Visualizing Geographic Processes and the role of Visualization in Scientific Research

What is **Geovisualization**?

Why is the work **needed**?

What are its **applications** and uses?

What is Geovisualization?

Leveraging the patternrecognition and informationextracting abilities of the eye-brain system.

"Visual Thinking" - tools to 'see' and explore complex geospatial data sets in the hopes of discovering new insights

Vision is a high bandwidth sensory channel....we're "hardwired" for visual information (perceptual) and good at abstract visual thinking (cognitive)

Map Animation

Collaborative Visualization and Immersive Technology

Geocomputation and Database Semantics

```
<body bgcolor="#0f433c" text="#000000" link="#FFFF66" vlink="#99CC00" alink="#FFFF33">
<div align="center">
 \langle tr \rangle
     <div align="center"><img src="graphics/frontiers.gif" width="841" height="67"></div>
     >
      <div align="left">
         
      </div>
      <div align="center">
        <font face="Arial, Helvetica, sans-serif" size="5" color="#33CCFF">Cutting
          Edge Research and Applications</font>
        \langle tr \rangle
           <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif">Map
               Animation</font>
             <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif">Collaborative
               Visualization</font>
             <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif">Database
               Semantics </font>
        <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif">Geocomputation</font>
             <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif">Immersive
               Technology</font>
             <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif">Uncertainty and Dat
          <font color="#FFFFFF" size="5" face="Arial, Helvetica, sans-serif"><a href="GEOVISTA graphic</p>
                <a href="GEOVISTA graphics/Apoalatemporalguery.jpg" target=" blank">Example</a>
          1</a>
          2</a>
                <a href="GEOVISTA graphics/Studiomultivariateanalysis.jpg" target=" blank">Example</a>
          3</a>
                <a href="GEOVISTA graphics/StudioSOMleftview.jpg" target=" blank">Example
          4</a></font>
        </div>
      <blockquote><blockquote><blockquote><blockquote><div align="center"></div>
               </blockguote>
           </blockguote>
          </blockguote>
          <div align="left"></div>
        </blockguote>
        div alian="loft">
```

Data Surfa

Size of Err

Gray Max (Bivariat)

Uncertainty and Data Quality

Quit	
9	
e riane number	
V	
r Triangles	
Animate	24
0	
n Error Surface	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Mass (7)	
Maps ()	. SP 1
	- F
	223 3
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	· · · · · ·
	1 N 1 N
	-10^{-1} $\sim N_{\odot}$
	1 M 14 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	100 C

Why does this matter?

just techie stuff, right?

an example

Issue #1

How we think about the world influences how we make maps. In turn, how we make maps influences how we think about the world.

Issue #2

Turning *data* into *information* (and ultimately *knowledge*)

Massive amount of digital space-time data: *How do we make use of it?*

Issue #3

Time and Process - Hard to Represent

A shift from PATTERNS to PROCESSES

Knowledge Construction

Early in the research process: Help to form hypotheses about geographic systems when formal hypotheses my be lacking.

Later in the research process: May be used to confirm, synthesize, and ultimately present ideas and information.

3D ANIMATION AND FLY-OVER MAPS

MOSTLY HYPE OR USEFUL TOOLS?

BILLIONS OF PIXELS

\$200 SOFTWARE

We all-too-often assume 3-d is better than 2-d, that animation is superior to static graphics, and that realism is more powerful than abstraction.

Ben Shneiderman

aim to be clear, not cool.

The trouble with 3D Fly-overs (1) Scale is not constant (x, y, or z) (2) Information Overload (3) Visual occlusion (4) People Love Them (and then promptly forget them) (5) Folks Get Lost!

Oh really?

Pen and paper at the ready...

Q1: Trace your path!

Q2: How far have you travelled? Q3: How high is the final climb? Q4: How many villages did we fly over? ...all answerable with a 2D topo!!

HOWEVER!...

(1) Not anti-flyover (they're too cool, and they're here to stay)

(2) So...How and When to best use them!

(3) And what can we do improve them?

HOWEVER!...

(1) Not anti-flyover (they're too cool, and they're here to stay)

(2) So...How and When to best use them!

(3) And what can we do improve them?

This is one of my research foci

It's not the technology, it's how you use it. <u>Mike Gleischer</u>

choropleth not so good for elevation

What Problems?!

(1) Non-constant scale? = Info filtering + mix 2d and 3d + how realty works

(2) Visual occlusion? Just fly around + transparency + roll-up earths

(3) Judging distance? Grids + new measuring tools + 2d inset

BUT... Most of these are INTERACTIVE SOLUTIONS

Fly-overs (low interactivity)

VS.

VEs (high interactivity)

Used often as overview/reference map to create "survey knowledge"

Most research has focused on VEs, not fly-overs.

So how did we get here?

ILM 1982

ILM 1983

JPL 1987

25 years on...

...better software BUT still many unknown questions in fly-over cartography:

path complexity flight speed / height look-ahead / angle / fixed? fixed vs. variable fly height animation length banking scene complexity orientation cues, etc.

To date...

Some research in GISci, mostly in HCI / VE communities ...

Is our technology ahead of our theory?

Problem #1 Disorientation

People get lost / disorientated / overwhelmed!

Again, and again this is shown in research

(Darken and Sibert 1996, Elvins 1997, Vinson 1999, Chittaro and Burigat 2004, Bowman et al. 2005)

Why?

Problem #1 Disorientation Why?

People don't know where they are People don't know where they've been And they don't what they're looking at

Core Problem

Fly-overs need to better foster development of the basic components of a mental map

#1 Survey/Configural Knowledge: Legible environment is one whose parts can be recognized and organized into coherent patterns (Lynch 1960, Thorndyke 1983, Elvins 1997)

#2 Procedural Knowledge: e.g., driving directions

#3 Landmark Knowledge: e.g., relational

Enhancing Fly-over Maps

Starts with a labeled overview map (map mixes ego- and exo-centric views)

Previews flight path

Soundscape creates increased sense of immersion

Linked Ego- and Exo-centric Perspectives

Fuhrmann, Sven (2003). Supporting Wayfinding in Desktop Geovirtual Environments.

Linked Ego	- and Ex	o-centric	Pers	pectives
------------	----------	-----------	------	----------

PRO: It really helps

CON: Split attention Screen space

uty	U.S. Route	Stream
duty	State Doute	Woods-brush
		Power Line
cy		Elevation Spot
ved-dirt		

-					

Unimproved dirt	

Inspiration: Heads-Up Display / Augmented Realty

Provides external frame of reference Compass Ticks Orientation aid works only if horizon is visible

NW

Helps with distance and angular relationships

Landscape Grid

Landscape Grid

Should decrease split attention Z scale needed with vertical exaggeration

Value-added cartography Play important role in mental map development

TTG CET'S

abels / Landmarks

Previews motion ahead rs "have I been here before?"

France

lonora

Experimental Findings: Directional Errors

Avg Directional Error = 45° Monorail and Grid halved that Compass eliminated it Labels made it worse

Experimental Findings: Survey Knowledge

Path Drawing

Monorail most successful, followed by Grid Compass no help Labels made it worse

Harrower, M. and B. Sheesley (2007). Utterly lost: Methods for reducing disorientation in 3-D fly-over maps. *Cartography and Geographic Information Science*.

Harrower, M. and B. Sheesley (2005). Moving beyond novelty: Creating effective 3-d flyover maps. Proceedings of the XXII International Cartographic Conference (ICC2005). A Coruña, Spain, 11-16 July 2005.

Important Distinction: Analytical vs. Subjective Map Reading Tasks

1: Engendering a sense of place "Experiential Cartography"

2: Grabs our attention

3: Bridges our lived experience and map data

...all good things

The Grand Canyon

The Grand Canyon - Google Earth Demo

Thank you!

maharrower@wisc.edu