ArcGIS Marine Data Model Class Descriptions
26 July, 2002 – initial writing by MJB
26 August, 2002 – updated by MJB
12 May 2003 – updated by MJB
28 June 2003 - updated by DJW

Introduction and Definitions
The intent of this document is to provide an introductory explanation of the classes being implemented in this version of the ArcGIS Marine Data Model (MDM), which, in part, provides more flexibility in publishing how one manages information resulting from the complexity of data collection in the coastal and marine environment (e.g., multiple measuring devices taking multiple measurements at multiple x,y,z). This document should provide enough information for a reasonable understanding of how any particular class could be used in an ArcGIS application. It may be helpful to use this document in conjunction with the Common Marine Data Types Diagram (and an MDM thesaurus to go with this MDM glossary? () and the notes from MDM Workshop #3, May 2003.
By way of brief definition, an object represents a real world object, such as a fish habitat, an underwater volcano, or a marker buoy, and is stored as a row in a relational database table.

Object classes in ArcGIS do not have a geographic representation, such as a table of marker buoy names or a list of habitat suitability indices. An object class table of habitat suitability Indices could be associated to a set fish habitat features through a relationship class.
Features are geographic objects that have a spatial location defined. More specifically, a feature is just like an object but it also has a geometry or shape column in its relational database table. Through inheritance, a feature class has all of the attributes and behaviors of the object, but with additional, spatial capabilities.
A feature data set is simply a collection of feature classes that share a common spatial reference. A spatial reference is part of the definition of the geometry field in the database. For example, a set of coastal land parcels stored in NAD27 and UTM Zone 5 could not be in the same feature data set as Public Land Survey System features stored in geographic latitude/longitude coordinates.

The above concepts are more fully described in Modeling our World (Zeiler, 1999) and Multiuser Geographic Information Systems with ArcInfo 8 (ESRI, 2000). Note below that abstract feature or object classes are in italics to match the UML diagram. These are classes storing common attributes shared by the classes inheriting from them, but they do not have features or objects of their own and thus cannot be “instantiated”. The notion of a feature or object class being abstract is further defined by Sun Microsystems in their online Java programming manual (http://java.sun.com/docs/books/tutorial/java/javaOO/abstract.html):

Sometimes, a class that you define represents an abstract concept and, as such, should not be instantiated. Take, for example, food in the real world. Have you ever seen an instance of food? No. What you see instead are instances of carrot, apple, and (our favorite) chocolate. Food represents the abstract concept of things that we all can eat. It doesn't make sense for an instance of food to exist.

Similarly in object-oriented programming, you may want to model an abstract concept without being able to create an instance of it. For example, the Number class in the java.lang package represents the abstract concept of numbers. It makes sense to model numbers in a program, but it doesn't make sense to create a generic number object. Instead, the Number class makes sense only as a superclass to classes like Integer and Float, both of which implement specific kinds of numbers. A class such as Number, which represents an abstract concept and should not be instantiated, is called an abstract class . An abstract class is a class that can only be subclassed-- it cannot be instantiated.

MARINE FEATURES: A generic logical grouping, domain, or “packet”, containing feature classes for representing physical maritime features (i.e., spatial features that represent natural or manmade things in the water).

MarineFeature – An abstract class from which all other feature classes inherit from. This class implements the following attributes:

Attributes:
MarineID – A unique identifier number, database wide, for all features

MarineCode – A user-specified identifier

CruiseID – A user-specified identifier for an entire expedition at sea [Michael: this should be string instead of integer as cruise identifiers often have both letters and numbers]
MarinePoint – an abstract class defining subclasses of point features.

MeasurementPoint – an abstract subclasses of MarinePoint used for categorizing points that are associated with Time or Measurements.

InstantaneousPoint – An instantiable subclass of MeasurementPoint for representing features that are a single observation in time and space. Meaning the X, Y coordinates plus a timestamp create the unique point feature. An InstantaneousPoint can have multiple Z depths.

Properties:
None

Attributes:
RecordedTime – the time step for identifying the point

SeriesID – used as a ForeignKey for relating to the Series Class

IPointType – the SubType field identifying the SubType

Subtypes:
1 = StandardPoint

2 = TelemetryPoint

Examples:
At surface: tide gauge measurement on shore or harbor porpoise sighting, where a single sighting is represented as a unique feature.

At depth: CTD (conductivity/temperature/depth), XBT (eXpendable

BathyThermograph), SVP (Sound Velocity Profile) casts below the

water surface, all with multiple Measurements.
Instantaneous Point = CTD or measurement package

Measurement Table – Measure ID of 1st CTD measure stop at depth z

MDevice Table = bottle, or could be same device but calibrated different way

MType = reading is of type dissolved O2 (could be salinity, temp, photosynthetically available radiation (PAR), etc.)

MData = that actual numerical value of dissolved O2
LocationSeriesPoint – An instantiable subclass of MeasurementPoint for representing features in a series of X,Y locations, with multiple Zs with multiple time steps recording multiple variables (measurements from an instrument).

Properties:
None

Attributes:
RecordedTime – the time step for identifying the point

SeriesID – used as a ForeignKey for relating to the Series Class

Examples:
Recording buoy

Telemetry measurement

Bird/mammal sighting

Ship-mounted ADCP (Acoustic Doppler Current Profiler)

TimeSeriesPoint – An instantiable subclass of MeasurementPoints for representing features that are fixed in space (X, Y) and have a single Z location and are associated to TimeSeries via the TimeSeriesTurnTable (see Marine Objects)

Properties:
None

Attributes:
None

Examples:
Observation buoy or hydrophone

Moored Current meter

OBS (Ocean Bottom Seismometer)

Moored ADCP (Acoustic Doppler Current Profiler)

FeaturePoint – A subclass of MarinePoint used for features that are fixed in X,Y and Z coordinates and that have no Measurement association.

SurveyPoint – An instantiable subclass of FixedPoint for representing point locations for a single survey, with a recorded time (i.e., the feature is there to mark a site; a seafloor marker, buoy marker, etc., deployed at a time T and fixed in space). SurveyPoints are further defined by the SurveyInfo Object class

Properties:
HasZ

Attributes:
Zvalue

RecordedTime

SurveyID – ForeignKey relating to the SurveyInfo Table.

Examples:
Marker buoy

Transponder

Other fixed geography

MarineLine – An abstract class defining subclasses of linear features

TimeDurationLine – An abstract subclass of MarineLine for representing linear features that have a varying Z locations and varying time values across the length of the line (i.e. every vertex has a single time value and locations in between are interpolated)

Properties:
HasM - note here that “M” is the GIS geometry measure, NOT the

“measurement”, m, from an instrument in the field

HasZ

Attributes:
StartDateTime

EndDateTime

TimeInterval

TimeIntervalUnits

Example:
MarineEvents

Run – An instantiable class of TimeDurationLine, further defined by the Cruise,

Vehicle, and ObservationInfo object classes

Properties:
Polyline

HasM - note here that “M” is the GIS geometry measure, NOT the

“measurement”, m, from an instrument in the field

HasZ

Attributes:
RunID

RunName

RunMethod

Description

LocationDescription

Example:
Data collection runs collect in situ samples, deploy casts of some sort, or deploy tows of various types for future laboratory analysis. These runs may be made at predefined sites, along predefined tracklines (see Scientific Information Model diagram at http://dusk.geo.orst.edu/djl/ arcgis/diag.html). For transect see DataLine.

Track (or Trackline) – An instantiable class of TimeDurationLine,
further defined by the Cruise
object class

Properties:
Polyline

HasM - note here that “M” is the GIS geometry measure, NOT the

“measurement”, m, from an instrument in the field

HasZ

Attributes:
TrackID

Example:
The track of a research vessel during an entire expedition, or the track of a vehicle during a run of observations or measurements (a track can be very complex depending on the kind of measurements made in multiple surveys, as opposed to a transect which is normally somewhat of a straight line and derived from one and only one survey – see DataLine below).
DataLine – An instantiable class of MarineLine for representing features not normally representing a real phenomenon in the ocean, rather something that we create to abstract data from, build a profile from (e.g., intercepting z’s), measure change along, etc.

Properties:

Polyline

HasZ

HasM - note here that “M” is the GIS geometry measure, NOT the

“measurement”, m, from an instrument in the field

Attributes:
SurveyID – ForeignKey relating to the SurveyInfo Table

DataLineType

Examples:
Geologic or map Cross-section

Bathymetric profile

Spectral profile

Sediment transport line

Transect

FeatureLine – An instantiable class of MarineLine for representing fixed or dynamic linear features

Properties:
Polyline

HasM

Attributes:
No additional

Examples:
 Sea wall

Oceanographic front

Exclusive Economic Zone boundary or any other legal boundaries not

enclosing an area

Submarine cable

Shoreline – An instantiable subclass of FeatureLine for representing a determined shoreline

Properties:
Polyline

HasM

Attributes:
VDatum – Defines the vertical data for the Shoreline feature

ShorelineType

Examples:
Shoreline types can be according to datums (Mean High Water, Mean

Low Low Water, etc.), or rocky, sandy, etc.
MarineArea – An abstract class defining subclasses of area features

FeatureArea – An instantiable subclass for MarineArea for representing area features that have varying X,Y,Z locations

Properties:
Polygon

Attributes:
BoundaryType

Examples: Marine boundaries (sanctuaries, MPAs or Marine Protected Areas)

Habitats

Patches

Lava flows

Polygons for masking or clipping

TimeDurationArea – An instantiable subclass for MarineArea for representing area features that have varying X,Y, Z locations and varying time values.

Properties:
Polygon

HasZ

HasM

Attributes:
SeriesID

StartDate

EndDate

TimeInterval

TimeIntervalUnits

Examples: Any time-area closures

 No-take zones

 Oil spills

 Harmful algal blooms

MARINE OBJECTS: A generic logical grouping, domain, or “packet”, containing Object Classes used for physical maritime features (i.e., tables that support MARINE FEATURES).

Cruise – A class for defining information about the characteristics of a ship

during an entire expedition.

Attributes:
CruiseID

CruiseName

CruiseType

ShipName

Description

CruiseStatus

Example:
Can be used for defining linear events against MarineLine Features, such as the tracklines of a ship during a cruise

MarineEvent – A class for defining either linear or point events against MarineLine Features

Attributes:
MarineEventID – User defined ID

FeatureID – MarineID for the feature with the RouteSystem

FromLocation – Beginning location for a Linear Event, the location for a Point Event

ToLocation – Ending location for a Linear Event

EventValue – Value for the current event

Examples:

Shoreline Features:

Land Classification

Tourism Areas

Wave Action

Erodability

Coastal Risk

Sediment Transport

Transects Features:

Accretion/Erosion

Cruise Features: Something to do with time, where the Measures of a Cruise are in a Time format

Run Features: Something to do with time, where the Measures of a Run are in a Time format

Vehicle – A class for defining the measuring device utilized by a Run Feature.

Attributes:
VehicleID

VehicleName

VehicleType

SurveyInfo – A class for defining a Survey from a collection of SurveyPoints

Attributes:
SurveyTypeID – Identifier for the type of Survey

SurveyDate – Date the Survey was taken

SurveyDesc – General description about the Survey

MDeviceID – The ID of the MeasuringDevice used for the Survey

Measurement – A class for defining a single Z Location for a MeasurementPoint

Attributes:
MeasureID – Unique ID for a given Measurement

MDeviceID – The ID of the MeasuringDevice used for the

MeasureZ – The Z coordinate of the Measurement

ServiceTrip – The visit date

ServiceLog – Descriptive information about the visit

Example:
A position along a TC String

ADCP Bin

CTD Bottle

MeasuredType – A class defining the specifics of the MeasuredData

Attributes:

MTypeID – User defined ID

VariableName – The type of data being measured

VariableDesc – A descriptor field adding more information about the type of data being measured

VariableUnits – The units of the measured data

VariablePrecision –

MDeviceID – A ForeignKey for relating to the MeasuringDevice class

MeasuringDevice – A class for defining the measuring device used for measuring data

Attributes:
MDeviceID – User defined identifier

MDeviceName – Name of the device

MDeviceType – Type of device being used for measuring the data

MeasurementType – Type of measurement being collected

MeasuredData – A class for holding measured data for a single MeasuringDevice

Attributes:

MDeviceID – The ID of the Measurement

TimeSeries – A class for holding Time and Values for a single TSType

Attributes:
FeatureID

TSTypeID

TSDateTime

TSValue

Description

TSType – A class for defining the TimeSeries data in a TimeSeries Table

Attributes:
TSTypeID

Variable

Units

IsRegular

TSInterval

DataType

Origin

TimeSeriesTurnTable – A class for managing how a Feature can have multiple TimeSeries associated to it. In general, a turntable is used for managing many to many relationships – IDs or other attributes can be repeated any number of times, making it easier to load data, and to manage relates within the same class (which doesn’t work as well with attributes only).

Attributes:
TSTypeID – The ID of the TSType

MarineID – The ID of the MarineFeature

MeasureID – The ID of the Measure

Example:
At MeasureID #1 there might be 2 different time series (TS), with TS1 for a current meter and TS2 for salinity

SPECIAL NOTE: Classes below modified by P. Halpin from the ArcGIS Biodiversity and Conservation Data Model and emerging standards from the Ocean Biogeographic Information System (OBIS) network (for reference, see also two documents outlining DRAFT required data types for the OBIS network: OBIS_Schema.doc and OBIS_diagram.html). Included are:

· a minimal set of BiologicalObservation types to cross-walk with the OBIS or similar marine biological data systems. Other types may be added by the user to meet the needs of an individual application.

· a minimal set of PhysicalObservation types that can be used to parallel the biological schema. Again, other types may be added by the user to meet the needs of an individual application.

· ObserverGroup and Quality classes, after the Biodiversity Data Model in case this information is not already included in the metadata of the data set that a user may be working with.

ObservationInfo – A class (table used for storing common attributes and methods for marine biodiversity/conservation observations or information)

Attributes:
ObservationID –Unique identifier for observation

ObservationDesc – Description of the observation

ObservationMethod - Method utilized in collecting survey information

on the observation

ObserverID - Identifier for observer that made the observation

LocationDescription - Description of location associated with observation

ObserverLocation - Description of where the observer made the observation

OffsetFromLocation - Description of the relative position of the observer from the biodiversity unit being observed

PhysicalConditions - Physical conditions at the location associated with observation

EnvironmentalConditions - Environmental conditions at the location associated with observation

MarineID - A unique identifier number, database wide, for all features
Physical Observations – A class (table used for storing common attributes for Physical Biodiversity Observations)

Attributes:
PhysObsName

PhysObsID

PhysObsType

PhysObsDescription
BiologicalObservation – A class (table used for storing common attributes for Biological Observations)

Attributes:
BioObs_taxa_code

BioObs_taxa_name

BioObs_taxa_thesaurus

BioObsDescription

BioObsGroup

BioObsGroupCount

BioObsIndCount

BioObsSex

BioObsLifeStage
ObserverGroup – A class (table used storing common attributes for Observer)

Attributes:
ObserverID - Identifier for observer that made the observation

Name – Name of observer that made the observation

ContactInformation – Email, phone of observer

Credentials – Credentials of observer
Quality – A class (table used for storing common attributes for quality of observations)

Attributes:
ObservationID - Identifier for observation

QualityOfObservation - Quality of observation

EstimatorCredentials - Credentials of the person evaluating the quality of the observation
MODEL FEATURES (MESH Points) – A generic logical grouping, domain, or “packet” containing Feature Classes used in numerical modeling of physical maritime phenomena

MarineFeature – an abstract class from which all other feature classes inherit from. This class implements the following attributes:

Attributes:
MarineID– A unique identifier, database wide, for all features

MarineCode– A user-specified identifier

CruiseID – to A user-specified identifier for an entire expedition at sea

[Michael: should be changed to String]
MeshPoint – An abstract class for storing the grid point feature to be used from a 2-D or 3-D grid, numerical model or finite element model (e.g., edges of a triangular face, not just the face)

Attributes:
None

Subtype:
1 = GridPoint

2 = MeshPoint

Example:
MIKE 21 result Grid

MIKE 21 Finite Element Model

MeshElements – An instantiable class of MeshPoint for storing the elements feature to be used to link node points to form an element of a finite, or difference model

Attributes:
Node1ID – stores the ID of the first node of an element

Node2ID – stores the ID of the second node of an element

Node3ID – stores the ID of the second node of an element

Node4ID – stores the ID of the second node of an element

Example:

MIKE 21 Finite Element Model

SPECIAL NOTE: Grids and images cannot be modeled in UML but this does not mean that they can’t be used in the MDM. In UML including grids and images would mean having specify row, col, value several times, which is extremely inefficient for storage. But, again, this doesn’t mean that you can’t use rasters in your analysis. In the gdb you CAN add rasters (with SDE) and representative time stamps. You can also choose a vector representation of a raster, where you can store a time stamp and every cell can be a point. If you choose this route, MeshPoint could be the vector representation, managing the points that are MEANT to be a single thing, a single image, grid, or model output. It might also be useful to do this for geostatistics, directional trends, autocorrelations, etc.

· use the vector as a locational grid that matches images – find cell that corresponds to the point

· ref. grid tracks anything in 3 x 3 window?

· Sometimes you may want to draw in vector form that represents bounding box of image or identifies objects in the image
Placeholder Examples:

Regularly interpolated surfaces: bathymetry and sidescan grids, lattices

 SST (sea surface temperature)

 Climatology

 “Re-analyzed” products (grids)

 Images such as GeoTIFF, BIL, etc.

Irregularly interpolated surfaces: TINs, bathymetry

Volumes: plumes, fronts, warm cores, trawl abundance, etc.

Animations, Movies, Video: Underwater video footage, outputs from

atmospheric or circulation models that are animated and georegistered so that other data may be overlain.

model Objects: A generic logical grouping, domain, or “packet”, containing Object Classes used in numerical modeling of physical maritime phenomena (i.e., tables that support MODEL FEATURES).
Grid – Stores the necessary information for describing the shape, structure and orientation of a model Grid. A Grid is simply a collection of points from the MeshPoint feature class.

Attributes:
GridID

Angle – Defines the orientation of the Grid

TotalPoints – Total number of GridPoints defined by the Grid

NoOfPointsJ – Number of GridPoints in the J direction

NoOfPointsK – Number of GridPoints in the K direction

NoOfPointsZ – Number of GridPoints in the Z direction

GridStructure – Determines whether the Grid has a Regular structure or an Irregular structure

GridSpacing – The spacing between GridPoints. If the GridStructure is Irregular, then this is NULL.

GridType – Determines the type of Grid

Subtypes: GridLine, GridArea, GridVolume

GridLocation – stores the necessary information for defining the location of a point in rater coordinates.

Attributes:
PointID – the MarineID of the point feature

ColumnJ – the J column the point is located in (X)

ColumnK – the K column the point is located in (Y)

ColumnZ – the Z column the point is located in (Z)

Depth – the actually Z value of the point

ScalarQuantities – Stores the values of single scalar for a given Point

Attributes:
PointID – the MarineID of the point feature

STypeID – A ForeignKey linked to the QtypeID of the QuantityType table

PointValue – The value of the point for a given TimeValue

TimeValue – The date time for the scalar

DataType

Examples:
Temperature

Salinity

VectorQuantities – Stores the values of multiple vectors for a given Point

Attributes:
PointID – the MarineID of the point feature

VTypeID – A ForeignKey linked to the QTypeID of the QuantityType table

XComponent – The value of the vector in the X Direction

YComponent – The value of the vector in the Y Direction

ZComponent – The value of the vector in the Z Direction

TimeValue – The date time for the scalar

DataType

Examples:
Wind

Current

QuantityType – Stores the scalar description and the Grid for each PointValue Table

Attributes:
QTypeID – The unique identifier of the QuantityType

GridID – The unique identifier of the Grid

QuantityType – Defines that the quantity is either a Scalar or a Vector

QuantityDesc – The description of the Quantity

PointTurnTable – Manages the many-to-many relationship between a Grid and the GridPoints

Attributes:
GridID – The ID of the Grid

MarineID – The MarineID of the point involved in the Grid.

Page 7 of 7

