright and D. J. Bartlett) pp. 189-204. 
Taylor & Francis, Philadelphia. 

 
Megill, W., Stelle, L. L. and Woodward, B. (2003) Surveys for gray whales, Eschrichtius 

robustus, near Cape Caution, British Columbia, summer 2003 pp. 17. Coastal 
Ecosystems Research Foundation. 

 
Nerini, M. (1984) A review of gray whale feeding ecology. In: The gray whale, 

Eschrichtius robustus (eds. M. L. Jones, S. L. Swartz and S. Leatherwood) pp. 423-
450. Acedemic Press Inc., Orlando, Fla. 

 
Rahman, A. A., Zlatanova, S. and Pilouk, M. (2000) The 3D GIS Software Development: 

Global Efforts From Researchers and Vendors: Manuscript. In: ESRI pp. 13, 
Redlands, CA. 

 
Raper, J. (2000) 2.5 and 3D GIS for Coastal Geomorphology. In: Coastal and Marine 

Geographic Information Systems (eds. D. J. Wright and D. J. Bartlett) pp. 129-136. 
Taylor & Francis, Philadelphia. 

 
Rutgers (2005) Rutgers University Coastal Ocean Observation Lab [Internet] 

Available from: <http://marine.rutgers.edu/cool> [Accessed March 22, 2005] 
 
Shyue, S.W. and Tsai, P.Y. (1996) A study on the dimensional aspect of the marine 

Geographic Information Systems. Geomatica 48: 674-679. 
 
Smith, S. (2003) Marine GIS - Where Multidimensionality Presents Special Challenges. 

In: GIS Weekly, October 6-10 pp. 12. 
 
Stanbury, K. B. and Starr, R. M. (1999) Applications of Geographic Information Systems 

(GIS) to habitat assessment and marine resource management. Oceanologica Acta 
22: 699-703. 

 
Stoter, J. and Zlatanova, S. (2003) 3D GIS, Where Are We Standing?: Manuscript pp. 6, 

Delft University of Technology, Delft, The Netherlands. 
 
Su, Y. (2000) A User-Friendly Marine GIS for Multi-Dimensional Visulaization. In: 

Marine and Coastal Geographic Information Systems (eds. D. J. Wright and D. J. 
Bartlett) pp. 227-236. Taylor & Francis, Philadelphia. 

 
Urbanski, J. A. and Szymelfenig, M. (2003) GIS-Based mapping of benthic habitats. 

Estuarine, Coastal and Shelf Science 56: 99-109. 



 B30

 
Valavanis, V. D. (2002) Geographic Information Systems in Oceanography and 

Fisheries. Taylor & Francis, London. 
 
Von Meyer, N., Foote, K. E. and Huebner, D. J. (2000) Information Quality 

Considerations for Coastal Data. In: Marine and Coastal Geographic Information 
Systems (eds. D. J. Wright and D. J. Bartlett) pp. 295-308. Taylor & Francis, 
Philadelphia. 

 
Wright, D. J. (2000) Down to the Sea in Ships: The Emergence of Marine GIS. In: 

Marine and Coastal Geographic Information Systems (eds. D. J. Wright and D. J. 
Bartlett) pp. 1-10. Taylor & Francis, Philadelphia. 

 
Wright, D. J. and Goodchild, M. F. (1997) Data from the deep: implications for the GIS 

community. International Journal of Geographical Information Science 11: 523-
528. 

 
Zeng, T. Q., Zhou, Q., Cowell, P. and Huang, H. (2001) Coastal GIS: Functionality 

versus applications. International Archives for Photogrammetry and Remote Sensing 
34, part 2W2: 343-356. 

 
Zlatanova, S., Rahman, A. A. and Pilouk, M. (2002) 3D GIS - Current Status and 

Perspectives. In: Proceedings of the Joint Commision on Geo-Spatial Theory, 
Processing and Application pp. 6, Ottawa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 C1

APPENDIX C 
 

MARINE GIS RELEVANCE FOR GRAY WHALES 

1 PREDICTIVE MODELING FOR WHALE CONSERVATION 
 

Marine GIS is growing as an indispensable analysis tool for many disciplines.  

Marine biologists and ecologists are finding GIS useful for investigating whale habitat 

use (Grebmeier et al. 2006; Christensen 2002; Moore et al. 2002).  A species of particular 

interest is the gray whale (Eschrichtius robustus), by acting as a flagship species, it can 

be used to initiate conservation projects and develop marine protected sites (Zacharias 

and Roff 2001).  This species also serves as a bio-indicator of environmental variability, 

by occurring in areas of high secondary productivity, and responding to changes in its 

production (Moore et al. 2003).  Gray whales also work as a keystone species by 

circulating nutrients in the benthic sediment into the water column (COSEWIC 2004).  

Facing a multitude of post-whaling threats, GIS predictive models help to better 

understand the habitat selection of this enigmatic cetacean (Moore and Clarke 2002; 

Moses and Finn 1997).   

Predictive models are used to determine where in a particular landscape a species 

may be found.  Biologists, or habitat and species managers, may then make decisions 

based on the results of these models (Guisan and Zimmermann 2000). These decisions 

are usually made in regard to conservation issues in the context of habitat disruption and 

population sustainability. Compiling all of the ecological information necessary to make 

such assessments is a difficult task.  This is especially true for natural systems, where 

much uncertainty and complexity is present.  It is the role of a predictive model to 

simplify these systems so that biologists and managers can better base their decisions 

(Maurer 2002).  Using a GIS to house the predictive model provides benefit through easy 

visualization of the model results.  In its simplest form, the model should be able to, 

predict the distribution of biotic entities on the basis of ecological parameters that are 

believed to be the driving forces of their distribution (Guisan and Zimmermann 2000).  

Once these environmental factors are determined, areas of special concern can be 

delineated (Short 2005).  
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In the case of predictive modeling for whales, the dynamic marine environment 

poses a particular challenge due to the added complexity introduced by movement, fuzzy 

boundaries, and three dimensions (Breman et al. 2002).  Nonetheless, the ecological 

variables that coerce whale presence and distribution can be identified with some 

additional effort.  Using gray whale habitat for example, the environmental features such 

as water depth, sea floor bathymetry, substrate type, prey patchiness, sea surface 

temperature (SST) and salinity can all be included as layers in a GIS predictive model 

(Moore et al. 2003; Darling et al. 1998).  GIS can quantify the extent and scale of these 

associations between cetaceans and their habitat, supporting prediction of whale locations 

beyond the study areas using GIS.  This predictive knowledge is particularly useful for 

outlining vital habitat for whale species of dire concern.  The northern right whale has the 

smallest population of all the worlds baleen cetaceans (Clapham et al. 1999).  

Conservation efforts are intensive to prevent the extinction of this once heavily hunted 

species.  A GIS predictive model was developed by Moses and Finn (1997) using SST 

and bathymetry as predictors of right whale habitat use.  The results of their analysis was 

applied to a recovery plan for the species.  The necessity for geographical management is 

mounting for some whale populations due to increasing anthropogenic stress on these 

animals and their habitat.   

 

2    GRAY WHALE CONSERVATION STATUS 

 
       The U.S National Marine Fisheries Service (NMFS) under direction of the Marine 

Mammal Protection Act (16 U.S.C 1361 et seq.; the MMPA) reviewed the status of the 

eastern pacific gray whale stock in November 1984, and changed their status from 

endangered to threatened.  Again in 1994 the status was reviewed and changed from 

threatened to non-threatened (Rugh et al. 1999).  This displays a remarkable recovery of 

the eastern population from severe consumptive whaling.  By 1900 some whalers 

considered this population to be in effect, extinct (Clapham et al. 1999).  Although this 

population has convalesced, the NMFS review continues to suggest that, “As this stock 

reaches carrying capacity, research should persist on human impacts to critical habitat” 
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(Rugh et al. 1999).  The Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC) gives this same population a status of special concern.  It also states that as 

this group reaches its carrying capacity, it will be limited by available feeding habitat 

(COSEWIC 2004).  This focus on an inadequate food supply is particularly alarming in 

regard to a study by Moore et al. (2003) which suggests the discovery of 354 dead, 

emaciated gray whales in 2000 is a result of reduced food availability.  The western 

Pacific population remains critically endangered with perhaps only a couple hundred 

individuals remaining (Clapham et al. 1999).  The reduction in benthic secondary 

productivity exists in association with a variety of other environmental pressures on the 

eastern population. 

 

3 POST-WHALING THREATS  
 

Gray whales received international protection from commercial whaling in 1938 

(Clapham et al. 1999).  However, a multiplicity of contemporary natural and 

anthropogenic threats may possibly be affecting the species.  The predominant naturally 

occurring danger is an abrupt reduction of food in the Alaskan summer feeding grounds 

(Moore et al. 2003).  This resulted in the death of over one third of individuals which 

summered along the BC coast over four years from 1998 to 2002 (COSEWIC 2004).  The 

cause of this shortage or quality of prey is believed to be a result of changing 

hydrographical conditions (Grebmeier and Dutton 2000).  Of the human generated 

pressures facing this species, offshore oil and gas exploration is the most profound, with 

noise being the largest concern (COSEWIC 2004; Moore and Clarke 2002; Rugh et al. 

1999; Weller et al. 2002).  Gray whales experience changes in surface-dive and 

respiration behaviour, spatial distribution, and have abandoned feeding areas in relation 

to increased human activities and associated noise (Weller et al. 2002).  Dahlheim (1987) 

found significant changes in gray whale calling rates and call structure when exposed to 

human produced noise. Sound sources connected with oil and gas exploration include: 

aircraft overflights, boat traffic, drilling equipment, production platforms, and airgun 

blasts used in seismic surveys.  These activities have shown acute behavioural avoidance 

in migrating gray whales (Moore and Clarke 2002; Würsig et al. 1999).  Secondary 
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impacts of the oil and gas industry include oil spills which can damage prey, their skin 

and baleen (Rugh et al. 1999).  Twenty six oil affected gray whale carcasses were found 

after the Exxon Valdez spill in Alaska (Clapham et al. 1999).   

Gray whales provide a large economic contribution in the form of whale watching.  

However, with substantial growth of this industry in recent years, increased public and 

private boat traffic is affecting their behaviour and distribution (Duffus 1996; Rugh et al. 

1999).  Bursk (1989) found that gray whales regularly changed their speed and deviated 

from their course in the presence of whale watching vessels.  Rugh et al. (1999) describe 

similar behaviours where the whales alter their speed and respiration when followed by 

whale watching boats.  Duffus (1996) discovered that a population of foraging gray 

whales were being displaced from their feeding areas as a direct result of increasing 

whale watching traffic.  Disruption of their feeding patterns poses some ecological 

concern, knowing that these animals will not feed to any great extent after leaving these 

areas to migrate south (Malcolm et al. 1996; Rice and Wolman 1971). Other human 

generated concerns are those of fatalities as a result of impact with boats, and 

entanglement with fishing gear (COSEWIC 2004; Moore and Clarke 2002; Clapham et 

al. 1999; Rugh et al. 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 C5

WORKS CITED 
 
Bremen, J., Wright, D. J. and Halpin, P. N. (2002) The Inception of the ArcGIS Marine 

Data Model. In: Marine Geography: GIS for the Oceans and Seas (ed. J. Bremen) 
pp. 3-9. ESRI, Redlands, CA. 

 
Bursk, M. (1989) Response of whales to whale watching in southern California. p.11. In: 

Proceedings of the Workshop to Review and Evaluate Whale Watching Programs 
and Management Needs.  November 1988, Monterey California. 53 pp. 

 
Christensen, B. (2002) Marine Mammal and Human Patterns of Use. In: Marine 

Geography: GIS for Oceans and Seas (ed. J. Bremen) pp. 161-167. ESRI, Redlands, 
CA. 

 
Clapham P. J., Young S. B. and Robert L. Brownell J. (1999) Baleen whales: 

conservation issues and the status of the most endangered populations. Mammal 
Review 29: 35-60. 

 
COSEWIC (2004) COSEWIC assessment and update status report on the gray whale 

(Eastern North Pacific population) Eschrichtius robustus in Canada. Commitee on 
the Status of Endangered Wildlife in Canada., Ottawa. 

 
Dalheim, M.E. (1987) Bio-acoustics of the gray whale (Eschrichtius robustus) Ph.D 

Thesis, University of British Columbia, Vancouver, BC 315 pp.  
 
Darling, J. D., Keogh, K. E. and Steeves, T. E. (1998) Gray whale (eschrichtius robustus) 

habitat utilization and prey species off Vancouver Island, B.C. Marine Mammal 
Science 14: 692-720. 

 
Duffus, D. A. (1996) The recreational use of gray whales in southern Clayoquot Sound, 

Canada. Applied Geography 16: 179-190. 
 
Grebmeier, J. M. and Dutton, K. H. (2000) Benthic processes in the northern 

Bering/Chukchi seas: status and global change.  Impacts of changes in sea ice and 
other environmental parameters in the Arctic.  Report to the Marine Mammal 
Commision, Bethesda, Md. 

 
Grebmeier, J.M., Overland, J.E., Moore, S.E., Farley, E.V., Carmack, E.C., Cooper, 

L.W., Frey, K.E., Helle, J.H., McLaughlin, and McNutt, S.L. (2006)  A major 
ecosystem shift in the northern Bering Sea.  Science. 311(5766): 1461-1464 

 
Guisan, A. and Zimmermann, N. E. (2000) Predictive habitat distribution models in 

ecology. Ecological Modelling 135: 147-186. 
 



 C6

Malcolm, C. D., Duffus, D. A. and Wischniowski, S. G. (1996) Small scale behaviour of 
large scale subjects: diving behaviour of a gray whale (Eschrichtius robustus). 
Western Geography 5: 35-44. 

 
Maurer, B. A. (2002) Predicting Distribution and Abundance: Thinking Within and 

Between Scales. In: Predicting Species Occurrences: Issues of Accuracy and Scale 
(eds. J. M. Scott, P. J. Heglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. 
Wall and F. B. Samson) pp. 125-132. Island Press, Washington. 

 
Moore, S. E., Grebmeier, J. M. and Davies, J. R. (2003) gray whale distribution relative 

to forage habitat in the northern Bering Sea: current conditions and retrospective 
summary. Canadian Journal of Zoology 81: 734-742. 

 
Moore, S. E. and Clarke, J. T. (2002) Potential impacts of offshore human activities on 

gray whales (Eschrichtius robustus). Journal of Cetacean Research Management 4: 
19-25. 

 
Moore, S. E., Watkins, W. A., Daher, M. A., Davies, J. R. and Dahlheim, M. E. (2002) 

Blue Whale habitat associations in the Northwest Pacific: analysis of remotely-
sensed data using a Geographic Information System. Oceanography 15: 20-25. 

 
Moses, E. and Finn, J. T. (1997) Using Geographic Information Systems to predict North 

Atlantic Right Whale (Eubalaena glacialis) habitat. Journal of Northwest Atlantic 
Fisheries Science 22: 37- 46. 

 
Rice, D. W. and Wolman, A. A. (1971) The life history and ecology of the gray whale 

(Eschrichtius robustus). American Society of Mammologists, Special Publication no. 
3: 142. 

 
Rugh, D. J., Moto, M. M., Moore, S. E. and DeMaster, D. P. (1999) Status Review of the 

Eastern North Pacific Stock of Gray Whales. U.S. Dep. Commer., NOAA Technical 
Memorandum NMFS-AFSC-103. 

 
Short, C.J. (2005) A multiple trophic level approach to assess ecological connectivity and 

boundary function in marine protected areas: A British Columbia example.  MSc. 
Thesis.  Department of Geography, University of Victoria, Victoria, BC. 108 pp. 

 
Weller, D. W., Ivashchenko, Y. V., Tsidulko, G. A., Burdin, A. M. and Brownell Jr., R.L. 

(2002) Influence of seismic surveys on western gray whales off Sakhalin Island, 
Russia in 2001. A Report: Kamchatka Institute of Ecology and Nature Management, 
Russian Academy of Sciences, Kamchatka, Russia. 

 
 
 
 
 



 C7

Würsig, B., Weller, D. W., Burdin, A. M., Blokhin, S. A., Reeve, S. H., Bradford, A. L. 
and Brownell Jr., R. L. (1999) Gray whales summering off Sakhalin Island, Far East 
Russia: July-October 1997. In: Unpublished contract report submitted by Texas 
A&M University and the Kamchatka Institute of Ecology and Nature management, 
February 1999 pp. 101. 

 
Zacharias, M. A. and Roff, J. C. (2001) Use of focal species in marine conservation and 

mangement: a review and critique. Aquatic Conservation: Marine and Freshwater 
Ecosystems 11: 59-76. 

 
 
 
 

 

 

 
 

 

 

 

 


